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Abstract 

HPC/VORX is a computing system that provides closely 
coupled computing between large numbers of processors. 
It also supports the connection of many host work- 
stations which may be geographically distributed within 
the area of a large building and allows a single applica- 
tions to span many processors and many workstations. 
We relate some of the lessons that were learned while 
building and using HPC/VORX and in the transition to 
HPC/VORX from a smaller, less capable system. The 
problems that we encountered included difficulties in 
scaling resource managers and human interfaces to large 
numbers of processors, the design of communications 
primitives and protocols, and the implementation of pro- 
gramming abstractions. 

1. INTRODUCTION 

HPC/VORX is a local area multicomputer system that 
combines the major strengths of multicomputer systems 
and local area networks[‘]. Like multicomputers, it 
exhibits low latency communications, allowing the close 
cooperation of many processors to work on a single 
large application. It also provides for the connection of 
workstations and other resources that are distributed 
within the area of a large building, but with better com- 
munications performance than is usually found in local- 
area networks. The current system connects ten SUN 3 
workstations and a pool of 70 processing nodes based on 
the Motorola 68020 and has been operational since early 
1988. The system can easily be expanded to more than 
a thousand nodes by replicating the interconnect 
hardware. 
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The HPC/VORX system is based on a high bandwidth, 
low latency interconnect called the HPC and is controlled 
by the VORX distributed operating system. A concep- 
tual diagram of HPC/VORX is shown in Figure 1. The 
right side of the diagram shows resources normally 
found in a local area network and the left side is the 
pool of processing nodes that is used for compute inten- 
sive or closely coupled medium grain parallel applica- 
tions. Applications on the nodes may be controlled 
from any workstation and it is possible to build a single 
application that spans many workstations and many 
nodes. 

HPC/VORX has proven to be a useful base for imple- 
menting a variety of applications. Applications imple- 
mented on HPC/VORX range from the Rapport mul- 
timedia conferencing system t2] to several circuit simula- 
tors. Because HPC/VORX allows high performance com- 
munications with workstations, it can be used to experi- 
ment with applications such as multimedia conferencing 
between workstations, with real-time video and high- 
fidelity audio transmission between conferees. Because 
it has enough bandwidth to transmit large bitmap images 
in real-time, HPC/VORX allows us to design prototypes 
of next-generation workstations that minimize the 
amount of hardware on a user’s desk by distributing the 
workstation’s intelligence over the network. 

The VORX operating system is a direct descendent of 
Meglos t3], an operating system for the S/NET multicom- 
puter system . I41 The S/NET-Meglos system was opera- 
tional for about four years, but fell into disuse in 1988 
when HPCiVORX became available. Several multipro- 
cessor real-time applications that controlled robot arms 
and acquired video data were implemented on 
S/NET- Meglos tsl. It was also used to implement a 
variety of multiprocessor applications, including circuit 
simulators ‘31 and the Linda parallel language 161. The 
S/NET was symmetric, providing low latency, high 
bandwidth communications between any pair of its pro- 
cessors. This was an improvement over systems with 
slower communications that forced programmers to con- 
sider the hardware topology while designing their 
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Figure 1. A Typical Local Area Multiprocessor System 

applications 17’. 

The most significant limitation of the S/NET was that it 
supported only a small number of nodes. The number 
of nodes was limited because it used a single bus for 
communications between all its nodes. The largest sys- 
tem had 12 processing nodes and most systems had only 
eight. In contrast, the HPC interconnect is designed in a 
modular fashion, allowing systems ranging in size from 
two to several thousand nodes. The HPC consists of 
several self-routing star networks called clusters, each of 
which contains twelve ports. A port contains indepen- 
dent input and output sections that simultaneously run at 
160 Mbit/set and can connect to either a workstation, a 
processing node, or to another cluster. Fiber optic 
cables permit these connections to be over a kilometer in 
length. 

A twelve node system can be constructed using a single 
cluster. Larger systems are built by using some port 
connections for processing nodes and some for connec- 
tions to other clusters. While the hardware allows con- 
nections with arbitrary topologies, we have chosen to 
connect the clusters in the shape of an incomplete hyper- 
cube “I. A hypercube-based system with 1024 nodes 
can be built with 256 clusters by using 8 of the 12 ports 

on each cluster for connections to other clusters and the 
other four for connections to processing nodes. Like the 
S/NET, hardware communications latency in the HPC is 
much smaller than the latency introduced by the com- 
munications software, so that applications programmers 
need not be concerned with the hardware topology. 

