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Abstract  
Many computing systems today are heterogeneous in that they 
consist of a mix of different types of processing units (e.g., CPUs, 
GPUs). Each of these processing units has different execution 
capabilities and energy consumption characteristics. Job mapping 
and scheduling play a crucial role in such systems as they strongly 
affect the overall system performance, energy consumption, peak 
power and peak temperature. Allocating resources (e.g., core 
scaling, threads allocation) is another challenge since different 
sets of resources exhibit different behavior in terms of perfor-
mance and energy consumption. Many studies have been con-
ducted on job scheduling with an eye on performance improve-
ment. However, few of them takes into account both performance 
and energy. We thus propose our novel Performance, Energy and 
Thermal aware Resource Allocator and Scheduler (PETRAS) 
which combines job mapping, core scaling, and threads allocation 
into one scheduler. Since job mapping and scheduling are known 
to be NP-hard problems, we apply an evolutionary algorithm 
called a Genetic Algorithm (GA) to find an efficient job schedule 
in terms of execution time and energy consumption, under peak 
power and peak temperature constraints. Experiments conducted 
on an actual system equipped with a multicore CPU and a GPU 
show that PETRAS finds efficient schedules in terms of execution 
time and energy consumption. Compared to performance-based 
GA and other schedulers, on average, PETRAS scheduler can 
achieve up to a 4.7x of speedup and an energy saving of up to 
195%. 

Categories and Subject Descriptors C.1.3 [Processor Architec-
tures]: Other Architecture Styles—Heterogeneous (Hybrid) Sys-
tems; C.1.4 [Processor Architectures]: Parallel Architectures; 
D.4.1 [Operating Systems]: Process Management—Scheduling; 
C.4 [Performance of Systems]: Design Studies, Modeling Tech-
niques 

General Terms Algorithms, Management, Measurement, Per-
formance, Design, Experimentation. 

Keywords Heterogeneous Systems; Core Scaling; Threads Allo-
cation; Energy Consumption; Performance; Thermal; Peak Power 

1. Introduction 
Attempt at improving uni-core processor has hit a power wall. As 
a result, industry has shifted towards multicore processors. Anoth-
er shift in the industry is the Graphical Processing Units (GPUs) 
are now being used for more than just image processing. GPUs 
are now used as general purpose processing units to execute high-
ly parallel jobs [14]. GPUs show its capability to run compute 
intensive jobs efficiently in terms of execution time and energy 
consumption. Processing units such as multicore processors and 
general purpose GPUs have emerged forming heterogeneous 
systems. Integrating processing units of different perfor-
mance/energy characteristics on the same machine could enhance 
system's performance and energy efficiency [11]. 

Performance of the system (i.e., execution time) was the dom-
inant metric for evaluating processer design for years. Minimizing 
the execution time was a major concern for designing soft-
ware/hardware. As the uni-core processors hit the power wall, 
power/energy becomes an important metric. Minimizing energy 
consumption may degrade a system's performance. Hence, the 
energy and performance trade-off should be a considered while 
designing a system. In the embedded systems field, peak power 
and peak temperature are considered as additional constraints. In 
this work, we consider both execution time and energy consump-
tion under peak power and peak temperature constraints.  

A heterogeneous system can be a computer that consists of a 
mixture of different types of processing units (e.g., CPUs, GPUs). 
Each of these processing units has different architectural strengths 
in execution capabilities and energy consumption. Computational 
resources in general can be either processing units, number of 
cores, or number threads. In a heterogeneous system, selecting the 
best computational resources to run a job requires an understand-
ing of: 1) the capabilities of the processing units with different 
number of cores and threads, 2) optimized parameters (i.e., per-
formance and energy consumption) in our case, and 3) computa-
tional constraints of the problem such as peak power and thermal 
limits. This is because different computational resources have 
different strengths and weaknesses with respect to these parame-
ters and constraints. 

It is true that job mapping and scheduling play a crucial role 
in such systems as they strongly affect the overall system perfor-
mance, energy consumption, peak power and peak temperature. 
But selecting the optimal resources (e.g., number of cores, number 
of threads) to run a job is also important due to its effect on the 
parameters above. Therefore, we propose a scheduler that not only 
maps and schedules jobs to processing units, but also it finds the 
number of cores and threads.  



Many studies have been done on job scheduling with an eye 
on performance improvement. However, few of them tackle both 
performance and energy job scheduling. Thus, to enhance both 
performance and energy consumption in heterogeneous systems, 
we propose our novel Performance, Energy and Thermal aware 
Resource Allocator and Scheduler (PETRAS). A preliminary 
version of this work appeared in [2] where Performance, Energy 
and Thermal aware Scheduler (PETS) first introduced. PETRAS 
is a scheduler that combines job mapping and scheduling, core 
scaling, and threads allocation into a single scheduler. Job map-
ping and scheduling is known to be an NP-hard problem in the 
general case [5]. In addition, resource allocation (i.e., core scaling, 
threads allocation) makes the optimization problem more compli-
cated. Moreover, PETRAS solves multi-objective problem that 
takes into account both performance and energy. Thus, we apply 
an evolutionary algorithm called a Genetic Algorithm (GA). This 
algorithm promises to find nearly optimal solutions to such NP-
hard problems. PETRAS utilizes a power management unit to go 
through the GA nearly optimal schedule, turning off the idle or 
low-utilized computational resources. This unit helps in saving 
energy consumption and freeing low utilized resources for use by 
other applications. 

