
The Evolution of HPCNORX

Howard P. Katseff
Robert D. Gaglianello
Bethany S. Robinson

AT&T Bell Laboratories
Holmdel, NJ 07733

Abstract

HPC/VORX is a computing system that provides closely
coupled computing between large numbers of processors.
It also supports the connection of many host work-
stations which may be geographically distributed within
the area of a large building and allows a single applica-
tions to span many processors and many workstations.
We relate some of the lessons that were learned while
building and using HPC/VORX and in the transition to
HPC/VORX from a smaller, less capable system. The
problems that we encountered included difficulties in
scaling resource managers and human interfaces to large
numbers of processors, the design of communications
primitives and protocols, and the implementation of pro-
gramming abstractions.

1. INTRODUCTION

HPC/VORX is a local area multicomputer system that
combines the major strengths of multicomputer systems
and local area networks[‘]. Like multicomputers, it
exhibits low latency communications, allowing the close
cooperation of many processors to work on a single
large application. It also provides for the connection of
workstations and other resources that are distributed
within the area of a large building, but with better com-
munications performance than is usually found in local-
area networks. The current system connects ten SUN 3
workstations and a pool of 70 processing nodes based on
the Motorola 68020 and has been operational since early
1988. The system can easily be expanded to more than
a thousand nodes by replicating the interconnect
hardware.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
0 1990 ACM 08979L350-7/90/0003/0060 $1.50

The HPC/VORX system is based on a high bandwidth,
low latency interconnect called the HPC and is controlled
by the VORX distributed operating system. A concep-
tual diagram of HPC/VORX is shown in Figure 1. The
right side of the diagram shows resources normally
found in a local area network and the left side is the
pool of processing nodes that is used for compute inten-
sive or closely coupled medium grain parallel applica-
tions. Applications on the nodes may be controlled
from any workstation and it is possible to build a single
application that spans many workstations and many
nodes.

HPC/VORX has proven to be a useful base for imple-
menting a variety of applications. Applications imple-
mented on HPC/VORX range from the Rapport mul-
timedia conferencing system t2] to several circuit simula-
tors. Because HPC/VORX allows high performance com-
munications with workstations, it can be used to experi-
ment with applications such as multimedia conferencing
between workstations, with real-time video and high-
fidelity audio transmission between conferees. Because
it has enough bandwidth to transmit large bitmap images
in real-time, HPC/VORX allows us to design prototypes
of next-generation workstations that minimize the
amount of hardware on a user’s desk by distributing the
workstation’s intelligence over the network.

The VORX operating system is a direct descendent of
Meglos t3], an operating system for the S/NET multicom-
puter system . I41 The S/NET-Meglos system was opera-
tional for about four years, but fell into disuse in 1988
when HPCiVORX became available. Several multipro-
cessor real-time applications that controlled robot arms
and acquired video data were implemented on
S/NET- Meglos tsl. It was also used to implement a
variety of multiprocessor applications, including circuit
simulators ‘31 and the Linda parallel language 161. The
S/NET was symmetric, providing low latency, high
bandwidth communications between any pair of its pro-
cessors. This was an improvement over systems with
slower communications that forced programmers to con-
sider the hardware topology while designing their

HPC

Interconnect

Processing File
Nodes Servers

I Workstations

Figure 1. A Typical Local Area Multiprocessor System

applications 17’.

The most significant limitation of the S/NET was that it
supported only a small number of nodes. The number
of nodes was limited because it used a single bus for
communications between all its nodes. The largest sys-
tem had 12 processing nodes and most systems had only
eight. In contrast, the HPC interconnect is designed in a
modular fashion, allowing systems ranging in size from
two to several thousand nodes. The HPC consists of
several self-routing star networks called clusters, each of
which contains twelve ports. A port contains indepen-
dent input and output sections that simultaneously run at
160 Mbit/set and can connect to either a workstation, a
processing node, or to another cluster. Fiber optic
cables permit these connections to be over a kilometer in
length.

A twelve node system can be constructed using a single
cluster. Larger systems are built by using some port
connections for processing nodes and some for connec-
tions to other clusters. While the hardware allows con-
nections with arbitrary topologies, we have chosen to
connect the clusters in the shape of an incomplete hyper-
cube “I. A hypercube-based system with 1024 nodes
can be built with 256 clusters by using 8 of the 12 ports

on each cluster for connections to other clusters and the
other four for connections to processing nodes. Like the
S/NET, hardware communications latency in the HPC is
much smaller than the latency introduced by the com-
munications software, so that applications programmers
need not be concerned with the hardware topology.