While we planned for Meglos to eventually use large 
numbers of processors, it tended to be optimized for 12 
or fewer processors, either to simplify its implementa- 
tion or to provide a quick fix for some system bug. 
Some of the implementation decisions that we made for 
Meglos did not scale well to larger numbers of proces- 
sors. This led us to consider the use of alternative 
schemes in VORX. This paper discusses some of the 
problems that we encountered while designing 
HPUVORX and describes general experiences and les- 
sons that we learned while building and using it. We 
begin with a discussion of problems that we encountered 
with hardware flow-control, follow with a description of 
user interface issues, and then relate our experiences 
with communications primitives and protocols, program- 
ming abstractions, and program development tools. 



2. HARDWARE FLOW CONTROL 

A major problem with the S/NET arose from problems 
with flow control in the S/NET interconnect. The 
hardware provided a fifo input buffer for each processor 
that could hold several incoming messages, with a com- 
bined length up to 2048 bytes. When the fifo became 
full, the receiver would reject messages sent to it and 
send a fifo-full signal to the transmitter for each rejected 
message. Because overflow was thought to be an 
uncommon event, overflow recovery was to be done in 
the low-level communications software by the processors 
that originated the rejected messages. When receiving 
the fifo-full signal, the originating processors were to 
continuously resend their message until it was success- 
fully received [91. 

We discovered that many multiprocessor applications 
have a natural synchronization in which many processors 
send a message to a single processor at nearly the same 
time. Instead of being a rare event, fifo overflow hap- 
pened frequently, making it important for the system to 
continue to operate efficiently when the overflow 
occurred. 

The original strategy of continually sending the message 
until it was received was found to be unsatisfactory 
because it could cause lockout to occur. A property of 
the S/NET interface hardware was that when overflow 
occurred, the fifo retained the portion of the message 
that was received up to the time of the overflow. The 
communications software in the receiving processor had 
to read and discard this initial portion of the message. 
When several processors were attempting to send a long 
message to a single processor, it was possible for the 
system to get into a state in which some of the messages 
were never received. This happened because all the 
sending processors were in their retransmission loop, 
continually sending messages that were discarded by the 
receiver, but the receiver could not remove words from 
its fifo fast enough to make enough room for an entire 
incoming message before a new message arrived. 

This problem forced us to consider other flow-control 
schemes. One approach was to use random-length 
timeouts, as is done on the Ethemet[“]. This eliminates 
the problem of busy loops in the kernel, but when many 
messages need to be retransmitted, communications runs 
at the timeout rate; at least an order of magnitude slower 
than the expected communications rate. Finally, we 
considered a reservation protocol, in which a processor 
sends a short message requesting to send its data, and 
does not send the data until it receives an acknowledge- 
ment from the receiver. If the receiver only authorizes 
one sender at a time and the receiving fifo is large 
enough to simultaneously hold request messages from 
each of the processors and one data message then this 
scheme would eliminate overflow. However, we 

rejected this scheme because the extra software and 
communications overhead would increase latency for all 
messages. 

In the end, we never implemented code in Meglos to 
reliably recover from overflow. Instead, we required 
applications to limit the lengths of messages when they 
performed many-to-one communications, so that fifo 
overflow never occurred. This was feasible because the 
S/NET allowed only a small number of processors. For 
instance, 12 processors could each send a 150 byte mes- 
sage to a single processor without overflowing its fife. 

In contrast with the S/NET, flow-control in the HPC is 
implemented entirely in the interconnect hardware. This 
makes loss of messages due to buffer overflow impossi- 
ble. Because the HPC provides reliable message 
transmission, the need for implementing recovery 
mechanisms in the communications software is entirely 
eliminated. Messages sent via the HPC are limited to 
some length (1060 bytes in the current implementation).’ 
Each HPC link, either between a processor and cluster or 
between two clusters, refuses to accept a message unless 
the hardware has room to buffer an entire message, forc- 
ing the sender to wait until the space is available. For 
outgoing processor links, the processor receives an inter- 
rupt when room becomes available. This scheme 
guarantees that messages are never lost by the intercon- 
nect and a fair hardware scheduling mechanism ensures 
that every sender is eventually serviced. It never 
deadlocks because the VORX kernel reads in messages 
immediately when they arrive. 

