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ABSTRACT

GPUs are an attractive target for data parallel stencil com-
putations prevalent in scientific computing and image pro-
cessing applications. Many tiling schemes, such as over-
lapped tiling and split tiling, have been proposed in past
to improve the performance of stencil computations. While
effective for 2D stencils, these techniques do not achieve the
desired improvements for 3D stencils due to the hardware
constraints of GPU.
A major challenge in optimizing stencil computations is to

effectively utilize all resources available on the GPU. In this
paper we develop a tiling strategy that makes better use of
resources like shared memory and register file available on
the hardware. We present a systematic methodology to rea-
son about which strategy should be employed for a given
stencil and also discuss implementation choices that have
a significant effect on the achieved performance. Applying
these techniques to various 2D and 3D stencils gives a per-
formance improvement of 200-400% over existing tools that
target such computations.

Categories and Subject Descriptors

D.3.4 [Programming Languages]: Optimization

Keywords

Resource management, Stencil computations, Tiling, GPGPU

1. INTRODUCTION
Stencil computations form the compute-intensive core of

scientific applications in many domains. Many recent efforts
target optimization of stencils, including several domain-
specific languages and frameworks. Stencil computations
exhibit a high degree of data parallelism, thereby making
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them well suited for execution on GPUs. However, stencil
computations are often memory-bandwidth limited unless
temporal reuse is exploited across a sequence of stencils or
across multiple time steps for time iterated stencils.

Tiling is a key transformation to enhance temporal reuse
of data and thus reduce the amount of data transfer from/to
global memory on the GPU. Time-tiled execution of stencil
code using the GPU’s shared memory has been pursued by
several efforts [1, 3, 4, 5, 11]. While good performance has
been reported by many efforts for 2D stencils, high perfor-
mance on 3D stencils has generally been much more chal-
lenging. As elaborated later in the paper, a primary rea-
son for the lower performance on 3D stencils is that the
shared memory capacity required for effective time-tiling of
3D stencils is much higher than that required for 2D stencils.

The total amount of shared memory in each SM (Stream-
ing Multiprocessor) of a GPU is very limited, typically 48KB.
The low shared-memory capacity limits the maximum num-
ber of time steps in a time-tile and also limits the number of
concurrently active thread blocks in each SM. The low oc-
cupancy in turn leads to lower performance due to inability
to effectively overlap memory access latency with sufficient
operations to execute across the active warps.

However, judicious exploitation of the data access pattern
of stencil computations, combined with associative reorder-
ing of the stencil operations where appropriate, can enable
the use of GPU registers to offload data from shared mem-
ory, thereby enhancing data reuse and/or occupancy. Since
the register file size per SM is larger than the shared mem-
ory size on most modern GPUs (a trend that is expected
to continue), this alleviates the constraints on occupancy
imposed by shared memory limits. The low access latency
of registers further improves the performance of the code.
The optimization of register and shared-memory resources
for stencil computations is a primary focus of this work.
In combination with streamed execution (elaborated later)
along an arbitrarily long tile dimension, we achieve signifi-
cantly higher GPU performance than prior reported efforts.

The paper makes the following contributions:
• We present a systematic analysis that accounts for the

constraints on various hardware resources, such as reg-
isters and shared memory on modern GPUs. This
analysis is used to find an ideal configuration of the
grid and block sizes for time-tiling schemes for stencil
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computations.
• We present an algorithm for streamed time-tile execu-

tion of stencil computations that overcomes these re-
source bottlenecks by effectively managing the shared
memory and registers that are available on the GPU.
• We evaluate the effect of using associative reorder-

ing of the stencil updates to enhance the performance
achieved.
• We validate the approach by manual implementation

of different time-tiling schemes for 2D and 3D stencils.
Comparisons with existing tiling compiler frameworks
show that the approach developed in this paper can
significantly boost the performance of stencil compu-
tations on modern GPUs, especially for 3D stencils.

2. GPU CONSTRAINTS FOR STENCIL

COMPUTATION
The basic computational unit of a GPU is a thread. Going

up the hierarchy, threads are grouped into blocks, and blocks
are grouped into a grid. A program explicitly specifies this
hierarchy of grid and blocks as kernel launch parameters.
Threads within a block are executed on the same streaming
multiprocessor (SM), can exchange data via shared memory,
and synchronize among themselves.
In order to be performance efficient, apart from reduc-

ing accesses to global memory through spatial and temporal
reuse, tiling algorithms in GPU must also incorporate the
following.
• Access global memory in a coalesced manner.
• Maximize concurrency to keep all the execution units

busy.
• Account for the limited amount of shared memory avail-

able on each SM (typically 48KB).
• Reduce register usage per thread. Increased register

usage results in either lower occupancy or expensive
spills.

Some of these factors are tightly coupled to the underly-
ing hardware, so the kernel launch parameters need to be
tuned for the specific GPU architecture on which the pro-
gram is executed. In this section, we present some general
constraints on block and grid size for spatial tiling of d di-
mensional stencil computation, over an Nd input domain.
Typically, each point of the iteration space is executed by a
thread in the GPU. We assume that the stencil is of order
k along each dimension. We also assume that for stencil
computations, the amount of memory accessed per iteration
point of the computation can be amortized to ≈ 1 per point.

2.1 Constraints on block and grid size
Every GPU has a hardware limit on maximum number

of threads per SM (Tsm), maximum number of threads per
block (Tb), maximum shared memory per SM (Msm), max-
imum number of concurrently active blocks per SM (Bsm),
and register file size per SM (Rsm). For instance, Tsm =
2048, Tb = 1024, Msm = 48KB, and Bsm = 16, and
Rsm = 65536 for Tesla K20c. The threads in an SM can
be grouped in various ways (from 2 blocks of 1024 threads,
to 16 blocks of 128 threads in K20c). The threads in a block
are scheduled in an atomic unit of 32, called warp.
When a thread in a warp accesses global memory, the

warp stalls for the next hundreds of clock cycles due to high
memory latency. In order to hide the latency, the SM can

switch to another warp in the ready state. There must be
enough warps to keep the SM busy till the memory request
of the stalled warp is served. The best one can do is to
ensure that all the threads in an SM are utilized. If we reach

the hardware limit of
Tsm

32
warps per SM, then we achieve

maximum occupancy, the ratio of active warps to maximum
theoretical active warps per SM.