While we planned for Meglos to eventually use large
numbers of processors, it tended to be optimized for 12
or fewer processors, either to simplify its implementa-
tion or to provide a quick fix for some system bug.
Some of the implementation decisions that we made for
Meglos did not scale well to larger numbers of proces-
sors. This led us to consider the use of alternative
schemes in VORX. This paper discusses some of the
problems that we encountered while designing
HPUVORX and describes general experiences and les-
sons that we learned while building and using it. We
begin with a discussion of problems that we encountered
with hardware flow-control, follow with a description of
user interface issues, and then relate our experiences
with communications primitives and protocols, program-
ming abstractions, and program development tools.

2. HARDWARE FLOW CONTROL

A major problem with the S/NET arose from problems
with flow control in the S/NET interconnect. The
hardware provided a fifo input buffer for each processor
that could hold several incoming messages, with a com-
bined length up to 2048 bytes. When the fifo became
full, the receiver would reject messages sent to it and
send a fifo-full signal to the transmitter for each rejected
message. Because overflow was thought to be an
uncommon event, overflow recovery was to be done in
the low-level communications software by the processors
that originated the rejected messages. When receiving
the fifo-full signal, the originating processors were to
continuously resend their message until it was success-
fully received [91.

We discovered that many multiprocessor applications
have a natural synchronization in which many processors
send a message to a single processor at nearly the same
time. Instead of being a rare event, fifo overflow hap-
pened frequently, making it important for the system to
continue to operate efficiently when the overflow
occurred.

The original strategy of continually sending the message
until it was received was found to be unsatisfactory
because it could cause lockout to occur. A property of
the S/NET interface hardware was that when overflow
occurred, the fifo retained the portion of the message
that was received up to the time of the overflow. The
communications software in the receiving processor had
to read and discard this initial portion of the message.
When several processors were attempting to send a long
message to a single processor, it was possible for the
system to get into a state in which some of the messages
were never received. This happened because all the
sending processors were in their retransmission loop,
continually sending messages that were discarded by the
receiver, but the receiver could not remove words from
its fifo fast enough to make enough room for an entire
incoming message before a new message arrived.

This problem forced us to consider other flow-control
schemes. One approach was to use random-length
timeouts, as is done on the Ethemet[“]. This eliminates
the problem of busy loops in the kernel, but when many
messages need to be retransmitted, communications runs
at the timeout rate; at least an order of magnitude slower
than the expected communications rate. Finally, we
considered a reservation protocol, in which a processor
sends a short message requesting to send its data, and
does not send the data until it receives an acknowledge-
ment from the receiver. If the receiver only authorizes
one sender at a time and the receiving fifo is large
enough to simultaneously hold request messages from
each of the processors and one data message then this
scheme would eliminate overflow. However, we

rejected this scheme because the extra software and
communications overhead would increase latency for all
messages.

In the end, we never implemented code in Meglos to
reliably recover from overflow. Instead, we required
applications to limit the lengths of messages when they
performed many-to-one communications, so that fifo
overflow never occurred. This was feasible because the
S/NET allowed only a small number of processors. For
instance, 12 processors could each send a 150 byte mes-
sage to a single processor without overflowing its fife.

In contrast with the S/NET, flow-control in the HPC is
implemented entirely in the interconnect hardware. This
makes loss of messages due to buffer overflow impossi-
ble. Because the HPC provides reliable message
transmission, the need for implementing recovery
mechanisms in the communications software is entirely
eliminated. Messages sent via the HPC are limited to
some length (1060 bytes in the current implementation).’
Each HPC link, either between a processor and cluster or
between two clusters, refuses to accept a message unless
the hardware has room to buffer an entire message, forc-
ing the sender to wait until the space is available. For
outgoing processor links, the processor receives an inter-
rupt when room becomes available. This scheme
guarantees that messages are never lost by the intercon-
nect and a fair hardware scheduling mechanism ensures
that every sender is eventually serviced. It never
deadlocks because the VORX kernel reads in messages
immediately when they arrive.

3. USER INTERFACE

3.1 Processor Allocation

Because a typical Meglos system had only eight proces-
sors and two or three programmers would often want to
debug their applications simultaneously, we designed
Meglos to make it easy for users to share their proces-
sors with each other. Meglos allowed up to 15 indepen-
dent processes to run on a processor, each with its own
address space protected from access by other processes,
However, we found that programmers did not want to
share their processors because they wanted to balance
the computational load of their application in a repeat-
able fashion. Realizing our mistake, we added
“exclusive access” capabilities to exclude other processes
from a processor.