3. USER INTERFACE 

3.1 Processor Allocation 

Because a typical Meglos system had only eight proces- 
sors and two or three programmers would often want to 
debug their applications simultaneously, we designed 
Meglos to make it easy for users to share their proces- 
sors with each other. Meglos allowed up to 15 indepen- 
dent processes to run on a processor, each with its own 
address space protected from access by other processes, 
However, we found that programmers did not want to 
share their processors because they wanted to balance 
the computational load of their application in a repeat- 
able fashion. Realizing our mistake, we added 
“exclusive access” capabilities to exclude other processes 
from a processor. 

The strategy used by Meglos to allocate processors was 
designed to maximize sharing between users. In 
Meglos, processors were allocated to an application 
when it started running. When the application finished, 
its processors were returned to the free pool and were 
immediately available for use by another application. 
This scheme met our goal of maximizing processor avai- 
lability, but had other problems. While debugging 



applications, programmers typically would run them, 
find a mistake, make changes and recompile, and then 
run the modified version of the application. It often 
happened that while a programmer was recompiling, 
somebody else would start their application on the 
remaining processors with exclusive access, so that when 
the programmer tried to run the modified program, he 
would receive the diagnostic, “processors not available.” 
This problem was normally resolved by informal agree- 
ment among the users as to how many processors each 
would use. This was possible because all the users were 
only a few offices away from each other. 

Because its users are geographically distributed, VORX 
formalizes the allocation of processors to users by 
requiring a user to allocate all the processors that he 
needs before running an application. The processors are 
not available to anyone else until they are explicitly 
freed by the user. This scheme eliminates the problem 
with processors disappearing in the middle of a program 
development session and appears to be better than our 
previous scheme. 

The problem with this scheme is that users sometimes 
forget to free their processors when they are finished. 
We have considered automatic techniques to recover 
these processors such as automatically freeing them 
when a user logs off their workstation or when there is 
no activity for several hours. We also considered a 
scheme where after exhausting all the processors allo- 
cated to the user, VORX would obtain processors from 
the pool of unallocated processors or perhaps from other 
users. Since each of the alternatives that we have con- 
sidered has objectionable properties, we provide a com- 
mand that allows a user to free processors allocated to 
other users, and request that it be used carefully. 

3.2 Resource Management 

All resource management in Meglos was centralized on 
a single host. While this is appropriate for a small sys- 
tem, it causes a serious performance bottleneck for sys- 
tems with over ten processors. The problem was most 
apparent in the first few seconds of execution when an 
application was being downloaded and then while it set 
up its communications channels. Both Meglos and 
VORX provide named communications channels that are 
dynamically created and destroyed during program exe- 
cution[“]. Each channel has an arbitrary name, and two 
processes rendezvous on a channel by specifying its 
name in an open call. The bottleneck in setting up com- 
munications occurred because all the channel opens were 
processed by the single resource manager on the host. 

We solved this problem in VORX by splitting the 
resource manager into several functional pieces and 
replicating the individual pieces for increased perfor- 
mance. One of the pieces, the communications object 
manager, is replicated onto every processing node 

allocated by the user. The object manager uses distri- 
buted hashing [“I to map a channel name to a particular 
processor to determine which object manager should 
handle the open for a particular channel. This technique 
ensures that two processes that open a channel with the 
same name always hash to the same object manager so 
it can perform the open. Because there are as many 
object managers as processing nodes, the channel open- 
ing bottleneck is eliminated. 

Another bottleneck in Meglos was that all program 
developers and users ran their applications from a single 
host. VORX eliminates this problem by allowing pro- 
grams to be run from different hosts. Each host has its 
own process resource manager that is responsible for 
applications started on that host and for keeping track of 
the mapping of applications to processors. Program 
downloading, file access, and other system services are 
also spread among the host workstations. 