Stencil computations can benefit from spatial reuse if the
data is cached in shared memory. The access latency of
shared memory is orders of magnitude lower than global
memory, but it puts additional constraints on the number
of blocks that can be active concurrently on an SM. If each
block of size szb uses c.szb bytes of shared memory, then we

can have no more than
Msm

c.szb
active blocks per SM. If c is

large, then fewer blocks can be active per SM, which can
potentially hurt occupancy.

Registers are the fastest, but limited storage resource avail-
able to the thread. The maximum number of registers that
a thread could use is constrained by the hardware. If all the
threads in an SM are to be active, the number of threads

must be bounded by
Rsm

Tsm
. In general, if a thread uses treg

registers, then the maximum active threads per SM is min
(

Tsm,
Rsm

treg

)

.

Taking all these factors into account, the minimum num-
ber of active blocks per SM, minb can be computed as

minb = min

(

Bsm,
Tsm

szb
,
Msm

c.szb
,

Rsm

treg.szb

)

. Unless one in-

tends to coarsen the computation, the block size szb must
be chosen to maximize occupancy, i.e., szb ×minb must be
as close to Tsm as possible. If there are K SMs in the GPU,
then the grid size must be at least K ×minb to maximize
concurrency.

Coalescing of global memory accesses is important since
it reduces the total number of memory transactions, thereby
minimizing DRAM bandwidth. To benefit from coalescing,
the fastest varying dimension of the thread block is aligned
to the fastest varying dimension of the input domain, and is
chosen to be a multiple of warp size, i.e. mod(szb, 32) = 0.

2.2 Partitioning threads in each dimension
Given a 2D block of constant size szb, we can vary the

number of threads along x and y dimensions to get different
block configurations. The performance of a stencil compu-
tation varies depending on the configuration we choose. To
illustrate, let szb = bx × by. Two possible configurations
for szb = 1024 are shown in Figure 1. For configuration
(a), bx = by = 32. For configuration (b), bx = 64, by = 16.
For both the configurations, bx is a multiple of warp size to
benefit from global memory coalescing.

If an order-k stencil over N2 domain uses configuration

(a), total global reads are
N2

1024
(32+2k)2. For configuration

(b), the total global reads are
N2

1024
(64 + 2k)(16 + 2k). For

any value of k, we see that configuration (a) maximizes the
computation area while minimizing the global read transac-
tions.

To optimally partition the threads for a d-dimensional
block, one can fix the number of threads along the fastest
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Figure 1: Different block configurations for a fixed block size

varying dimension, tf = max(32,

⌊

szb
1/d

32

⌋

.32), and set the

initial number of threads in other dimensions to≥

(

szb

tf

)

.

1

d−1

The numbers along non-fastest varying dimensions can then
be adjusted depending on the shared memory limitations. If
the numbers obtained for the non-fastest varying dimensions
are too low, we recompute tf by replacing 32 by 16 (half-
warp). For example, a 3D block of size (16, 8, 8) can be more
favorable than a block of size (32, 5, 6), since it utilizes all
the available threads.

3. OVERLAPPED TILING WITH STREAM-

ING FOR STENCIL COMPUTATION
Most stencil computations are bandwidth bound. Both

the input values, and values computed at each time step
are used multiple times in computation at subsequent time
steps. Caching these values in faster shared memory and
registers, and reusing them instead of repeated reads and
writes to slower global memory, is critical to achieve high
performance. Tiling is a key transformation to address this
issue. It aims to exploit parallelism while maximizing spatial
and temporal locality in bandwidth bound stencil computa-
tions. Tiling the input domain and assigning the tiles to
different thread blocks does not guarantee concurrent ex-
ecution in time-tiled stencil computations. For every tile,
computing the boundary values at time step t requires data
at time step t − 1 from the neighboring tiles. This data is
referred to as the halo region or the ghost zone. The de-
pendence of a tile on the data computed in neighboring tiles
introduces the need for a global synchronization after each
time step.

3.1 Overlapped Tiling
Efficient tiling algorithms for GPU has been a topic of

intense research. A tiling technique that has been shown
to be effective for GPUs is overlapped tiling [6, 5, 12]. It
eliminates the dependence between tiles by introducing re-
dundancy in the initial data loads from global memory and
intermediate computation. The extent of input data read
per tile is increased such that no communication is required
to compute the boundary values at each time step. It means
that same point in the iteration space can be computed by
neighboring tiles redundantly, as shown in Figure 2a.
The extent of redundant computation depends on the

block size, number of overlapping dimensions, the order of
the stencil, and the time tile size. For example, blocks TB0

and TB1 in Figure 2a compute three output values. There
are four redundant reads and two redundant computations.

These redundant reads and computations could be elimi-
nated if the block size was increased to compute six output
values. If the time tile size was increased to 3, then the
number of redundant reads and computations would both
increase to six. The redundancy increases with increase in
stencil order as well. Due to the lack of explicit commu-
nication between tiles, the generated code is simple. Since
GPUs have high a floating-point throughput for 2D sten-
cils, the increase in computation is sometimes tolerable for
low-order stencils.

On the other hand, the amount of redundant computa-
tion for a 3D stencil can be overwhelming for some stencils.
Consider a block that computes an 8× 8× 8 = 512 block of
the output for a 3D first-order stencil using a time tile size
of 2. Each block would need to read a 10× 10× 10 = 1000
block of the input domain, out of which almost half are read
redundantly by another thread block as well. The number
of points at the intermediate time step computed by the
block would be 9 × 9 × 9 = 729. The amount of redun-
dant computation would be 729− 512 = 217, i.e., a third of
the computation performed by each block is performed by
another block as well. This problem of redundancy for 3D
stencils get worse with stencil order and time tile size.