The strategy used by Meglos to allocate processors was
designed to maximize sharing between users. In
Meglos, processors were allocated to an application
when it started running. When the application finished,
its processors were returned to the free pool and were
immediately available for use by another application.
This scheme met our goal of maximizing processor avai-
lability, but had other problems. While debugging

applications, programmers typically would run them,
find a mistake, make changes and recompile, and then
run the modified version of the application. It often
happened that while a programmer was recompiling,
somebody else would start their application on the
remaining processors with exclusive access, so that when
the programmer tried to run the modified program, he
would receive the diagnostic, “processors not available.”
This problem was normally resolved by informal agree-
ment among the users as to how many processors each
would use. This was possible because all the users were
only a few offices away from each other.

Because its users are geographically distributed, VORX
formalizes the allocation of processors to users by
requiring a user to allocate all the processors that he
needs before running an application. The processors are
not available to anyone else until they are explicitly
freed by the user. This scheme eliminates the problem
with processors disappearing in the middle of a program
development session and appears to be better than our
previous scheme.

The problem with this scheme is that users sometimes
forget to free their processors when they are finished.
We have considered automatic techniques to recover
these processors such as automatically freeing them
when a user logs off their workstation or when there is
no activity for several hours. We also considered a
scheme where after exhausting all the processors allo-
cated to the user, VORX would obtain processors from
the pool of unallocated processors or perhaps from other
users. Since each of the alternatives that we have con-
sidered has objectionable properties, we provide a com-
mand that allows a user to free processors allocated to
other users, and request that it be used carefully.

3.2 Resource Management

All resource management in Meglos was centralized on
a single host. While this is appropriate for a small sys-
tem, it causes a serious performance bottleneck for sys-
tems with over ten processors. The problem was most
apparent in the first few seconds of execution when an
application was being downloaded and then while it set
up its communications channels. Both Meglos and
VORX provide named communications channels that are
dynamically created and destroyed during program exe-
cution[“]. Each channel has an arbitrary name, and two
processes rendezvous on a channel by specifying its
name in an open call. The bottleneck in setting up com-
munications occurred because all the channel opens were
processed by the single resource manager on the host.

We solved this problem in VORX by splitting the
resource manager into several functional pieces and
replicating the individual pieces for increased perfor-
mance. One of the pieces, the communications object
manager, is replicated onto every processing node

allocated by the user. The object manager uses distri-
buted hashing [“I to map a channel name to a particular
processor to determine which object manager should
handle the open for a particular channel. This technique
ensures that two processes that open a channel with the
same name always hash to the same object manager so
it can perform the open. Because there are as many
object managers as processing nodes, the channel open-
ing bottleneck is eliminated.

Another bottleneck in Meglos was that all program
developers and users ran their applications from a single
host. VORX eliminates this problem by allowing pro-
grams to be run from different hosts. Each host has its
own process resource manager that is responsible for
applications started on that host and for keeping track of
the mapping of applications to processors. Program
downloading, file access, and other system services are
also spread among the host workstations.

3.3 The Execution Environment.

Each process running on a processing node has a stub
process running on the host. The stub is responsible for
initially downloading the process and for providing a
UNIX@ operating system environment while the program
is running. Each time a system call (such as a write to
a file) is executed on the processing node, it sends a
message to the stub. The stub then executes the system
call and passes the results back to the node. This
method perfectly replicates the host environment on the
node. Unfortunately, it is slow to start applications with
many processes. For instance, it takes 12 seconds to
download and initialize a process on each of 70 proces-
sors. Most of this time can be attributed to work cen-
tralized on the host: the host creates 70 stub processes,
channels are set up between each process and its stub,
and each stub independently downloads a copy of the
program.

For the case where all the application’s processes use the
same object code as each other, VORX offers an altema-
tive method in which one stub services all the processes
of the application and uses a tree scheme in which the
stub downloads only one processing node. That proces-
sor copies the text to be downloaded to two other pro-
cessors as the text is being received. Each of these pro-
cessors copy the text to two other processors. The
fanout continues in a tree-like fashion to reach all the
processors that are to run the application. With this
method, it takes only two seconds to download and start
70 processes.

The problem with this method is that the host environ-
ment is not duplicated correctly. For instance, if one of
the processes issues a UNIX system call that blocks, such
as a read from the keyboard, then the stub does not pro-
cess system calls from any of the other processes served
by that stub until the original system call completes.