This paper presents PETRAS for resource allocation on an ac-
tual CPU-GPU system utilizing GA. On average, experimental 
results show that the PETRAS scheduler can achieve up to a 4.7x 
of speedup and an energy saving of up to a 195% compared to 
performance based GA and other job schedulers. 

The rest of the paper is organized as follows. In section 2, re-
lated work is discussed. Section 3 presents the motivation. Section 
4 and 5 describe PETRAS in detail. Section 6 evaluates PETRAS 
on a CPU-GPU heterogeneous system. Finally, we conclude our 
work in section 7 and discuss future work in section 8. 

2. Related Work 
Several studies have been done on job scheduling to enhance 
overall performance, but few of them tackle both performance and 
energy energy consumption. Many researchers have investigated 
the use of GA to schedule tasks in heterogeneous systems. For 
instance, in [1, 13, 15, 18], GA is applied to find an efficient task 
schedule that enhances overall system performance. But they did 
not consider the overall energy consumption in scheduling these 
tasks. Moreover, they solve a classic scheduling problem with no 
peak power or peak temperature constraints. Chiesi et al. [4] 
present a power-aware scheduling algorithm based on an efficient 
distribution of the computing workload on heterogeneous CPU-
GPU architectures. The goal of that scheduler is to reduce the 
peak power of the system. It did not take into account the overall 
energy consumption. A power-aware task scheduling has been 
introduced in [3, 16] for real-time system tasks utilizing a DVFS. 
However, their work is on a multicore system not on a heteroge-
neous system. An adaptive mapping technique has been intro-
duced by Luk et al. [12] to map computations to processing ele-
ments according to their input sizes and execution times. They did 
not consider energy consumption, peak power, or temperature. 
Liu et al. [9] propose (DVFS) with core scaling (DVFCS). They 
utilized GA to minimize the power dissipation of many-core 
systems under performance constraints by choosing appropriate 
number of active cores and per-core voltage/frequency levels. 
Unlike DVFCS, PETRAS considers both energy consumption and 
performance. In addition to core scaling, PETRAS addresses job 
mapping and scheduling, and threads allocation problems. In [10], 
Vega et al. present preliminary characterization data for multi-
threaded programs to estimate the potential benefit of power-
aware thread placement. PETRAS in turn exploits both perfor-

mance and energy efficiency of threads allocation with core scal-
ing and job mapping/scheduling. 

3. Motivation 
Our results from preliminary experiments, as described below 
motivated this study. Results were collected by running the 
Rodinia 3.0 benchmark suite [8] jobs with sizes of 1k up to 64G 
on different processing units. Execution time, energy consump-
tion, peak power, and peak CPU temperature were measured by 
running the same job on different processing units. Fig. 1(a) 
shows that choosing a processing unit to run a job results in dif-
ferent values of execution time. Some of these jobs run faster on 
GPU such as lud, SRAD, lavaMD, leukocyte, heartwall, CFD, and 
mummergpu. For other jobs, CPU cores are better processing 
units. In addition, as the number of cores changes, the execution 
time varies. Fig. 1(b) illustrates that the same job consumes dif-
ferent amount of energy if it is executed on a different processing 
unit. Even though GPU is known to be more energy efficient than 
a multi-core CPU, multi-core CPU outperforms GPU in energy 
consumption as in kmeans, nw, myocyte, BP and BFS.  
 Peak power and peak CPU temperature are important factors 
for some design fields such as embedded systems. Fig. 1(c) and 
Fig. 1(d) show peak power and peak CPU temperature reached by 
running a job on different processing units. Although GPU energy 
consumption is less in SRAD, lavaMD, heartwall, and CFD, peak 
power is very high compared to a multi-core CPU. Hence, peak 
power and peak CPU temperature should be measured and taken 
into consideration in selecting a processing unit.   
 It can be concluded that choosing the right processing unit to 
enhance performance and minimize energy is not that easy. It gets 
more complicated if peak power and thermal constraints are con-
sidered. For example in SRAD, if the selection criteria are based 
on only performance and energy consumption then GPU should 
be selected as the processing unit. But if the peak power is limited 
to a certain value, GPU may exceed that value and should not be 
selected. Instead, CPU quad cores may be selected since it is the 
second best in terms of performance and energy consumption. But 
if peak CPU temperature has a limit, CPU quad may not be the 
best one, etc.  

Another experiment conducted on a quad cores CPU with var-
ious numbers of allocated threads. Fig. 2 (a) and (b) show how 
changing the number of allocated threads changes the execution 
time and energy consumption respectively. Similarly, graphs of 
Fig. 2 (c) the peak power and Fig. 2 (d) the peak CPU temperature 
show the effect of number of threads on these parameters. From 
these results, it is clear that deciding on the number of threads has 
high impact on performance, energy consumption, peak power 
and peak CPU temperature. Moreover, these results were obtained 
by running a job of a specific size on quad cores with different 
thread number settings. The results change depending on the job 
size as well as on whether that job runs on single, dual cores or 
quad cores, etc. 