3.2 Streaming
Since overlapped tiling for 3D stencils is not an effective

approach, instead of tiling along all three dimensions, we
stream along one-dimension of the computation. We will
first describe what we mean by streaming along a dimen-
sion of the computation and then discuss how it is used in
combination with overlapped tiling to address the problem
of redundancy for 3D stencils.

Figure 2b describes streaming through x dimension for a
1D Jacobi stencil with time tile of 3 time steps. t = 0 is the
initial state from which the input values are read at t = 1.
At each time step, intermediate output values are computed
using the data from the previous time step. The final output
is computed at t = 3. Every time step requires a different
set of buffers. In the figure, different colored dots at time
step 0 − 2 represent distinct shared memory buffers. The
global memory is represented by green dots. For a 1D Jacobi
computation, three distinct memory buffers are required at
each time step, shown by different shades of black, blue,
and orange dots. In general, an order-k stencil needs 2k+1
distinct buffers per time step.

After an initial prologue, an iteration of the computa-
tion loads a value from global memory at t = 0, computes
intermediate results at each time step, and finally writes
out an output value to global memory. To observe an in-
stance of this computation, let us assume that the input
values at x = {4, 5, 6} are cached in shared memory buffers
{blue0, orange0, black0} respectively before their use (each
buffer is labeled as colort). At time step 1, x = 5 can be
computed by reading from these buffers, and stored in the
blue1. Assuming that the values computed at x = {3, 4} are
available in orange1 and black1, we can compute x = 4 at
time step 2, and store the result in orange2 buffer. Once
again, assuming that the values computed at x = {2, 3} are
available in black2 and blue2, we can compute x = 3 at time
step 3, and write out the result to global memory.

In the subsequent iteration, the input values at x = {5, 6}
are already buffered due to the data overlap from the stencil
point on the left. However, the value x = 4 is no longer re-
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Figure 2: Different tiling schemes for 3-point 1D Jacobi computation

quired in the computation, and its buffer can be reused. So
we store the next input value from x = 7 in blue0. This reuse
holds for each time step. We make two quick observations
from the computation: (1) For each input point xi read in
iteration i, we can compute the output point xi−3. (2) We
only need 3 buffers per time step for the entire computa-
tion, irrespective of the memory footprint of the tile size. In
general, for an order-k stencil, we need 2k + 1 buffers per
time step. The buffer storing the oldest value in iteration
i can always be reused to store the newest value at itera-
tion i + 1. The scheme is called streaming since we use a
sliding window to minimize the shared memory footprint,
and the consumption of input is moderated at one point per
iteration.
When a thread block computes all the points along x axis

serially in a streaming fashion, we call it serial-streaming.
An alternative would be block the iteration space along x,
and assign each partition to different thread blocks. Each
thread block will still serially stream through its share of
iteration space, but all the blocks can concurrently stream
through their share of iteration space. We call such stream-
ing concurrent-streaming.
Streaming can be extended to 2D or 3D Jacobi stencils

by interpreting a point in Figure 2b as a line or a plane
respectively. For large problem size, fitting 2k + 1 lines (or
planes) in entirety in shared memory may be infeasible. The
line (or plane) then needs to be blocked, with the block
size carefully chosen depending on the time tile size and
hardware constraints. If the time tile size is 1, then we only
exploit spatial reuse. For an N3 domain, we can interpret
a point in Figure 2b as a blocked plane of size B2, and
then serial-stream through N blocked planes in the third
dimension. Such spatial blocking is known as 2.5-D blocking,
and the corresponding time-tiled blocking is known as 3.5-D
blocking [9].
Since streaming does not perform any redundant compu-

tation and uses very limited amount of shared memory, it
is an attractive option to combine with overlapped tiling.
This is done by using streaming along one dimension and
overlapped tiling along the others. For example, for a 3D
computation, using overlapped tiling along two dimensions
and streaming along the third would reduce the amount of
redundant operations (loads and computations). The down-
side of streaming is that it serializes the computation along
one dimension of the problem. If the problem size is not
big enough to keep all the SMs busy, this would result in a
performance degradation. In such cases concurrent stream-

ing can be used to increase the degree of concurrency in the
problem to keep all the SMs busy. The next section describes
a systematic approach to decide the best tiling strategy for
a given problem.

4. RESOURCE OPTIMIZATION FOR

STENCIL COMPUTATION
In this section, we walk through the different factors to

be considered while converging upon a tiling strategy that
is best suited for a given stencil computation. Section 4.1 de-
scribes our time-tiled implementations of overlapped tiling
for 2D stencils. Section 4.2 characterizes 3D stencils based
on their access patterns, and describes optimizing techniques
for them. We also discuss implementation details that might
not be directly related to the tiling scheme, but are neces-
sary to achieve good performance. Further, some of these
techniques use explicit registers for storage, and a high per
thread register pressure can result in poor occupancy and in-
ferior performance.The NVCC compiler provides a compile-
time flag -maxrregcount=n which limits the number of reg-
isters per thread to n. This forced reduction may cause
register spills, but since we can always choose n so that
Rsm

n
= Tb, we will not consider register pressure as a limit-

ing factor while computing occupancy in this section.
For convenience of description, we fix the order of stencils

to k and the time tile size to T , and assume all the operations
to be single precision. An optimized tiling code must be
tuned for different architectures; we use Tesla K20c as the
underlying GPU.

4.1 Overlapped Tiling for 2D stencils
Overlapped tiling described in Section 3.1 can be extended

to any d-dimensional domain. Figure 3a shows overlapped
tiling for a 2D thread block along x dimension. Most sten-
cil compilers that generate näıve overlapped time-tiled code
start by partitioning the d-dimensional output domain at

time step T into blocks of size B′d and then backtrack, grow-
ing the block size at previous time steps to include the points
comprising the halo region [5, 12]. The resultant block size
for the input domain at t = 0 is Bd, where B = B′ + 2Tk.