63

When each process has its own stub, the system calls
issued by one process are processed independently of the
other processes. Another problem is that the stub pro-
cess is limited by the SunOS kernel to 32 open file
descriptors, imposing a limit of 32 open files for all the
processes of an application combined. With one stub
per process, each process can open 32 files.

Because VORX allows the programmer to specify how
processes are allocated to stubs, an application with
processes that use blocking system calls or opens many
files can arrange for those processes to each have their
own stub. We are working on a better solution to these
problems that will alleviate the bottleneck of using a sin-
gle host for all the system calis of an application. It
uses a decentralized scheme that distributes the overhead
of system calls by allowing a process to direct system
calls to any of the host workstations.

4. CHANNELS

Channels provide low latency, high bandwidth message
passing communications between processors. In VORX
the software end-to-end latency between application pro-
grams running on separate 25 MHz Motorola 68020 pro-
cessing nodes for four byte messages is 303 psec and
1024 byte messages can be sent at the rate of 1027
kbyte/sec, substantially better than performance of other
systems with comparable processors but other intercon-
nects l13). Channels are also easy to use: they are set up
with a single open call and data is transferred with
read and write calls 1”‘. There are also specialized
calls for operations like multiplexed read in which a pro-
cess blocks until data arrives from one of several chan-
nels and a mechanism that allows servers to continually
reuse a single channel name. Our hope was that chan-
nels would be sufficiently fast and flexible to suit the
communications needs of all applications.

Channels are implemented in Meglos with a stop-and-
wait protocol . 114] When a process issues a write call,
that processor’s kernel sends the data to the destination
processor, and blocks the process until an acknowledge-
ment message arrives from the receiving kernel. If there
is no buffer space available (a rare occurrence in VORX
because the kernel has many side buffers to hold these
messages), the receiver requests retransmission when
buffer space becomes available. The most important
attribute of this protocol is that it implements flow-
control by preventing a second message from being sent
until this first one is processed. This prevents the reader
from being inundated with messages.

A stop-and-wait protocol was chosen because it is sim-
ple to implement and has little processing overhead. For
networks with low latency, like the S/NET and the HPC,
such protocols work well because the acknowledgement
arrives with little delay I’41 In our early work with the .

S/NET, we were unsure of its error characteristics and
implemented error detection and recovery in the channel
protocol. This was done efficiently with stop-and-wait
because the sending process blocks until the message
was successfully received, eliminating the need for the
kernel to make a copy of the message before sending it.

4.1 Alternative Communications Protocols

While most of our users are happy with channels, some
are not. For example, when using Meglos, the imple-
mentors of Linda 161 needed a different type of semantics:
multicast with no explicit flow control, and the CEMU
group t15’ wanted to experiment with various low-level
communications protocols for their circuit simulator.
Meglos allowed these applications to circumvent the
channel communications mechanism by directly access-
ing the communications hardware to send or receive
messages and by responding to communications inter-
rupts when messages arrived.

In VORX a general interface for user-defined communi-
cations objects is provided. As in Meglos, processes can
access the hardware registers from their applications,
eliminating the overhead of supervisor calls into the ker-
nel and can specify interrupt service routines to handle
incoming messages. This allows the programmer to use
whatever low-level protocols are appropriate for the
application. Other application-specific input and output
techniques, such as scatter/gather may also be imple-
mented. VORX allows user-defined communications
objects and channels to coexist and permits several
user-defined objects, each with its own protocol, to be
simultaneously used. User-defined communications
objects are integrated with the object manager, allowing
these objects to use the same rendezvous mechanism as
channels.

We have seen two ways in which users can write proto-
cols with better performance than channels. One is to
use sliding-window protocols [14] and the other is to use
no flow-control protocol at all.

Guided by the experiments done with the CEMU simu-
lator using sliding-window protocols1151, we have seen
that a sliding-window protocol can be more efficient
than a stop-and-wait protocol, even with very low
latency interconnects like the HPC. In a sliding-window
protocol, the reading processor starts by sending a proto-
col message to the sending processor indicating the
amount of free space available in the input buffer. The
sender then can send as many messages as would fit in
the buffer without further protocol messages from the
receiver. As the reader removes data from the buffer,
protocol messages are sent to the sender updating the
amount of buffer space available. To obtain improved
performance, the number of update messages should be
kept small, but should be sent often enough to maintain
concurrency between the sender and the receiver.

Unfortunately, tuning the protocol to find a proper
update rate must be done in an application-specific
manner.