3.3 The Execution Environment. 

Each process running on a processing node has a stub 
process running on the host. The stub is responsible for 
initially downloading the process and for providing a 
UNIX@ operating system environment while the program 
is running. Each time a system call (such as a write to 
a file) is executed on the processing node, it sends a 
message to the stub. The stub then executes the system 
call and passes the results back to the node. This 
method perfectly replicates the host environment on the 
node. Unfortunately, it is slow to start applications with 
many processes. For instance, it takes 12 seconds to 
download and initialize a process on each of 70 proces- 
sors. Most of this time can be attributed to work cen- 
tralized on the host: the host creates 70 stub processes, 
channels are set up between each process and its stub, 
and each stub independently downloads a copy of the 
program. 

For the case where all the application’s processes use the 
same object code as each other, VORX offers an altema- 
tive method in which one stub services all the processes 
of the application and uses a tree scheme in which the 
stub downloads only one processing node. That proces- 
sor copies the text to be downloaded to two other pro- 
cessors as the text is being received. Each of these pro- 
cessors copy the text to two other processors. The 
fanout continues in a tree-like fashion to reach all the 
processors that are to run the application. With this 
method, it takes only two seconds to download and start 
70 processes. 

The problem with this method is that the host environ- 
ment is not duplicated correctly. For instance, if one of 
the processes issues a UNIX system call that blocks, such 
as a read from the keyboard, then the stub does not pro- 
cess system calls from any of the other processes served 
by that stub until the original system call completes. 
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When each process has its own stub, the system calls 
issued by one process are processed independently of the 
other processes. Another problem is that the stub pro- 
cess is limited by the SunOS kernel to 32 open file 
descriptors, imposing a limit of 32 open files for all the 
processes of an application combined. With one stub 
per process, each process can open 32 files. 

Because VORX allows the programmer to specify how 
processes are allocated to stubs, an application with 
processes that use blocking system calls or opens many 
files can arrange for those processes to each have their 
own stub. We are working on a better solution to these 
problems that will alleviate the bottleneck of using a sin- 
gle host for all the system calis of an application. It 
uses a decentralized scheme that distributes the overhead 
of system calls by allowing a process to direct system 
calls to any of the host workstations. 

4. CHANNELS 

Channels provide low latency, high bandwidth message 
passing communications between processors. In VORX 
the software end-to-end latency between application pro- 
grams running on separate 25 MHz Motorola 68020 pro- 
cessing nodes for four byte messages is 303 psec and 
1024 byte messages can be sent at the rate of 1027 
kbyte/sec, substantially better than performance of other 
systems with comparable processors but other intercon- 
nects l13). Channels are also easy to use: they are set up 
with a single open call and data is transferred with 
read and write calls 1”‘. There are also specialized 
calls for operations like multiplexed read in which a pro- 
cess blocks until data arrives from one of several chan- 
nels and a mechanism that allows servers to continually 
reuse a single channel name. Our hope was that chan- 
nels would be sufficiently fast and flexible to suit the 
communications needs of all applications. 

Channels are implemented in Meglos with a stop-and- 
wait protocol . 114] When a process issues a write call, 
that processor’s kernel sends the data to the destination 
processor, and blocks the process until an acknowledge- 
ment message arrives from the receiving kernel. If there 
is no buffer space available (a rare occurrence in VORX 
because the kernel has many side buffers to hold these 
messages), the receiver requests retransmission when 
buffer space becomes available. The most important 
attribute of this protocol is that it implements flow- 
control by preventing a second message from being sent 
until this first one is processed. This prevents the reader 
from being inundated with messages. 

A stop-and-wait protocol was chosen because it is sim- 
ple to implement and has little processing overhead. For 
networks with low latency, like the S/NET and the HPC, 
such protocols work well because the acknowledgement 
arrives with little delay I’41 In our early work with the . 

S/NET, we were unsure of its error characteristics and 
implemented error detection and recovery in the channel 
protocol. This was done efficiently with stop-and-wait 
because the sending process blocks until the message 
was successfully received, eliminating the need for the 
kernel to make a copy of the message before sending it. 