The thread block size is chosen to be Bd instead of B′d to
avoid serialization of computation.

An inherent performance limitation of such code stems
from the partitioning scheme; an issue that is orthogonal to
overlapped tiling. The block size of input domain is same
as the thread block size, which itself is constrained by the



hardware. The total redundant computation for overlapped
tiling of an Nd domain is

V =

(

N − 2Tk

B′

)d T−1
∑

i=1

(B − 2ik)d −B
′d

Increasing B′ will reduce the volume of redundant computa-

tion. But since B′d cannot increase beyond Tb, the volume
of redundant computation can be overwhelming for higher
values of d.

Overlapped tiling + streaming. Given an N2 input do-
main, we can eliminate redundant computations along y

through streaming, and perform overlapped tiling along x to
achieve concurrency in execution. The input is partitioned
into overlapping strips of size B×N (By = N in Figure 3a).
A single thread-block is in charge of computing all the N

points along the y dimension. A thread block reads by input
lines along y axis per iteration (by is the block-size along
y-dimension), to execute by points of the iteration space.
Here each thread executes the iteration space at a stride of
by in the y direction. In this mode, each thread block has
to store T.(by + 2k) lines in the shared memory. With this
information, we can navigate through the choices for block
dimensionality. To simplify the computations, we fix k = 1
and T = 4.
• by = 1, i.e. 1D block : To achieve maximum occu-

pancy, the block size must be
2048

16
= 128. In each

iteration, a block reads one line from input at t = 0 to
compute one line of output at t = 4. For this, it needs
6144 bytes of shared memory, which constrains the ac-
tual number of active blocks per SM. From Section

2.1, an SM can only have min

(

16,
2048

128
,
48KB

6144B

)

= 8

blocks, a 50% loss of occupancy.
• by = 32, i.e. 2D block : Two blocks of size 32 × 32

can theoretically be active per SM. Since a block now
operates on a chunk of 32 lines instead of 1, it needs
17KB of shared memory. Each SM can practically

have min

(

16,
2048

1024
,
48KB

18KB

)

= 2 active blocks, which

implies maximum occupancy.
Clearly, we achieve better occupancy with 2D blocks. For a
bx × by block, the computation proceeds as shown in Figure
2b; the point being computed is interpreted as a set of con-
tiguous by lines. In each iteration after prologue, by lines are
computed at time step t by reading by + 2k lines from the
shared memory buffer at time step t− 1. A sliding-window
approach is used where after each iteration, by oldest lines
in the buffer can be reused to cache the new lines. The
buffer itself can be implemented as a circular array, and row
performs modulo operations to find the top and bottom k

rows.

Optimized streaming. Modulo operations are costly on the
GPU since they compile to multiple instructions in the as-
sembly code. If by +2k is a power of 2, then we can replace
the modulo operator by bitwise operator instead, which has
a very high throughput. (a mod b ≡ a & (b − 1) if b is a
power of 2). Since k is zero only for point-wise operations, by
may not be a power of 2 for most stencils. This would result
in 2048 not being a multiple of bx × by. No configuration

would then maximize the occupancy of an SM.
Instead of a sliding-window approach, we use an ping-pong

buffer approach. We allocated two shared memory buffers
A0 and A1. All even time steps read from buffer A0 and
write to buffer A1, and all odd time steps read from A1 and
write to A0. In Figure 3b, for each iteration at t = 0, a
block reads by lines to fill half of the buffer A0. The even
iterations use the first half of A0, and the odd iterations
use the second half. The prologue computes by−2tk lines at
each time step t > 0. In the subsequent iterations, each time
step computes by lines using by +2k lines from the previous
time step.

Here by can be chosen to be a power of 2. This approach
only avoids the use of expensive modulus operation, the
shared memory requirement for a bx × by block decreases
to two buffers of size 2bybx (from T.(by + 2k).bx for the
sliding-window approach). Further, the amount of shared
memory is independent of the time-tile size. If we create
thread blocks of size (32×16), then each block will use 8192
bytes of shared memory. Each SM can concurrently schedule

at most min

(

16,
2048

512
,
48KB

8192B

)

= 4 blocks, utilizing all the

available threads per SM. Assuming that there is enough
concurrency to keep all SMs busy, this optimized version
outperforms the traditional tiling.

Algorithm 1 presents an implementation sketch of the op-
timized version. Line 2 computes the partition of input do-
main that a block reads. Line 8-11 identify the iteration
space of the output domain. Line 13 computes the indices
of the input rows in the circular buffer that will be used to
compute an output row. The function apply stencil () in
Line 19 applies the stencil operator on the input buffer to
compute values in the output buffer.

Overlapped tiling + registers + concurrent streaming.
Overlapped tiling + streaming with 1D thread blocks was
not optimal because the high shared memory usage lowered
the occupancy. We call a stencil diagonal-access free if the
access pattern (x0, y0, z0) from one plane along z axis to
other plane is strictly of the form (0, 0, z0). If the stencil is
diagonal-access free, then the shared memory requirement
can be lowered by using registers to cache the 2k accesses
to lines [7]. For a thread block of 128 threads, k = 1 and
T = 4, a block now needs 8 registers and 2048 bytes of shared
memory. With this optimization, the number of feasible

active blocks per SM ismin

(

16,
2048

128
,
48KB

2048B

)

= 16 blocks.

While the occupancy is maximized, this strategy suffers from
low concurrency. To keep all the 13 SMs of K20c busy, we
need at least 13 × 16 = 208 thread blocks. However, even
a large input domain of size 81922 can only be partitioned

into
8192

128
= 64 blocks. This was not a problem with the

overlapped tiling + optimized streaming algorithm since it
needed only 13× 4 = 52 blocks to achieve full concurrency,
and the input domain for it was partitioned into 256 blocks.