The results show the three problems (processing units map-
ping, core scaling, and threads allocation) with different settings. 
These results illustrate that we do not have to solve each problem 
independently since the solution of one problem affects the others. 
We have to solve the three problems as one optimization problem; 
therefore, we combined processing units mapping, core scaling 
and threads allocation problems into one scheduler. The goal of 
that scheduler is to find an efficient schedule, processing unit 
mapping, core scaling and threads allocation that try to enhance 
performance and minimize energy consumption under peak power 
and thermal constraints. 



4. Performance, Energy and Thermal Aware 
Resource Allocator and Scheduler (PETRAS) 
PETRAS is a performance, energy and thermal aware scheduling 
framework for managing jobs, resources and power in a heteroge-
neous system. This scheduler not only determines where to run 

jobs, it also provides more information regarding number of cores, 
number of threads and power management. PETRAS has many 
useful features. It is not a system-specific; it can be applied on any 
heterogeneous environment including embedded system because 
it takes into account peak power and peak temperature. It utilizes 
a system profiler and a curve fitter to predict jobs’ execution time, 
energy consumption, peak power and CPU peak temperature. 

The goal of our scheduler is to find a schedule that takes into 
account the overall performance and energy consumption simul-
taneously while not exceeding peak power and thermal limits. 
Because this is a multi-objective optimization problem, there is no 
single schedule that can simultaneously optimize performance and 
energy. Instead, there exists a set of Pareto optimal schedules. A 
schedule is called Pareto optimal if none of the objective functions 
can be improved in value (e.g., performance) without degrading 
the other objective value (e.g., energy).  

PETRAS does not only solve classic scheduling problems. In-
stead, it solves all the following problems at the same time: job 
mapping and scheduling, core scaling, and thread allocation. It 
also has a power management unit. To the best of our knowledge, 
this scheduler is the first attempt to combine all these into one 
optimization problem to consider both performance and energy 
consumption simultaneously under peak power and thermal limits. 

4.1 PETRAS Problems 

PETRAS solves the following problems: 

4.1.1 Job Mapping and Scheduling 

Our goal is to find optimal jobs’ mapping and scheduling while 
taking into account both performance and energy consumption 
under the peak power and thermal constraints. Given a set of jobs 
and processing units, job mapping problem is to decide which 
processing unit is responsible to run a job. (i.e., job mapping is 
based on processing unit affinity). Because these processing units 
are heterogeneous, different processing units have different 
strengths and weaknesses in respect to the following parameters: 
performance, energy, peak power, and thermal activity. Hence, 
selecting the right processing unit that satisfies our objective and 
constraints is not straightforward. On the other hand, jobs sched-
uling can be defined as choosing an optimal execution order of 
jobs for a heterogeneous system. 

4.1.2 Core Scaling 

It is not always true that adding more cores to run a job will re-
duce its execution time. It may degrade its performance due to 
communication latency between cores. Moreover, some jobs do 
not have enough parallelism to utilize all of the cores provided. 
Hence, it is important to decide number of cores needed to run a 
job. PETRAS’s core scaling aims to find the optimal number of 
cores needed to run a job. It takes into account both performance 
and energy consumption under peak power and thermal con-
straints. Moreover, after finding the optimal number of cores, we 
turn off idle cores to save power and free these resources to be 
used by other applications that share the same hardware. 

4.1.3 Threads Allocation 

Multithreading is a programming and execution model that allows 
multiple threads to cooperate and utilize a multiprocessing system 
to execute a job. Jobs run on multicore processors or multipro-
cessing units can utilize multithreading to enable their parallel 
execution. Moreover, using multithreading helps to hide memory 
latency and enhance processing unit utilization by having more 
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Figure 1.  Execution time (a), energy consumption (b), 
peak power (c), and CPU peak temperature (d) of running a 

job on different processing units. 
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than one thread running on the same processing unit. If a thread is 
blocked waiting for resources, other threads can proceed, keeping 
the processing unit busy. 
      The number of threads allocated to a job highly affects its 
execution time, energy, peak power, and CPU peak temperature. 
Using too many threads may degrade its performance and increase 
energy due to high communication. And using too few threads 
may not be enough to achieve full parallelism, which in turn 

increases execution time and energy. Hence, the number of 
threads should be carefully chosen. The optimal number of 
threads might be different for each job on a different processing 
unit. Given jobs and heterogeneous processing units, PETRAS’s 
threads allocation goal is to find the optimal number of threads of 
a job that runs on a processing unit while taking into account both 
performance and energy under peak power and thermal con-
straints. 