Unlike the stop-and-wait protocol, error recovery in the
sliding-window protocol requires significant processing
overhead. Either the kernel must copy messages into a
safe place until it is assured that the messages have been
correctly received or the sending process must delay
reusing its buffers until it is notified by the kernel that
they have been correctly received. However, none of
this is necessary in HPC/VORX because the HPC

hardware guarantees correct message delivery.

To determine the efficacy of sliding-window protocols,
we benchmarked a sliding-window user-defined protocol
that allowed messages of some fixed length to be sent
between two processors. Both the sender and receiver
know the length of the messages. The receiver initially
sends k buffer-available messages to the sender, where k
is the maximum number of messages that fit in its avail-
able buffer space, and thereafter sends one buffer-
available message each time a message is received. The
sender keeps its own count of the number of receiver
buffers available. The count is initially zero, is incre-
mented for every buffer available message received, and
decremented for every message sent. If the count is
greater that zero, the sender can send a message immedi-
ately, otherwise it blocks until the count becomes greater
than zero. For our benchmark, the sender transmitted
1000 messages and the resulting communication latency
is computed by dividing the elapsed time by 1000. We
varied the number of available input buffers to deter-
mine its effect on communication latency. The data are
shown in Table 1. For comparison, we benchmarked
channel communications for the same message sizes and
obtained the latencies shown in Table 2.

Even with a simple protocol and two buffers, a sliding-
window protocol obtained better latencies than the
highly optimized channel protocol. The performance
gain is obtained because the sender can send a message
immediately whenever extra buffers are available. With
channels, a message can never be sent until a software
acknowledgement is received for the previous message.
This result suggests that we should consider the use of a
sliding-window protocol for channels and strengthens
our belief that programmers can obtain better communi-
cations performance when they tailor a communications
protocol to their application.

An alternative available to some applications is to use
no flow-control protocol at alt. Consider an application
with two processes that alternately send a message back
and forth. If each process ensures that it has enough
buffer space to hold an incoming message before it
sends a message, then when either process sends its
message, it is assured that the message will be received.

The message always arrives because the hardware pro-
vides reliable communications and the application
guarantees that buffer space is available. Such a scheme
can be used by most applications with natural synchroni-
zation between their processes. User-defined communi-
cations objects were successfully used in a parallel
implementation of SPICE that needed very low latency
communications to solve large sparse linear systems ‘16’.
It was able to obtain 60 psec software latencies for 64
byte messages with direct access to the communications
hardware and no low-level protocol.

In OUT experiments with transmitting real-time bitmap
images to workstations, we wanted to obtain the max-
imum possible communications bandwidth from the
HPC. We did so by having the processor originating the
bitmap image send it to the HPC interconnect as fast as
it could and for the workstation receiving the bitmap to
copy it from the HPC directly to its frame buffer.
Because all flow control was done by the HPC hardware,
the protocol overhead was only the few statements
needed to determine where to place the incoming bitmap
data in the frame buffer. With this simple technique, we
obtained a rate of 3.2 Mbyte/set, sufficient to refresh a
900x900 pixel portion of a monochrome (bi-level black
and white) display 30 times per second from a remote
processor.

4.2 Multicast is Inappropriate

When formulating multiprocessor applications, many
programmers design their applications to make use of a
multicast mechanism in which each process sends the
identical message to many other processors. We there-
fore designed the HPC hardware to be able to implement
multicast efficiently and devised a flow-controlled multi-
cast primitive that is integrated with channels t17t.

However, we discovered that when programmers imple-
ment algorithms that were originally formulated with
multicast, they often find multicast to be inappropriate.
The problem with multicast is that as the number of pro-
cessors is increased, the number of messages received by
each processor grows and each process spends more and
more time reading data that it is not concerned with. It
is usually better for the sender to produce a different
message for each receiver that contains only the data
that it needs.

For example, consider the calculation of a two-
dimensional Complex Fast Fourier Transform (2DFFT),
a computation used by image processing applications.
The 2DFFT of a 256x256 grey scale image is computed
as follows:

l Compute a 256-point one-dimensional Complex FFT
(IDFFT) for each row in the original image, produc-
ing a row of 256 complex numbers for each row in
of the original image.

65

1 Number of / 4 Byte 1 64 Byte / 256 Byte / 1024 Byte /
Buffers Messages

psecs/msg
414
290
227
196
179
172
164

Messages
usecs/msg

451
317
251
218
200
192
184

Messages
psecs/msg

574
412
330
289
267
257
248

Messages
psecs/msg

1071
787
644
573
535
518
504

1
2
4
8

16
32
64

Table 1. Message Latency for Reader-Active Communications Protocol.