4.1 Alternative Communications Protocols 

While most of our users are happy with channels, some 
are not. For example, when using Meglos, the imple- 
mentors of Linda 161 needed a different type of semantics: 
multicast with no explicit flow control, and the CEMU 
group t15’ wanted to experiment with various low-level 
communications protocols for their circuit simulator. 
Meglos allowed these applications to circumvent the 
channel communications mechanism by directly access- 
ing the communications hardware to send or receive 
messages and by responding to communications inter- 
rupts when messages arrived. 

In VORX a general interface for user-defined communi- 
cations objects is provided. As in Meglos, processes can 
access the hardware registers from their applications, 
eliminating the overhead of supervisor calls into the ker- 
nel and can specify interrupt service routines to handle 
incoming messages. This allows the programmer to use 
whatever low-level protocols are appropriate for the 
application. Other application-specific input and output 
techniques, such as scatter/gather may also be imple- 
mented. VORX allows user-defined communications 
objects and channels to coexist and permits several 
user-defined objects, each with its own protocol, to be 
simultaneously used. User-defined communications 
objects are integrated with the object manager, allowing 
these objects to use the same rendezvous mechanism as 
channels. 

We have seen two ways in which users can write proto- 
cols with better performance than channels. One is to 
use sliding-window protocols [14] and the other is to use 
no flow-control protocol at all. 

Guided by the experiments done with the CEMU simu- 
lator using sliding-window protocols1151, we have seen 
that a sliding-window protocol can be more efficient 
than a stop-and-wait protocol, even with very low 
latency interconnects like the HPC. In a sliding-window 
protocol, the reading processor starts by sending a proto- 
col message to the sending processor indicating the 
amount of free space available in the input buffer. The 
sender then can send as many messages as would fit in 
the buffer without further protocol messages from the 
receiver. As the reader removes data from the buffer, 
protocol messages are sent to the sender updating the 
amount of buffer space available. To obtain improved 
performance, the number of update messages should be 
kept small, but should be sent often enough to maintain 
concurrency between the sender and the receiver. 



Unfortunately, tuning the protocol to find a proper 
update rate must be done in an application-specific 
manner. 

Unlike the stop-and-wait protocol, error recovery in the 
sliding-window protocol requires significant processing 
overhead. Either the kernel must copy messages into a 
safe place until it is assured that the messages have been 
correctly received or the sending process must delay 
reusing its buffers until it is notified by the kernel that 
they have been correctly received. However, none of 
this is necessary in HPC/VORX because the HPC 

hardware guarantees correct message delivery. 

To determine the efficacy of sliding-window protocols, 
we benchmarked a sliding-window user-defined protocol 
that allowed messages of some fixed length to be sent 
between two processors. Both the sender and receiver 
know the length of the messages. The receiver initially 
sends k buffer-available messages to the sender, where k 
is the maximum number of messages that fit in its avail- 
able buffer space, and thereafter sends one buffer- 
available message each time a message is received. The 
sender keeps its own count of the number of receiver 
buffers available. The count is initially zero, is incre- 
mented for every buffer available message received, and 
decremented for every message sent. If the count is 
greater that zero, the sender can send a message immedi- 
ately, otherwise it blocks until the count becomes greater 
than zero. For our benchmark, the sender transmitted 
1000 messages and the resulting communication latency 
is computed by dividing the elapsed time by 1000. We 
varied the number of available input buffers to deter- 
mine its effect on communication latency. The data are 
shown in Table 1. For comparison, we benchmarked 
channel communications for the same message sizes and 
obtained the latencies shown in Table 2. 

Even with a simple protocol and two buffers, a sliding- 
window protocol obtained better latencies than the 
highly optimized channel protocol. The performance 
gain is obtained because the sender can send a message 
immediately whenever extra buffers are available. With 
channels, a message can never be sent until a software 
acknowledgement is received for the previous message. 
This result suggests that we should consider the use of a 
sliding-window protocol for channels and strengthens 
our belief that programmers can obtain better communi- 
cations performance when they tailor a communications 
protocol to their application. 

An alternative available to some applications is to use 
no flow-control protocol at alt. Consider an application 
with two processes that alternately send a message back 
and forth. If each process ensures that it has enough 
buffer space to hold an incoming message before it 
sends a message, then when either process sends its 
message, it is assured that the message will be received. 