(d) 

(c) 

(b) 

Figure 2.  Execution time (a), energy consumption (b), peak power (c), and CPU peak temperature (d) of running a job with different 
number of threads 
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4.2 PETRAS optimization problem formulation 
The objective is to map jobs to processing units, decide the num-
ber of cores, set the number of threads and schedule their execu-
tions such that the overall schedule execution time and energy are 
considered while not violating peak power budget and thermal 
limit. We consider a heterogeneous system that has m processing 
units P={P1, P2,…, Pm} and a set of r resources R={ R1,R2,…, Rr}. 
Processing units can be single core CPUs, multicore CPUs, GPUs, 
etc. These processing units can be fused on the same chip or 
connected through a network (e.g., PCI express, a ring, or a 
mesh). Resources can be GPU block size, CPU number of threads, 
number of cores, etc. There are n compute intensive jobs J={J1, 
J2,…, Jn} competing for system resources. Estimation models of 
the overall execution time, energy, peak power and peak CPU 
temperature of a given job Ji on processing unit Pj are available by 
profiling and curve fitting. Thus, the communication cost of trans-
ferring data between PUs is included in the estimation models. 
The PETRAS problem is formalized as follows: 

4.2.1 Input 
The input consists of the following: 
• A set of n compute intensive jobs J={J1, J2,…, Jn}; where Si  is 

the input size of job Ji  and Si =(0, Smax ]. 

• A set of m processing units P={P1, P2,…, Pm}. 

• A set of r resources R={ R1,R2,…, Rr}. 

• The profiler training set’s input sizes TS={TS1, TS2,…, TSm}; 
where TS= [1, Smax]. 

• Smax; Jobs’ maximum size. 

• U; Utilization threshold.  

• PPmax; Peak Power budget.  

• PTmax; Peak temperature limit. 

• An execution time model T(tsi, Pj) which determines the esti-
mated execution time Ti of running a job Ji of a size tsi on a 
processing unit Pj. 

• A peak power model PP(tsi, Pj) which determines the estimat-
ed peak power PPij of running a job Ji of a size tsi on a pro-
cessing unit Pj. 

• A peak temperature model PT(tsi, Pj) which determines peak 
temperature PTij of running a job Ji of a size tsi on a pro-
cessing unit Pj. 

4.2.2 Objective Function 

PETRAS is a multi objective optimization problem that takes into 
account both the total execution time (1) and total energy con-
sumption (2) of a schedule. Hence, a weighted fitness function is 
used to combine them (3). 

          !! = min Ω!"!" !!"  ;∀job ! = 1,! and ! j = 1,!        (1) 

           !! = min Ω!"!" !!" ;∀job ! = 1,! and ! j = 1,!        (2) 

;where Ω!" represents mapping a job i to a processing unit j. 
Ω!" = 1 is when a job i is scheduled to a processing unit j, other-
wise Ω!" = 0. The parameter !!" represents the execution time of a 
job i running on a processing unit j. The parameter E!" represents 
the energy consumed by a job i running on a processing unit j. 
The overall objective function is as follows: 

                  Min !!"!#$ = !!! + 1 − ! !!    ;! = 0,1         (3) 

;where f1 and f2 are normalized. w is a predefined weight value 
that determines the importance of each of the objective functions. 
If w= 0.5, both objective functions are equally important.  If w=1 
or 0, (3) is a single objective function that optimizes execution 
time or energy respectively. Moreover, if w>0.5, execution time is 
more important than energy and the opposite is true.  

4.2.3 Constraints 

The objective function is subject to the following constraints:  
• Each job should be mapped to a single processing unit 

                               Ω!"! = 1 ;∀job ! = 1,!  

• The peak power should be less than a peak power budget  
∀Ω!" ∗ !!!" < !!!"# ;∀job ! = 1,! and ! ! = 1,! 

• The peak temperature should be less than a peak temperature 
limit 

∀Ω!" ∗ !"!" < !"!"# ;∀job ! = 1,! and ! ! = 1,! 

• The processing unit utilization should be larger than a thresh-
old 

∀!!" > U;∀! ! = 1,! 

;where the parameter !!!"  !"# !"!" represent the peak power and 
peak temperature of a job i running on a processing unit j respec-
tively.  

5. PETRAS components and flowchart 
This section describes PETRAS components in detail. Then it 
presents PETRAS flowchart. 

5.1 Profiler and curve fitter  

To evaluate a schedule and compare it to other schedules, we have 
to measure the overall performance, energy, peak power and peak 
temperature after mapping jobs to processing units, setting the 
number of cores and the number of threads, and the order of jobs. 
However, there are no accurate models that can be used to esti-
mate all these parameters. The expected performance, energy, 
peak power and peak temperature of a job running on a processing 
unit are hard to predict. Moreover, the prediction becomes more 
complicated when the number of cores and threads change. 
Hence, PETRAS uses a profiler and curve fitter to find estimation 
models for the parameters above. The curve fitting method is 
described in detail in [12]. Profiling is done by measuring the 
system overall execution time, overall energy, peak power and 
peak temperature of running a given job Ji on processing unit Pj 
for various input sizes, number of cores and number of threads. 
Since our profiler is based on the overall system parameters’ 
readings (e.g., overall execution time in (4) and overall energy in 
(5)), it includes memory latency and communication overhead 
between processing units. After these samples are collected, we 
use a curve fitter to produce estimation models that can be used 
for prediction.  