The simplest way to increase concurrency is to block the
input domain in y dimension as well. We only need to par-

tition the domain into

⌈

208

64

⌉

= 4 blocks along the y dimen-

sion. For correctness, we perform overlapped tiling along y

dimension as well. Since the block is 1D and the input grid
is 2D, we perform streaming within a tile.



Overlap

t = 1

t = 0

Bx

By

(a) Overlapped tiling along x for a 2D block

Bx

By

t = 0, A0

t = 1, A1

t = 2, A0

prologue

t = 0, A0

t = 1, A1

t = 2, A0

Bx

By

next iteration

(b) A block’s computation in optimized version of streaming along y

Figure 3: Overlapped tiling for 2D stencils

Algorithm 1: Overlapped tiling + optimized streaming

Input : IN : input array,
T : time tile size,
k : stencil order,
A0,A1 : sh-mem buffers,
(Bx, By) : block size

Output: OUT : output array
1 sizey = 2.By;
2 ix = blockIdx.x × (Bx − 2Tk), iy = 0;
3 while iy < N do

4 u = max(0, iy)..min(iy +By, N − 1);
5 v = max(0, ix)..min(ix +Bx, N − 1);
6 A0[u & (sizey − 1)][0..Bx]← IN[u][v];
7 for t from 1 to T do

8 startx = max (t, ix + t);
9 starty = max (t, iy − t);

10 endx = min (ix +Bx − t, N − 2k);
11 endy = min (iy +By − t, N − 2k);
12 for l from -k to k do

13 rowy+l = (rowy + l) & (sizey − 1);
14 end

15 g = starty..endy;
16 h = startx..endx;
17 bufr = (t mod 2 == 0) ? A1 : A0;
18 bufw = (t mod 2 == 0) ? A0 : A1;
19 bufw[g & (sizey − 1)][h] = apply stencil (bufr);
20 syncthreads ();

21 end

22 OUT[g][h]← bufw[g & (sizey − 1)][h];
23 iy+ = By;

24 end

This version incurs some volume of redundant computa-
tion and bandwidth along y axis when compared to over-
lapped tiling + streaming, but it is negligible compared to
the reduction in redundancy and bandwidth along x axis
due to larger blockDim.x (128 vs. 32). This implementation
also benefits from the low access latency of the registers.

4.2 Tiling for 3D stencils
Efficient 3D tiling must strive to reduce the extra data

transfers involved in reloading ghost region across tiles. Fig-
ure 4 shows the possible grid dimensionality for a 3D do-
main. 3D grid requires extra memory bandwidth for redun-
dantly loading the same halo regions for neighboring blocks
along z axis. 2D grid entails streaming through the non-

partitioned dimension. For 1D grid, we stream through one
non-partitioned dimension, and tile the other non-partitioned
dimension using parallelogram tiling. However 1D grid might
not provide enough concurrency to achieve good performance.

3D grid 2D grid 1D grid
x y

z

Figure 4: Various grid dimensionalities for a 3D input

For higher dimensional domain, streaming simplifies the
tiling algorithm and code generation. Since the streamed
dimension is not tiled, a d-dimensional domain can be tiled
using the same algorithm that tiles d − 1 dimensions. Our
tiling implementation for 3D stencils partitions the input
domain as a 2D grid, and assigns a 2D thread block to each
partition that streams through the unpartitioned dimension.
Concurrency is achieved by using 2D overlapped tiling (Sec-
tion 4.1) on the partitioned dimensions. Note that we cannot
stream through x axis for 3D stencils, since this would entail
non coalesced accesses while loading data from a yz plane.
Without loss of generality, we choose z to be the streaming
dimension in this section.

Streaming in a time-tiled 3D stencil requires T.(2k + 1)
planes to be in shared memory. When T = 4 and k = 1, a
thread block of size 32×32 will need 48KB shared memory.
Since this is the total available shared memory, an SM can
have no more than one active block, resulting in 50% occu-
pancy. If k = 2, then the required shared memory exceeds
the hardware limit. [7] uses registers to offload the caching
of some planes to registers for spatial tiling. We discuss the
details of implementing a time-tiled code with shared mem-
ory + registers. The discussion will be independent of the
tiling scheme used across thread blocks to achieve concur-
rency, as it is orthogonal to the streaming optimizations that
are local to a block.

Streaming + registers. In the scenario above with k =
1 and block size 32 × 32, if the stencil is diagonal-access
free, then we can increase the per thread register pressure
by 2Tk, and bring down the shared memory requirement
to 16KB. With this trade-off, an SM can have two active
blocks, achieving maximum occupancy. If there are register
spills due to the increased register pressure, then we can
reduce the value of T to reduce the register pressure. Figure



5 shows one time step of the time-tiled 7-point 3D stencil
using registers.
For the 7-point stencil, the resources involved in the com-

putation are shared memory buffer A[T ], and registers rp[T ],
rm[T ]. In each iteration i, threads in a block read a point
from input plane zi+1 into rp[0]. The block computes plane
zi at time step 1 using A[0], rp[0], and rm[0], and stores
this computed value in rp[1]. Using A[1], rp[1], and rm[1],
the block computes plane zi−1 at time step 2. Proceeding
this way, at time step T , plane zi−T of the output array
is computed. After each iteration, we perform a data shift
(rp → A → rm) at each time step, freeing rp to store new
values.

z

IN

z plane

z + 1 regs

t=0

z − 1 regs

z − 1 plane

z regs

t=1

z − 2 regs

Figure 5: Streaming along z dimension for 7-point 3D Jacobi

An implementation sketch of the scheme is presented in
Algorithm 2. The algorithm is presented independently of
the tiling scheme for the other two dimensions. The initial-
izations at Line 1 depend on the tiling schemes for x and y

dimensions. The function compute stencil returns the out-
put of applying stencil computation to a point.