4 Byte 64 Byte
Messages Messages

256 Byte
Messages

1024 Byte
Messages

psecs/msg psecs/msg psecs/msg psecs/msg
303 341 474 997

Table 2. Message Latency for Channel Communications.

l Compute a 256-point IDFFT for each column from
the 1DFFT’s computed in the first step, producing a
column of 256 complex numbers for each column
computed in the first step.

Computing the 2DFFf with multiple processors is
straightforward. Since each 1DFFT is computed
independently of the others, the 1DFFT’s may be com-
puted concurrently on separate processors. After the
first step, the processors distribute the results of their
computation to each other so that all processors have a
column of data for the second step. The processors
compute the 1DFFT on their column of data, and the
2DFFT is completed. Assuming that 256 processors are
available and that communications has zero cost, the
2DFFT can be computed in the time it takes to compute
2 1DFFT’s.

One approach for distributing the results of of the first
step is for each processor to multicast its entire row to
all the other processors. The problem with this approach
is that each processor reads 65536 numbers of which
only 256 are needed. A better approach than using mul-
ticast is for each each processor to send a different
number to every other processor. By sending a single
message containing one number to each processor. The
latter technique requires the receiver to process only the
256 numbers it needs.

We have found some limited uses for multicast. For
instance, it may be necessary for a process to multicast
initial values to all the other processes when the applica-
tion is first started. Other applications (especially local
area network servers such as distributed file servers)
sometimes need multicast, but only to a few receivers.

This can be done with reasonable efficiency by issuing
multiple writes.

5. SUBPROCESSES

Both Meglos and VORX allow a process to be subdi-
vided into subprocesses. Like threads in Mach1’81, sub-
processes are parts of a process that execute asynchro-
nously with each other. Each subprocess is an indepen-
dently scheduled thread of execution that may block for
communications or other events without affecting the
execution of the other subprocesses of an application.
All the subprocesses of a process share the same address
space but each subprocess has its own stack for its local
variables and for the kernel’s machine state information.

Subprocesses were originally included for real-time
applications that controlled hardware devices, such as
robot arms and cameras connected to the processing
nodes. Because distinct execution priorities can be
specified for each subprocess and the scheduler is
preemptive, the programmer had enough control over
switching between and scheduling of subprocesses to be
able to effectively implement real-time applications 15’.

We found that subprocesses provide a useful way to
structure applications that had no real-time or device
control aspects to them. A common way to structure
applications is to have at least three subprocesses for
each process: one for input, one for output, and one or
more to do the actual computation. The subprocesses
communicate with each other by semaphores (provided
by VORX). This subdivision of work makes it easy to
do the computation concurrently with input arriving or
output departing.

66

Because the VORX scheduler is preemptive, a subprocess
can be interrupted to service interrupts or to start higher
priority subprocesses. To allow for preemptive schedul-
ing, VORX saves all a processor’s registers when it does
a context switch between subprocesses. A context
switch, which includes saving both fixed and floating
point registers takes 80 l.tsec using a 25 MHz Motorola
68020 with a Motorola 68882 floating point coprocessor.

Because context switching is too slow for some applica-
tions, program structuring techniques other than sub-
processes have been used. One approach is to use a sin-
gle subprocess that never switches context. Communica-
tions interrupts are disabled and user-defined objects are
used to test for input at convenient places in the pro-
gram. If input is available then the program can read
the incoming data without blocking. This scheme was
also used in the parallel SPICE work”@.

It is possible to use coroutines to provide multiple
threads of execution within a subprocess, as was done in
CEMU ‘t5’. Coroutines have less overhead than sub-
processes because coroutine switches occur only at well
defined places in the application code, so that most
registers need not be saved when switching between
coroutines. Another alternative is interrupt level pro-
gramming. Here, a single subprocess starts application-
specific input and output interrupt service routines and
then suspends itself. The entire computation is done by
the interrupt service routines. This technique runs
efficiently in VORX because it does not incur the over-
head of restoring or saving registers when switching to
or from a suspended process.

6. PROGRAM DEVELOPMENT TOOLS

The only debugging tool available under Meglos was
vdb, a symbolic debugger derived from the sdb”91
debugger. Vdb includes a few enhancements, such as
the ability to switch between subprocesses to examine
their local variables, but is basically a single process
debugger. When used on a workstation with a window
system, it is possible to do breakpoint debugging on a
multiprocess application by starting several copies of
vdb in separate windows. Each copy of vdb controls the
execution of one process of the application. By switch-
ing between windows, the programmer can simultane-
ously debug all the processes.