! = !!"#$%&'&(") + !!"!#$% + !!"##$%&'()&"%; 
                          !!"#$%&!"#$% = !!"# + !!"# +…         (4) 
  

! = !!"#$%&'&(") + !!"!#$% + !!"##$%&'()&"%;  
                       !!"#$%&'&(") = !!"# + !!"#+…         (5) 



5.2 Genetic algorithm 

PETRAS has a job scheduler, and scheduling is known to be an 
NP-hard problem [5]. It does not only solve the classic job sched-
uling problem. Instead, it solves all the following problems at the 
same time: core scaling, thread allocation, job mapping and 
scheduling. Moreover, PETRAS solves a multi-objective problem 
in which both performance and energy must be considered. That 
makes the problem more complicated, and the search space to find 
the nearly optimal schedule is very large. Hence, we applied an 
evolutionary algorithm called a Genetic Algorithm (GA) to find 
nearly optimal schedules. GA [6][17] is a search algorithm in-
spired by natural selection and genetics that is based on the sur-
vival of the fittest theory. It is an iterative search technique that is 
applied to solve optimization problems to find a nearly optimal 
solution. Unlike traditional random search, it does not examine a 
single solution/schedule, it is a population-based algorithm which 
makes exploring the search space faster. Being a population-based 
approach, GA is well suited to solve multi-objective optimization 
problems. GA applies different operators (e.g., crossover, muta-
tion) to evolve from one population to another. These operators 
help in exploiting and exploring the search space without getting 
stuck in a local optimum. 
 As shown in Fig. 4, GA starts with an initial random popula-
tion of S solutions (schedules). Fig. 3(b) shows an example of a 
population. Each solution/schedule is represented by a one-
dimensional array of objects. A fitness function is used to evaluate 
the solution. In each iteration, a new generation of solutions (off-
springs) is produced by performing crossover and mutation opera-
tors on the previous generation (parents). If the offspring that is 
produced is better than its parents, it replaces its parents. Other-
wise, parents remain in the next generation. GA ensures feasibility 
of the produced schedules of each generation. A solution/schedule 
is said to be feasible if it meets problem constraints (e.g., peak 
power, peak temperature). If a solution violates any of the con-
straints, GA identifies the violating point(s) and modifies them 
randomly, ensuring solution feasibility. For example, if running a 
job x on processing unit y violates the peak power constraint, 
another processing unit z is assigned randomly instead of y. The 
attempts to ensure solution feasibility are limited to c times (i.e., 
input), otherwise the parent is selected instead of the offspring. 
The algorithm stops after a specified number of iterations or if the 
best solution is not changed for a number of iterations.  
 To apply GA on the PETRAS multi-objective optimization 
problem, we use the weighted sum method for the fitness function 
[7]. This method transforms both objectives (e.g., performance 
and energy) into an aggregated objective fitness function by mul-
tiplying each objective function by a pre-defined weight and 
summing up all weighted objective functions. 

5.2.1 Solution representation 

GA is a population-based algorithm that has s solutions/schedules. 
As shown in Fig. 3(a), a schedule is represented by a one-
dimensional array of objects of size n where n is the total number 
of jobs. Each object of the array refers to a job. The object has 
three attributes: first, an integer value that identifies the pro-
cessing unit to which that job is scheduled (e.g., CPU or GPU). 
Second, a number of cores as an integer (e.g., 1, dual, or quad). 
Third, a number of threads as an integer value. In Fig. 3(a) for 
example: Job 1 is assigned to processing unit 4, which has dual 
cores and 16 threads. Each solution has its normalized fitness 
value, peak power in Watts and peak temperature in Celsius. The 
fitness value is used to evaluate a solution, whereas peak power 
and peak temperature are used to ensure the feasibility of a solu-

tion by not violating constraints (e.g., peak power and peak tem-
perature limits). 

5.2.2 Fitness function 

GA uses the fitness function to evaluate a schedule. A schedule is 
better if it has a lower fitness value. Since PETRAS solves a multi-
objective optimization problem, it uses the weighted sum fitness 
function to consider both performance and energy. To calculate the 
total execution time of a schedule as shown in (1), we used per-
formance estimation models that were obtained by profiling and 
curve fitting to predict the execution time !!" of each job Ji run on 
a processing unit Pj with the specified number of cores and 
threads. Then we calculated the summation. The same method 
was used to calculate the total energy of a schedule as shown in 

(a) 

(b) 

 (c) 
 

    (d) 
Figure 3.  Example of (a) solution representation (b) popu-

lation (c) crossover and (d) mutation operators 
. 



(2). As in (3), the total execution time and total energy of a solu-
tion were calculated and normalized then multiplied by a specified 
weight to calculate the fitness value of a solution.  

5.2.3 Crossover 

A crossover operator is performed on a current generation popula-
tion to produce a new generation of solutions. The crossover 
operator helps to exploit the search space. It is applied on two 
solutions of a population that called parents to produce a new 
solution/offspring. The crossover operator has various forms, but 
in PETRAS, we selected the single point crossover in our algo-
rithm. The single point crossover selects two parents randomly 
from the population based on their fitness, chooses a random cut 
point, and creates an offspring that has the right part of that point 
of its first parent and the left part of its second parent. Fig. 3(c) is 
an illustration of a crossover operator. 