Algorithm 2: streaming + registers algorithm for a 3D
order-1 stencil
Input : IN : input array,

T : time tile size,
(Bx, By) : block size,
(tidx, tidy) : thread index,
At : sh-mem buffer for time step t,
rp[t] & rm[t] : registers storing z + 1 and z − 1

planes at time step t

Output: OUT : output array
1 ix = . . . , iy = . . . , iz = 1;
// Initialization

2 A0[0..By][0..Bx]← IN[0][iy..iy +By][ix..ix +Bx];
3 rp[0] = IN[1][iy + tidy][ix + tidx];
4 for each iz from 1 to N − 2 do

// Shift data

5 rm[0] = A0[tidy][tidx];
6 A0[tidy][tidx] = rp[0];
7 rp[0] = IN[iz + 1][iy + tidy][ix + tidx];
8 syncthreads ();
9 for t from 1 to T do

// Shift data, put result in rp[t]

10 rm[t] = At[tidy][tidx];
11 At[tidy][tidx] = rp[t];
12 rp[t] = compute stencil(At−1, rp[t− 1], rm[t− 1]);
13 syncthreads ();

14 end

15 OUT[iz − kT ][iy + tidy][ix + tidx] = rp[T ];

16 end

Generalizing shared memory + register amenable sten-
cils. With minor modifications, we can apply Algorithm 2
to all the stencils where each plane accesses only one point
per plane from other planes along z axis. If such a stencil
accesses a diagonal point (x0, y0, z0), the writes to rp and
rm at Line 3, Line 5, Line 7, and Line 10 have to factor
in the offset (x0, y0) during data access. We will also need
a temporary buffer to store the output of computation at
Line 12, and other reads from rp or rm. After the data is
written into the temporary buffer, each thread can read ap-
propriately offset value into rp and rm. There will be extra
synchronization barriers after every write to the temporary
data, but we still use only T + 1 shared memory buffers
instead of T (2k + 1) buffers.

Optimization for associative stencils. For stencils that
access more than one point per plane from other planes along
z axis, the streaming + registers version will incur high reg-
ister pressure. There is also some redundancy in the values
stored in the registers of neighboring threads. For a 27-
point 3D stencil with T = 2, the number of registers needed
per thread is 36, which will inadvertently be spilled if one
intends to maximize occupancy.

If such a stencil is associative, we propose an optimization
that reduces the number of registers required at each time
step to just 1 for each plane accessed, bringing down the
total number of registers per thread to 2Tk + 1. An exam-
ple of such a stencil is shown in Listing 1. We exploit the
associativity of addition and multiplication to convert the
stencil into an accumulation stencil (Listing 2).

Listing 1: A 7-point 2D associative stencil that accesses 2
points from planes along y axis

1 for (y=1; y<N-1; y++) {
2 for (x=1; x<N-1; x++) {
3 B(y,x) = c0*(A(y-1,x-2) + A(y-1,x+2)) +
4 c1*(A(y,x-1) + A(y,x) + A(y,x+1)) +
5 c2*(A(y+1,x-2) + A(y+1,x+2));
6 }
7 }

Listing 2: Reading one plane from input at a time, and
accumulating its contribution at different output points

1 for (y=0; y<N; y++) {
2 for (x=0; x<N; x++) {
3 B(y+1,x) += c0*(A(y,x-2) + A(y,x+2));
4 B(y,x) += c1*(A(y,x-1) + A(y,x) + A(y,x+1));
5 B(y-1,x) += c2*(A(y,x-2) + A(y,x+2));
6 }
7 }

Figure 6 shows the time tiling using accumulative registers
for associative stencils. Unlike the tiling scheme of 5, that
used register to cache input values, the tiling scheme shown
in Figure 6 uses registers to accumulate the output values.
The output value for planes z0 + 1 and z0 are accumulated
in registers rp[T ] and rc[T ], and the output value for plane
z0 − 1 is accumulated in shared memory buffer A[T ]. In
each iteration i, the input plane zi is read into A[0]. From
it, the contributions to output plane zi−1, zi, and zi+1 are
accumulated in rp[1], rc[1], and A[1] at time step 1. At all
the remaining time steps, we repeat the same process of
accumulating output values using A[t−1] as the input plane.
After T time steps, all the contributions to plane zi−T would



have been accumulated in A[T ]. After each iteration, we
shift the data (rp → rc → A), freeing rp to accumulate the
contributions for next output plane.

z

IN

z plane

Shared Memory

t=0

z − 1 plane

t=1

Figure 6: Minimizing register pressure for associative sten-
cils

Algorithm 3 presents an implementation sketch for this
method. An optimized implementation of the algorithm uses
only 2Tk + 1 registers and T shared memory buffers.

Algorithm 3: streaming + registers algorithm for a 3D
order-1 associative stencil
Input : IN : input array,

T : time tile size,
(Bx, By) : block size,
(tidx, tidy) : thread index,
At : sh-mem buffer for time step t,
rp[t] & rc[t] : registers storing z + 1 and z

planes at time step t

Output: OUT : output array
1 ix = . . . , iy = . . . , iz = 1;
// Initialization

2 for each t from 1 in T do

3 At[0..By][0..Bx]← 0;
4 rc[t] = 0;

5 end

6 for each iz from 0 to N − 1 do

7 A0[0..By][0..Bx]← IN[iz][iy..iy +By][ix..ix +Bx];
8 syncthreads ();
9 for t from 1 to T do

// Scatter contributions from At−1

10 rp[t] = bottom plane contrib (At−1);
11 rc[t] + = mid plane contrib (At−1);
12 At[tidy][tidx] + = top plane contrib (At−1);
13 syncthreads ();

14 end

15 OUT[iz − kT ][iy + tidy][ix + tidx] = At[idy][idx];
16 syncthreads ();

// Shift data

17 for t from 1 to T do

18 At[[0..By][0..Bx] = rc[t];
19 rc[t] = rp[t];

20 end

21 end

5. EXPERIMENTAL EVALUATION

Experimental setup. To evaluate the performance of the
tiling schemes discussed in Section 4, we compare the perfor-
mance of their CUDA implementation against PPCG-0.04

[13], Overtile-0.3.2 [5], and Forma [11]. Results have been
generated using Tesla K20c GPU (SP peak of 3.52 TF/s,
all results below use SP floating point computations) for the
benchmarks summarized in Table 1. All the generated code
was compiled using NVCC 7.01 with compilation flags ‘-

use_fast_math Xptxas "-v -dlcm=cg" -maxrregcount=32’.
In our implementations, we fuse all the conditional state-
ments, and replace logical operators with bitwise operators
to avoid thread divergence.