When there are more than a few processes, this method
becomes unwieldy because the programmer cannot
remember what he is doing in each window. In practice,
programmers usually run one or two processes with the
debugger and run the other processes normally. Because
the programmer may not know in advance which pro-
cess needs to be debugged, VORX makes it possible for
the programmer to attach vdb to any process that is run-
ning and to switch between the processes of his

application. Despite the problems of dealing with many
processes, vdb is still a popular tool for debugging mul-
tiprocessor applications.

6.1 The Communications Debugger

While we do not know how to deal with the complexity
of large numbers of processes in general, we have
created a tool that is useful for dealing with a type of
program bug that is surprisingly common in applications
with many processes. The symptom, which is caused by
a programming error, is that the application stops run-
ning with each process waiting for input from another
process. The VORX communications debugger, cdb,
helps debug such deadlocked applications by allowing
the programmer to examine the communications state of
the application ‘*‘I. This information can be used to
determine which messages caused the problem and often
can help isolate the process that caused the deadlock to
occur.

For each channel, the state reported by cdb consists of
the name of the channel, which two processes it con-
nects, how many messages have been sent in each direc-
tion on the channel and most importantly, the state of
each end of the channel. The channel state includes
information such as whether an application is blocked
waiting for input or output on the channel. Because an
application may have a large number of channels, cdb
includes several filters to help isolate the channels of
interest. Cdb was easy to implement because most of
the information that it needs was already encoded in the
communications driver. Cdb has proven to be easy to
use and has become a useful tool for examining
deadlocked applications.

4.2 The Software Oscilloscope

The prof profiling system [*‘I available in VORX can be
run on a process to show how execution time is divided
up among different parts of the program. Typically one
finds that a large portion of the execution time is spent
in a small section of the code. This part of the program
can then be examined and carefully rewritten.

While a process profiler can help improve the perfor-
mance of a multiprocessor application, execution charac-
teristics that a process profiler does not measure are also
important. The major problem is one of improper load
balance in which processors spend time waiting for data
from other processors instead of doing useful work. A
related problem is that communication between proces-
sors is often more expensive than envisioned by the
designers of an application, exacerbating the load
balancing problem.

VORX includes a tool called the software oscillo-

scope ‘*Of that helps the programmer visualize how well
processors of an application are utilized and how well
the computational load is balanced. It runs on a color

67

workstation and displays a graph for each processor
indicating CPU time usage with different colors used to
partition time into several categories. Two of the
categories are quite standard: user time in which appli-
cation code is executed and system time in which operat-
ing system code is executed. The remainder of the time
is idle time in which the processor is doing no useful
work.

Because programs use messages to communicate, idle
time can be further partitioned to provide more informa-
tion. The processor may be idle because the program is
waiting for input or it may be idle waiting for output.
Because the kernel allows multiple threads of execution
within a processor, a third possibility for idle time is
that some threads are waiting for input and others are
waiting for output. Finally, the processor may be idle
for some other reason, such as waiting for access to a
locai disk.

Execution data is recorded while the application is run-
ning and later the software oscilloscope is used to
display the data. The software oscilloscope synchronizes
all the graphs with each other, so that when several
graphs are displayed, each shows the same interval of
execution time. It is possible to freeze the display, run
faster or slower than real-time, or seek to any moment in
execution time. This tool works well when the applica-
tion has few enough processors so that all the graphs fit
on the screen. We are studying ways to effectively
display data for more processors.

7. coNcLusIoNs

VORX has proven to be a useful testbed for experiment-
ing with multiprocessor applications and for experiment-
ing with different techniques for their implementation.
Some of our success resulted from being able to build
on experiences from a previous generation of hardware
and software. Because some of our designs for the ear-
lier system, particularly in the areas of user interfaces
and programming tools, did not scale to large scale sys-
tems as well as we hoped, we developed better tech-
niques for VORX.

We found that the designers of programming languages
and some applications programmers want the ability to
experiment with low-level communications protocols, so
VORX provides an extensible environment with user-
defined communications objects. Even for these users,
the standard VORX communications environment is use-
ful for initial implementation and debugging. Program
monitoring tools can then be used determine the perfor-
mance requirements for user-defined communications
objects. It is often the case that the standard environ-
ment provides adequate performance, saving the pro-
grammer from having to design his own protocols.