The message always arrives because the hardware pro- 
vides reliable communications and the application 
guarantees that buffer space is available. Such a scheme 
can be used by most applications with natural synchroni- 
zation between their processes. User-defined communi- 
cations objects were successfully used in a parallel 
implementation of SPICE that needed very low latency 
communications to solve large sparse linear systems ‘16’. 
It was able to obtain 60 psec software latencies for 64 
byte messages with direct access to the communications 
hardware and no low-level protocol. 

In OUT experiments with transmitting real-time bitmap 
images to workstations, we wanted to obtain the max- 
imum possible communications bandwidth from the 
HPC. We did so by having the processor originating the 
bitmap image send it to the HPC interconnect as fast as 
it could and for the workstation receiving the bitmap to 
copy it from the HPC directly to its frame buffer. 
Because all flow control was done by the HPC hardware, 
the protocol overhead was only the few statements 
needed to determine where to place the incoming bitmap 
data in the frame buffer. With this simple technique, we 
obtained a rate of 3.2 Mbyte/set, sufficient to refresh a 
900x900 pixel portion of a monochrome (bi-level black 
and white) display 30 times per second from a remote 
processor. 

4.2 Multicast is Inappropriate 

When formulating multiprocessor applications, many 
programmers design their applications to make use of a 
multicast mechanism in which each process sends the 
identical message to many other processors. We there- 
fore designed the HPC hardware to be able to implement 
multicast efficiently and devised a flow-controlled multi- 
cast primitive that is integrated with channels t17t. 

However, we discovered that when programmers imple- 
ment algorithms that were originally formulated with 
multicast, they often find multicast to be inappropriate. 
The problem with multicast is that as the number of pro- 
cessors is increased, the number of messages received by 
each processor grows and each process spends more and 
more time reading data that it is not concerned with. It 
is usually better for the sender to produce a different 
message for each receiver that contains only the data 
that it needs. 

For example, consider the calculation of a two- 
dimensional Complex Fast Fourier Transform (2DFFT), 
a computation used by image processing applications. 
The 2DFFT of a 256x256 grey scale image is computed 
as follows: 

l Compute a 256-point one-dimensional Complex FFT 
(IDFFT) for each row in the original image, produc- 
ing a row of 256 complex numbers for each row in 
of the original image. 
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1 Number of / 4 Byte 1 64 Byte / 256 Byte / 1024 Byte / 
Buffers Messages 

psecs/msg 
414 
290 
227 
196 
179 
172 
164 

Messages 
usecs/msg 

451 
317 
251 
218 
200 
192 
184 

Messages 
psecs/msg 

574 
412 
330 
289 
267 
257 
248 

Messages 
psecs/msg 

1071 
787 
644 
573 
535 
518 
504 

1 
2 
4 
8 

16 
32 
64 

Table 1. Message Latency for Reader-Active Communications Protocol. 

4 Byte 64 Byte 
Messages Messages 

256 Byte 
Messages 

1024 Byte 
Messages 

psecs/msg psecs/msg psecs/msg psecs/msg 
303 341 474 997 

Table 2. Message Latency for Channel Communications. 

l Compute a 256-point IDFFT for each column from 
the 1DFFT’s computed in the first step, producing a 
column of 256 complex numbers for each column 
computed in the first step. 

Computing the 2DFFf with multiple processors is 
straightforward. Since each 1DFFT is computed 
independently of the others, the 1DFFT’s may be com- 
puted concurrently on separate processors. After the 
first step, the processors distribute the results of their 
computation to each other so that all processors have a 
column of data for the second step. The processors 
compute the 1DFFT on their column of data, and the 
2DFFT is completed. Assuming that 256 processors are 
available and that communications has zero cost, the 
2DFFT can be computed in the time it takes to compute 
2 1DFFT’s. 

One approach for distributing the results of of the first 
step is for each processor to multicast its entire row to 
all the other processors. The problem with this approach 
is that each processor reads 65536 numbers of which 
only 256 are needed. A better approach than using mul- 
ticast is for each each processor to send a different 
number to every other processor. By sending a single 
message containing one number to each processor. The 
latter technique requires the receiver to process only the 
256 numbers it needs. 