Benchmark Domain T
Loads/
point

Flops

jacobi-2d-5pt(j2d5pt) 81922 4 5 10
GoL-2d-9pt (GoL-9pt) 81922 4 9 18
jacobi-2d-9pt (j2d9pt) 81922 4 9 18
gaussian-2d-25pt (gaussian) 81922 4 25 50
gradient-2d-5pt (gradient) 81922 4 5 18
jacobi-3d-7pt (j3d7pt) 5123 4 7 12
jacobi-3d-13pt (j3d13pt) 5123 4 13 25
jacobi-3d-17pt (j3d17pt) 5123 4 19 28
jacobi-3d-27pt (j3d27pt) 5123 4 27 54
curl-3d (curl) 4503 2 16 30

Table 1: List of 2D and 3D benchmarks, and their features

Impact of register optimization. For a (128×1) 1D block,
Table 2 highlights the interplay of hardware constraints and
tiling strategies, as discussed in Section 4.1. With 1D over-
lapped tiling using just shared memory as storage, the occu-
pancy with serial-streaming is particularly low due to high
shared memory pressure, and low concurrency.

Using 2D overlapped tiling and concurrent-streaming helps
increase the concurrency, but the shared memory pressure
still limits the occupancy to below 50%. For j2d5pt stencil,
each block consumes 6KB of shared memory. So irrespec-
tive of concurrency, an SM can only have at most 8 active
blocks, resulting in occupancy of 0.48. The problem is ex-
acerbated for j2d9pt, since it needs 10KB shared memory
per block. Each SM can schedule only 4 blocks concurrently,
resulting in 25% occupancy.

only shared memory shared memory+registers

1D overlap
serial-
stream

2D overlap
concurrent-

stream

1D overlap
serial-
stream

2D overlap
concurrent-
stream

j2d5pt 17.7 (0.33) 14.2 (0.48) 12.3 (0.34) 6.7 (0.92)
GoL-9pt 22.7 (0.33) 18.7 (0.48) 14.8 (0.32) 8.1 (0.92)
j2d9pt 43.1 (0.18) 31.4 (0.24) 17.3 (0.35) 10.0 (0.95)
gaussian 65.7 (0.19) 52.1 (0.24) 16.0 (0.34) 12.1 (0.96)
gradient 18.1 (0.32) 14.1 (0.48) 13.7 (0.35) 7.07 (0.91)

Table 2: Time in ms, and occupancy (displayed within
parenthesis) for overlapped tiling with 1D blocks of size 128
on different 2D stencils

Once we alleviate shared memory pressure using regis-
ters, we see immediate benefits for order-2 stencils, since the
shared memory per block reduces by 8KB. The occupancy
for all the stencils now is only limited by concurrency, so
we opt for 2D overlapped tiling with concurrent-streaming.
Using 2D overlapped tiling + registers along with shared
memory + concurrent-streaming helps overcome both con-
currency and occupancy constraints.

1http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc



To analyze the benefit of using registers for storage in 3D
stencils, we compare the performance of a version that uses
only shared memory for storage against one that uses both
shared memory and registers. The tile size is fixed to 32×32
wherever feasible. The results are presented in Table 3.

only shared memory shared memory + registers

T=4 T=2 T=4 T=2

j3d7pt 75.1 (0.49) 43.5 (0.99) 29.7 (0.99) 28.9 (0.99)
j3d13pt 617 (0.28) 101 (0.49) 86.0 (0.99) 55.1 (0.99)
j3d17pt 114 (0.49) 73.7 (0.99) 51.1 (0.99) 50.7 (0.99)
j3d27pt 153 (0.49) 101 (0.99) 52.7 (0.99) 52.2 (0.99)

Table 3: Time in ms, and occupancy (displayed within
parenthesis) for tiling 3D stencils with different resource
management schemes

For all the order-1 stencils, 3T planes must be in cache for
tiling across T time steps. If we only use shared memory,
then one block will need 48KB shared memory for T = 4,
reducing the occupancy to 50%. For T = 2, exactly two
blocks can be active per SM, achieving 100% occupancy.
However, using registers brings down the per block shared
memory requirement to T planes. For j3d7pt, even with
100% occupancy, the version that uses registers along with
shared memory achieves a 1.5x speed-up over the version
that only uses shared memory. This benefit comes from the
fast access to registers during the computation. For order-2
j3d13pt, the number of planes that need to be cached is 5T .
When using only registers, a single block requires 40KB for
T = 2. This effectively means a 50% drop in occupancy.
The shared memory requirement for T = 4 forces the tile
size to be reduced to 24× 24. The number of active threads

per SM will be
24× 24

2048
= 0.28, which is the achieved oc-

cupancy. The performance of the tiled code deteriorates to
617ms due to low occupancy, and a high volume of redun-
dant computation resulting from a smaller block size.
From the results in Table 3, we conclude that apart from

the performance advantage of register accesses over shared
memory accesses, the additional level of storage provided by
registers is crucial for an efficient 3D tiling algorithm.