The local-area multiprocessor approach is an improve-
ment over traditional multiprocessor systems that are
controlled from a single host. It allows the user com-
munity to be split over many host workstations, distri-
buting the burden of administering the multiprocessor.
It has the further advantage of supporting applications
that span multiple host workstations and processing
nodes by making use of the high performance communi-
cations available to the host workstations.

REFERENCES

Gaglianello, R. D., et. al., “HPC/VORX: A Local
Area Multicomputer System,” Proc. Ninth Internat.
Conf. on Distr. Comput. Sys., June 1989, Newport
Beach, 246253.

2. Ensor, J. R., et. al., “The Rapport Multimedia Con-
ferencing System-A Software Overview,” Proc.
Second iEEE Conf. on Comput. Workstations,
Washington, March 1988, 52-58.

3. Gaglianello, R. D. and H. P. Katseff, “Meglos: An
Operating System for a Multiprocessor Environ-
ment,” Proc. Fifth Internat. Conf. on Distributed
Camput. Syst., Denver, May 1985, 35-42.

4. Ahuja, S. R., “S/NET: A High Speed Interconnect
for Multiple Computers,” IEEE .I. on Selected Areas
in Communications SAC-l, 5, November, 1983.

5. Gaglianello, R. D. and Katseff, H. P., “A Distributed
Computing Environment for Robotics,” Proc. 1986
Internat. ConfI on Robotics and Automation, San
Francisco, April 1986, 1890- 1896.

6. Carriero, N., and Gelemter, D., “The S/Net’s Linda
Kernel,” ACM Trans. on Cornput. Syst. 4,2, May
1986, 110-129.

7. Seitz, C. L., “The Cosmic Cube,” Comm. ACM 28,
1, January, 1985, 22-33.

8. Katseff, H. P., “Incomplete Hypercubes,” IEEE
Trans. on Comput. 37,5, May 1988, 604-608.

9. London, T. B., et. al., “Performance of an Intercon-
nected Microprocessor System Designed for Fast
User-level Communications,” in Concurrent
Languages in Distributed Systems, Hardware Sup-
ported Implementation, edited by G. L. Reigns, and
E. L. Dagless, Elsevier Science Publishing Com-
pany, New York, March 1984, 125-134.

10. Metcalfe, R. M., and Boggs, D. R., “Ethernet: Distri-
buted Packet Switching for Local Computer Net-
works,” Comm. ACM 19, 7, July 1976, 395-404.

68

11. Gaglianello, R. D. and Katseff, H, P., “Communica-
tions in Meglos,” Sofhy. Pruct. and Exper. 16,10,
October 1986, 945-963.

12. Andrews, G. R., et. al., “Distributed Allocation with
Pools of Servers,” Proc. ACM SIGACTISIGOPS
Symp. on Principles of Distrib. Cornput., Ottawa,
August 1982, 73-83.

13. Renesse, R. van, et. al., “Performance of the World’s
Fastest Distributed Operating System,” Operat. Syst.
Rev. 22,4, Assoc. Comput. Mach., October 1988,
25-34.

14. Tanenbaum, A. S., “Network Protocols,” Cornput.
Surveys 13,4, December 1981, 453-490.

15. Ackland, B. D., et. al., “MOS Timing Simulation on
a Message Based Multiprocessor,” Proc. IEEE Znter-
nut. Conf. on Comput. Design, Port Chester, N. Y.,
October 1986, 446-450.

16. Narayan, S., personal communication, 1988.

17. Katseff, H. P., “Flow-Controlled Multicast in Mul-
tiprocessor Systems,” Proc. Sixth Internat. IEEE
Phoenix Conf. on Comput. and Communicat., Scotts-
dale, February 1987, 8-13.

18. Accetta, M., et. al., “Mach: A New Kernel Founda-
tion for Unix Development,” Proc. 1986 Summer
USENIX Technical Conf.? July 1986.

19. Katseff, H. P., “Sdb: A Symbolic Debugger-Version
3.0,” part of documentation for the UNIX@ System
V Operating System, AT&T, 1980.

20. Katseff, H. P., “Debugging and Performance Moni-
toring in HPUVORX,” Proc. First UsenixlSERC
Workshop on Exper. with Building Distrib. and Mul-
tiproc. Syst. (WEBDMS), Ft. Lauderdale, October
1989, 255-268.

21. ‘PROF (I),’ in UNIX Programmer’s Manual, 4.2
Berkeley System Distribution 1, Computer Science
Division, University of California, Berkeley, CA,
August 1983.