5.2.4 Mutation 

A mutation operator occurs according to a mutation probability 
that should be very low. It makes a tiny random change to a solu-
tion to introduce diversity into population and avoid local minima. 
Therefore, the new solution produced will not be very different 
from the original one. After an offspring is produced from the 
crossover operator, mutation is applied with a very low probabil-
ity. PETRAS’s mutation operator as in Fig. 3(d) selects a random 
point and switches the values of processing units, number of cores 
and threads with values selected randomly. 

5.3 Power management unit 

PETRAS’s power management unit takes the efficient schedule as 
an input. This unit has two functionalities. First, it turns off all 
idle processing units. Second, it is responsible for shutting off 
low-utilized processing units and re-assigning their jobs to other 
processing units randomly. As shown in (6), to determine pro-
cessing unit utilization, we divide the number of assigned jobs to 
that processing unit by the total number of system jobs. Pro-
cessing unit utilization categorization is shown in (7). A low-
utilized processing unit is a processing unit that has a lower utili-
zation than a predefined utilization U. On the other hand, a high-
utilized processing unit is a processing unit that has a higher 
utilization than U. A processing unit is said to be idle when it has 
zero jobs assigned to it. To turn a processing unit off we set its 
frequency to zero. The goal of power management unit is to save 
energy consumption and free idle and low-utilized processing 
units to be used by other applications that share the same hard-
ware. 
 

              !!" = !"!#! !"#$%& !" !""#$%&' !"#$ !" !"
!"!#! !"#$%& !" !"!#$% !"#$               (6)   

 

                          !" =
!"#$                        !" !!" = 0
!"#_!"#$#%&'      !" !!" < !
!"#ℎ_!"#$#%&'    !" !!" ≥ !

                     (7) 

5.4 PETRAS flowchart 
As in Fig. 4, PETRAS starts with jobs and processing resources 
information as inputs. It utilizes GA that uses estimation models 
that are generated by profiling and curve fitting for schedule 
evaluation. When GA terminates, the efficient schedule, pro-
cessing unit mapping, number of cores and number of threads are 

set. Then, power management unit turns off the idle and low-
utilized processing units of the GA output schedule.  

6. Evaluation 
This section presents the evaluation methodology and results of 
PETRAS on an actual CPU-GPU heterogeneous system. 

6.1 Experimental setup and benchmark  
We conducted our experiments on an actual system equipped with 
a multicore CPU and a GPU connected via PCI-e. Table 1 shows 
the detailed architectural parameters. We used a quad-core Intel i7 
processor that has 4 physical cores and 8 threads which is seen by 
the operating system as 8 cores. For testing, we used the Rodinia 
3.0 benchmark suite [8], which is a collection of benchmarks for 
parallel processing on heterogeneous systems. It contains parallel 
applications from various domains such as medical imaging, 
bioinformatics, data mining, and scientific computing. Each appli-
cation is parallelized and coded using OpenMP (Open Multi-
Processing) for multi-core CPUs and CUDA for GPUs. We ran 
applications (18 applications) that have both OpenMP and CUDA 
versions of Rodinia 3.0 benchmark to evaluate PETRAS. Alt-
hough PETRAS was tested on a heterogeneous CPU-GPU system, 
PETRAS is generic in that it can be applied on any platform with 
different processing units. The key idea is to show the capability 
of PETRAS when it comes to scheduling jobs on heterogeneous 
systems (regardless of the hardware) with different types of pro-
cessing units with various characteristics, such as CPU, GPU, 
FPGA, etc.  

Figure 4. PETRAS flowchart 
 



6.2  Profiling and curve fitting 
For profiling, we ran each application of the Rodinia benchmark 
on both the CPU and the GPU with different resources (input size, 
number of cores, and number of threads). We ran each application 
and change one of the resources and fix the rest. For example, we 
ran application A with a fixed size x and fixed number of threads z 
but with different number of cores (1, 2, 4). We used a Linux 
command to change the boot arguments to disable/enable cores. 
Then we ran A with size x on a fixed number of cores y with 
different numbers of threads (1, 2, 4, 8, etc.). Then we ran A with 
a fixed number of cores y and a fixed number of threads z but with 
different input sizes from 1K up to 64G. For each of the experi-
ments above we ran the application 1000 times, measured the 
parameters and took the averages.  
 We connected a Kill-A-Watt meter to the system power sup-
ply (PSU) to measure the overall wall clock execution time (se-
conds), the overall energy consumption (kWh), and the peak 
power (Watt). Therefore, all measurements of execution time and 
energy are for the entire system where memory delay and CPU-
GPU communications are included. To measure peak CPU/GPU 
temperatures, we used the lm_sensors application (Linux monitor-
ing sensors). If a job runs on a multi-core CPU, lm_sensors moni-
tors each core’s temperature separately and we record the highest 
core temperature as the peak CPU temperature. If it runs on a 
GPU, we capture the highest GPU temperature value reached. 
Since running a job on a GPU needs one of the CPU cores to 
control the execution, we recorded CPU peak temperature as well. 
Curve fitting is performed on the data measured by profiling to 
produce estimation models to be used in PETRAS to predict 
performance, energy, peak power and peak temperature for future 
jobs.  