Comparative performance results. Forma untiled is the
näıve untiled code generated by Forma compiler. K20c can
load the read-only data through the cache used by texture
pipeline. This feature can be enabled by simply annotating
the read-only data with __restrict__ keyword. We anno-
tate the näıve code generated by Forma to get the Forma
untiled + annotated version. Reading through texture cache
proves beneficial for tiling on Kepler device, so we annotated
the input and output arrays with keyword __restrict__-

for all the benchmarks except the baseline code (PPCG and
Forma untiled).
For our tiling implementation, overlapped+stream+shmem-

opt refers to 1D overlapped tiling that just uses shared mem-
ory along with optimized serial-streaming described in Sec-
tion 4.1. The version overlapped+stream+shmem+regs refers
to the 2D overlapped tiling version that uses both registers
and shared memory as buffers along with streaming (serial-
stream for 3D benchmarks, concurrent-stream for 2D bench-
marks).
PPCG performs classical time tiling along with default

thread coarsening. Mapping multiple iterations to a thread

exposes instruction level parallelism. Coarsening within the
sustainable per thread register pressure aids register level
reuse, and helps hide memory access latency by exposing
instruction-level parallelism [14]. For Overtile compiler, the
degree of coarsening has to be specified as a part of the DSL
code. The performance numbers for Overtile compiler in
Figure 7 were measured by coarsening the slowest varying
dimension by a factor of 2, which consistently performed
better than the generated code with no coarsening. With
coarsening, Overtile code outperforms Forma’s overlapped
tiling code for all benchmarks. We could not generate the
correct version of 3D curl benchmark using Overtile com-
piler.

From the performance numbers, we draw the following
conclusions: (1) One has to choose a combination of vary-
ing optimizations that overcome the performance-limiting
hardware constraints depending on the dimensionality of the
problem. (2) Using registers along with shared memory as
buffers is crucial to performance irrespective of the dimen-
sionality. (3) Serial-streaming for 3D stencils and concurrent-
streaming for 2D stencils reduces the extra bandwidth con-
sumption without constraining concurrency.

Our optimization strategy for associative stencils helps
achieve peak performance (837 GFlops for gaussian-2d, and
604 GFlops for 27-point 3D stencil). For 2D stencils, best
performance was achieved by overlapped tiling along x and
y, and concurrent-streaming along y. For 3D stencils, the
favorable choice was overlapped tiling along x and y, and
serial-streaming along z.

6. RELATED WORK
Automated high-performance GPU code generation for

stencils is a topic of active research [3, 5, 4, 12]. These
recent efforts cover a range of tiling approaches: overlapped
tiling [5, 12], split tiling [4], and hexagonal tiling [3], all en-
abling concurrent execution of tiles, which is essential for
maximum utilization of the GPU resources. PPCG [13] is a
polyhedral-model based source-to-source compiler that gen-
erates classically time tiled OpenCL and CUDA code from
an annotated sequential program. In contrast to our ap-
proach presented in this paper, none of these code generators
utilize streaming to reduce bandwidth.

Another direction of research is autotuning of stencil ap-
plications. Datta et al. [2] investigate the performance of a
7-point 3D stencil on NVIDIA GTX280. Their implemen-
tation uses streaming along the slowest varying dimension.
Zhang and Mueller [15] evaluate an autotuner for 3D stencils
on GPU clusters. Patus [1] and Halide [10] decouple algo-
rithm specification from schedule, and then rely on autotun-
ing to achieve efficiency. Halide schedules can express spa-
tial tiling and sliding-window optimizations to reduce mem-
ory footprint. However, writing an efficient schedule man-
ually is tedious, and stochastically exploring the schedule
space while autotuning can be time consuming. Addition-
ally, explicit use of registers for storage cannot be expressed
in Halide.

Micikevicius [7] developed a CUDA implementation of
3D finite difference computation. This implementation per-
forms spatial tiling, and uses registers to alleviate shared
memory pressure. In contrast to the limited “cross” stencils
from 3D finite difference computations where registers could
be used, our approach to use of GPU registers for reduc-
ing shared-memory requirements applies to a much broader
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Figure 7: Performance results for 2D and 3D stencils

class of stencils. Nguyen et al. [9] use streaming with time-
tiling for the Intel Xeon Phi and NVIDIA GTX 285. While
the approach we present in this paper also uses streaming
with time tiling, our work focuses extensively on a broader
range of stencil computations on GPUs with different opti-
mization constraints. We also use concurrent streaming in
conjunction with overlapped tiling along a streaming dimen-
sion when the available parallelism from other dimensions is
insufficient for the number of SMs in the GPU (often the
case for 2D stencils). Our approach to optimizing register
usage via associative reordering of stencil operations is also
very different from their approach to tiling.
In this paper, we have presented direct performance com-

parisons with Overtile [5], Forma [11] and PPCG [13]. We
have not been able to directly compare performance with
the hybrid hexagonal tiling approach of Grosser et al. [3]
since the system is not publicly available. However, we can
perform some indirect comparisons through reported perfor-
mance improvements on common benchmarks over Overtile
[5]. For Jacobi-2d-5pt (called Laplacian-2d by Grosser et
al. [3]), a speedup of 1.4 over Overtile is reported on a GTX
470 GPU, while we show a speedup of 2.0. For Jacobi-2d-9pt
(called Heat-2D by Grosser et al. [3]), their speedup over
Overtile is 2.17, while ours is 2.88; for Jacobi-3d-7pt, their

speedup over Overtile is 1.3, while our speedup over Overtile
is 5.0; for Jacobi-3d-27pt, their speedup is 1.5, while ours is
over 10.

7. CONCLUSION AND FUTURE WORK
In this paper, we evaluate a combination of overlapped

tiling and streaming to better utilize GPU resources, specif-
ically registers and shared memory. By systematically work-
ing through the various constraints of the modern GPU
hardware, we demonstrated that a combination of these ap-
proaches, along with some practical implementation level
optimizations can deliver significant performance improve-
ments for 3D stencil computations. Such computations have
been a stumbling block for many existing tools. The tech-
niques discussed in this work can be used by application
developers interested in 3D stencil computations, or can be
integrated into DSL compilers like Forma and PolyMage [8]
to auto-generate efficient time tiling code.
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