We have found some limited uses for multicast. For 
instance, it may be necessary for a process to multicast 
initial values to all the other processes when the applica- 
tion is first started. Other applications (especially local 
area network servers such as distributed file servers) 
sometimes need multicast, but only to a few receivers. 

This can be done with reasonable efficiency by issuing 
multiple writes. 

5. SUBPROCESSES 

Both Meglos and VORX allow a process to be subdi- 
vided into subprocesses. Like threads in Mach1’81, sub- 
processes are parts of a process that execute asynchro- 
nously with each other. Each subprocess is an indepen- 
dently scheduled thread of execution that may block for 
communications or other events without affecting the 
execution of the other subprocesses of an application. 
All the subprocesses of a process share the same address 
space but each subprocess has its own stack for its local 
variables and for the kernel’s machine state information. 

Subprocesses were originally included for real-time 
applications that controlled hardware devices, such as 
robot arms and cameras connected to the processing 
nodes. Because distinct execution priorities can be 
specified for each subprocess and the scheduler is 
preemptive, the programmer had enough control over 
switching between and scheduling of subprocesses to be 
able to effectively implement real-time applications 15’. 

We found that subprocesses provide a useful way to 
structure applications that had no real-time or device 
control aspects to them. A common way to structure 
applications is to have at least three subprocesses for 
each process: one for input, one for output, and one or 
more to do the actual computation. The subprocesses 
communicate with each other by semaphores (provided 
by VORX). This subdivision of work makes it easy to 
do the computation concurrently with input arriving or 
output departing. 
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Because the VORX scheduler is preemptive, a subprocess 
can be interrupted to service interrupts or to start higher 
priority subprocesses. To allow for preemptive schedul- 
ing, VORX saves all a processor’s registers when it does 
a context switch between subprocesses. A context 
switch, which includes saving both fixed and floating 
point registers takes 80 l.tsec using a 25 MHz Motorola 
68020 with a Motorola 68882 floating point coprocessor. 

Because context switching is too slow for some applica- 
tions, program structuring techniques other than sub- 
processes have been used. One approach is to use a sin- 
gle subprocess that never switches context. Communica- 
tions interrupts are disabled and user-defined objects are 
used to test for input at convenient places in the pro- 
gram. If input is available then the program can read 
the incoming data without blocking. This scheme was 
also used in the parallel SPICE work”@. 

It is possible to use coroutines to provide multiple 
threads of execution within a subprocess, as was done in 
CEMU ‘t5’. Coroutines have less overhead than sub- 
processes because coroutine switches occur only at well 
defined places in the application code, so that most 
registers need not be saved when switching between 
coroutines. Another alternative is interrupt level pro- 
gramming. Here, a single subprocess starts application- 
specific input and output interrupt service routines and 
then suspends itself. The entire computation is done by 
the interrupt service routines. This technique runs 
efficiently in VORX because it does not incur the over- 
head of restoring or saving registers when switching to 
or from a suspended process. 

6. PROGRAM DEVELOPMENT TOOLS 

The only debugging tool available under Meglos was 
vdb, a symbolic debugger derived from the sdb”91 
debugger. Vdb includes a few enhancements, such as 
the ability to switch between subprocesses to examine 
their local variables, but is basically a single process 
debugger. When used on a workstation with a window 
system, it is possible to do breakpoint debugging on a 
multiprocess application by starting several copies of 
vdb in separate windows. Each copy of vdb controls the 
execution of one process of the application. By switch- 
ing between windows, the programmer can simultane- 
ously debug all the processes. 

When there are more than a few processes, this method 
becomes unwieldy because the programmer cannot 
remember what he is doing in each window. In practice, 
programmers usually run one or two processes with the 
debugger and run the other processes normally. Because 
the programmer may not know in advance which pro- 
cess needs to be debugged, VORX makes it possible for 
the programmer to attach vdb to any process that is run- 
ning and to switch between the processes of his 

application. Despite the problems of dealing with many 
processes, vdb is still a popular tool for debugging mul- 
tiprocessor applications. 