6.3 PETRAS vs. other algorithms 

We compared PETRAS to the following schedulers:  
1. Minimum energy greedy algorithm (MinE): for each job, it 

performs an exhaustive search to find what resources  (pro-
cessing unit, number of cores and number of threads) consume 
the least energy by running that job. 

2. Minimum execution time greedy algorithm (MinT): for each 
job, it performs an exhaustive search to find what resources 
(processing unit, number of cores and number of threads) have 
the shortest execution time by running that job.  

3. Round Robin algorithm (RR): each job is scheduled to use the 
next available resources in a round robin fashion. 

4. GPU-Only: all jobs are scheduled to run on the GPU.  
5. CPU-Only: all jobs are scheduled to the CPU with random re-

sources (number of cores, number of threads).  
6. Random: for each job, it selects resources randomly. 
7. Performance-based GA (GAP): a scheduler that utilizes GA 

and uses (1) as a fitness function to minimize the overall exe-
cution time. GAP accounts for schedulers that are implement-
ed by [1, 13, 15, 18].  

8. Energy-based GA (GAE): a scheduler that utilizes GA and us-
es (2) as a fitness function to minimize the overall energy. 
Although [3, 16] schedulers do not consider heterogeneous 
systems, GAE considers these schedulers on a heterogeneous 
system.  
Although PETRAS profiler and curve fitter are inspired by 

Qilin [12], PETRAS cannot be compared to Qilin because Qilin 
distributes threads of a job into both a CPU and a GPU whereas 
PETRAS considers mapping an entire job with its threads to either 
a CPU or a GPU.  

For a fair evaluation, PETRAS and the other algorithms we 
evaluated use the same profiler. We perform profiling once and 
offline. The results were used by PETRAS and the other algo-
rithms to estimate the execution time, energy consumption, peak 
power and peak temperature. Hence, the profiler overhead is 
neglected. Note that profiling and curve fitting are tools that we 
used for estimation and can be replaced by any other estimation 
models or tools. For PETRAS, GAP and GAE, we used a classic 
GA that has a complexity of O(Number of iterations*population 
size*n). MinT and MinE have O(n*n) complexity. Whereas, 
CPU-Only, GPU-Only and RR have O(n) complexity. 

We implemented PETRAS and the other scheduling algo-
rithms using C++. PETRAS is a GA scheduler that is based on the 
weighted sum fitness function (3). If the w=1 or 0, PETRAS acts 
as GAP or GAE respectively. We tested different values of w but 
we selected w={0.25, 0.5, 0.75} because these values cover all 
weight scenarios. If w=0.5 both execution time and energy are 
equally important. But when w=0.75 it favours execution time 
over energy and the opposite if w=0.25. After PETRAS finds the 
efficient schedule, a power management unit checks if any of the 
processing units violate the utilization constraint U, and if so it 
turns them off and reschedules their jobs. We tested PETRAS for 
different values of U but we selected U={5%, 7.5%, 10%} be-
cause higher values of U will shut down needed processing units. 
GA setup parameters are: population size 250, number of itera-
tions 1000 and mutation rate 0.05.  
6.4 Results 

We tested each of the schedulers by running 5000 randomly gen-
erated jobs for applications of the Rodinia benchmark and then we 
took the average. To evaluate the schedulers we tested the sched-
ulers with no constraints as in Fig. 5 (a), and with both constraints 
(peak power, peak temperature) as in Fig. 5 (b). To select the peak 
power budget PPmax, we measured the peak power reached by 
each Rodinia application using the random scheduler and reduced 
it by 5% or 10%. We did the same to select peak temperature 
PTmax. Fig. 5 (b) shows PPmax and PTmax with a 10% reduc-
tion.  

On a logarithmic scale, Fig. 5 (a) and (b) follow the same 
trend. They show the average energy consumptions and average 
execution time of the benchmarks using different scheduling 
algorithms normalized to the PETRAS with w=0.5. Although 
MinE, GAE, and PETRAS with w=0.25 have less average energy 
consumption, PETRAS with w=0.5 beats the rest of the schedulers 
if we consider both energy consumption and execution time. Since 
the MinE and GAE schedulers focus on minimizing energy con-
sumption, their output schedules have a very high execution time 
compared to PETRAS with all w values. Compared to PETRA 
with w=0.5, the MinT scheduler could not reach a nearly optimal 
solution in terms of performance because it is a greedy algorithm 
that finds the shortest execution time of each job at a time without 

Table 1. Testbed configuration 
CPU  Intel Core i7-920 @3.06 GHz 4 cores 
C compiler gcc 4.4.3 
GPU NVIDIA Tesla C2070 
CUDA compiler CUDA 3.2, V0.2.1221 
Operating system UBUNTU 10.04 (X64) 
PCI-e version 2.0 



considering whole schedule length. The RR and the random 
scheduler perform poorly, which is expected due to their random-
ness. The poor results of the GPU-only and CPU-only schedulers 
demonstrate the need of heterogeneous processing units to run an 
application. As for GAP, its objective function is to minimize 
execution time, but PETRAS with w=0.5 and w=0.75 outperform 
it in terms of average performance. We ran all the GA algorithms 
for the same number of iterations, but GAP may find the nearly 
optimal execution time if we had given it more time, but that 
schedule would have a very high energy consumption. From Fig. 
5 (b), it can be concluded that PETRAS works well in finding a 
nearly optimal schedule with peak power and thermal constraints.  