6.1 The Communications Debugger 

While we do not know how to deal with the complexity 
of large numbers of processes in general, we have 
created a tool that is useful for dealing with a type of 
program bug that is surprisingly common in applications 
with many processes. The symptom, which is caused by 
a programming error, is that the application stops run- 
ning with each process waiting for input from another 
process. The VORX communications debugger, cdb, 
helps debug such deadlocked applications by allowing 
the programmer to examine the communications state of 
the application ‘*‘I. This information can be used to 
determine which messages caused the problem and often 
can help isolate the process that caused the deadlock to 
occur. 

For each channel, the state reported by cdb consists of 
the name of the channel, which two processes it con- 
nects, how many messages have been sent in each direc- 
tion on the channel and most importantly, the state of 
each end of the channel. The channel state includes 
information such as whether an application is blocked 
waiting for input or output on the channel. Because an 
application may have a large number of channels, cdb 
includes several filters to help isolate the channels of 
interest. Cdb was easy to implement because most of 
the information that it needs was already encoded in the 
communications driver. Cdb has proven to be easy to 
use and has become a useful tool for examining 
deadlocked applications. 

4.2 The Software Oscilloscope 

The prof profiling system [*‘I available in VORX can be 
run on a process to show how execution time is divided 
up among different parts of the program. Typically one 
finds that a large portion of the execution time is spent 
in a small section of the code. This part of the program 
can then be examined and carefully rewritten. 

While a process profiler can help improve the perfor- 
mance of a multiprocessor application, execution charac- 
teristics that a process profiler does not measure are also 
important. The major problem is one of improper load 
balance in which processors spend time waiting for data 
from other processors instead of doing useful work. A 
related problem is that communication between proces- 
sors is often more expensive than envisioned by the 
designers of an application, exacerbating the load 
balancing problem. 

VORX includes a tool called the software oscillo- 

scope ‘*Of that helps the programmer visualize how well 
processors of an application are utilized and how well 
the computational load is balanced. It runs on a color 
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workstation and displays a graph for each processor 
indicating CPU time usage with different colors used to 
partition time into several categories. Two of the 
categories are quite standard: user time in which appli- 
cation code is executed and system time in which operat- 
ing system code is executed. The remainder of the time 
is idle time in which the processor is doing no useful 
work. 

Because programs use messages to communicate, idle 
time can be further partitioned to provide more informa- 
tion. The processor may be idle because the program is 
waiting for input or it may be idle waiting for output. 
Because the kernel allows multiple threads of execution 
within a processor, a third possibility for idle time is 
that some threads are waiting for input and others are 
waiting for output. Finally, the processor may be idle 
for some other reason, such as waiting for access to a 
locai disk. 

Execution data is recorded while the application is run- 
ning and later the software oscilloscope is used to 
display the data. The software oscilloscope synchronizes 
all the graphs with each other, so that when several 
graphs are displayed, each shows the same interval of 
execution time. It is possible to freeze the display, run 
faster or slower than real-time, or seek to any moment in 
execution time. This tool works well when the applica- 
tion has few enough processors so that all the graphs fit 
on the screen. We are studying ways to effectively 
display data for more processors. 

7. coNcLusIoNs 

VORX has proven to be a useful testbed for experiment- 
ing with multiprocessor applications and for experiment- 
ing with different techniques for their implementation. 
Some of our success resulted from being able to build 
on experiences from a previous generation of hardware 
and software. Because some of our designs for the ear- 
lier system, particularly in the areas of user interfaces 
and programming tools, did not scale to large scale sys- 
tems as well as we hoped, we developed better tech- 
niques for VORX. 

We found that the designers of programming languages 
and some applications programmers want the ability to 
experiment with low-level communications protocols, so 
VORX provides an extensible environment with user- 
defined communications objects. Even for these users, 
the standard VORX communications environment is use- 
ful for initial implementation and debugging. Program 
monitoring tools can then be used determine the perfor- 
mance requirements for user-defined communications 
objects. It is often the case that the standard environ- 
ment provides adequate performance, saving the pro- 
grammer from having to design his own protocols. 

The local-area multiprocessor approach is an improve- 
ment over traditional multiprocessor systems that are 
controlled from a single host. It allows the user com- 
munity to be split over many host workstations, distri- 
buting the burden of administering the multiprocessor. 
It has the further advantage of supporting applications 
that span multiple host workstations and processing 
nodes by making use of the high performance communi- 
cations available to the host workstations. 
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