Fig. 6 shows detailed Rodinia applications results of GAP and 
GAE normalized to PETRAS with w=0.5. It can be concluded that 
PETRAS outperforms both GAP and GAE if we consider both 
execution time and energy consumption.  
 Table 2 illustrates a sample output of PETRAS with w=0.5 
applied on 250 randomly generated jobs for the two cases: 1) no 
constraints and 2) both peak power and peak temperature con-
straints. The execution time and energy consumption of case 2 are 
higher than that of case 1 due to peak power and thermal con-
straints. Thus, jobs are mapped to slower processing units that 
consume higher energy. Moreover, these constraints force the 
resources that violate them to be turned off. Therefore, PETRAS 
avoids selecting these resources.  
 Compared to all other schedulers, on average, PETRAS 
schedules can achieve up to a 8.7x speedup and an energy saving 
of up to 627%. If we do not consider schedulers that perform 
badly (RR, CPU-only, GPU-only, and random schedulers), PET-
RAS schedules can achieve up to a 4.7x speedup and an energy 
saving of up to 195%.  
 The GA nearly optimal schedule goes through the power 
management unit that is responsible for turning off the idle or 
low-utilized processing units. Table 3 shows the effect of adjust-
ing the processing unit utilization threshold U on the average 
energy saving and the percentage of processing units that are 
turned off. On average, the power management unit helps to 
reduce the overall energy consumption up to 6.5% and free up to 
24.2% of low-utilized processing units.  

7. Conclusions  
We have presented the Performance, Energy and Thermal aware 
Resource Allocator and Scheduler (PETRAS) utilizing a Genetic 

Algorithm (GA) to find efficient schedules in a heterogeneous 
system. PETRAS can be applied on any heterogeneous system 
where processing units are fused on the same chip or connected 
through a bus. The proposed scheduler is not a classic scheduler, it 
combines the following problems into one scheduler: job mapping 
and scheduling, core scaling, and threads allocation. PETRAS 

(a) (b) 

Figure 5.  Comparison of PETRAS to the other scheduling algorithms in terms of average energy consumption and execution time 
normalized to PETRAS w=0.5 (a) no constraints (b) peak power and thermal constraints 
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Table 2.  Sample results of PETRAS w=0.5 
Selected 
Benchmarks 

No constraints Peak Power and Peak Tem-
perature Constraints  
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NW 642 775 345 65 2790 15195 323 60 

NN 142 111 360 64 192 567 323 60 

CFD 582 1542 422 88 4415 3232 370 83 

LUD 117 337 337 58 118 338 317 58 

SRAD 1781 517 399 56 928 837 354 67 

Kmeans 220 112 367 70 619 2229 330 63 

BFS 822 796 345 64 1036 5932 319 63 

BP 5.54 2.31 343 49 5.64 3.232 327 49 

Pathfinder 392 270 340 64 394 449.4 325 63 
Leukocyte 130 452 376 61 5304 15140 356 84 

Hotspot 1840 1523 373 78 2888 15806 349 68 

Heartwall 4459 392 394 85 1235 28390 343 80 

LavaMD 123 335 462 63 6428 12530 408 89 

PFilter 2568 1148 342 61 2568 1139 331 61 

SC 413 276 366 71 1524 5022 328 64 

Myocyte 1.55 1.03 351 48 1.90 2.805 316 48 

Table 3.  Power management unit effect 
Processing unit utiliza-
tion threshold U 

Energy consumption 
reduction 

Turned off processing 
units 

   

5% - 1% 16.6%    

7.5% - 3% 20%    

10% - 6.5% 24.2%    

 



shows its capability to find efficient solutions in terms of both 
execution time and energy consumption under peak power and 
thermal constraints. Therefore, PETRAS can be used for embedded 
systems applications. To test PETRAS, we have implemented 
PETRAS on an actual system equipped with a multi-core CPU and 
a GPU. We demonstrate that the PETRAS scheduler outperforms 
performance-based schedulers and other schedulers in both execu-
tion time and energy consumption. We believe that we have to 
consider all problems (e.g., job mapping and scheduling, core 
scaling threads allocation) into one scheduling optimization prob-
lem. Moreover, schedules should be selected based on both execu-
tion time and energy consumption.  

8. Future Work 
PETRAS has a power management unit that turns off the idle or 
low-utilized processing units by setting their frequency to zero. 
Our future work is to add Dynamic Voltage Frequency Scaling 
(DVFS) to PETRAS to adjust processing units frequency where 
low-utilized processing units would operate with low frequency set 
by DVFS.  
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Figure 6.  GAP and GAE average energy consumption and execution time normalized to PETRAS w=0.5 
 


