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Abstract

In recent years, streaming-based data processing has been
gaining substantial traction for dealing with overwhelming
data generated by real-time applications, from both enter-
prise sources and scientific computing. In this work, how-
ever, we look at an emerging class of scientific data with
Near Real-Time (NRT) requirement, in which data is typi-
cally generated in a bursty fashion with the near real-time
constraints being applied primarily between bursts, rather
than within a stream. A key challenge for this types of data
sources is that the processing time per data element is not
uniform, and not always feasible to predict. Given the obser-
vations on the increasing unpredictability of compute load
and system dynamics, this work looks to adapt streaming-
based approach to the context of this new class of large ex-
periments and simulations that have complex run-time con-
trol and analysis issues.

In particular, we deploy a novel two-tier scheme for han-
dling the increasing unpredictability of runtime behaviors:
Instead of relying on determining what and where to run
the scientific workflows beforehand or partial dynamically,
the decision will also be adaptively enhanced online accord-
ing to system runtime status. This is enabled by embedding
workflow along with data streams. Specifically, we break
data outputs generated from experiments or simulations into
multiple self-describing “chunks”, which we call active data

objects. As such, if there is a transient hotspot observed, a
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data object with unfinished workflow pipeline can break its
previous schedule and search for a least loaded location to
continue the execution. Our preliminary experiment results
based on synthetic workloads demonstrate the proposed ac-
tive workflow system as a very promising solution by outper-
forming the state-of-the-art semi-dynamic workflow sched-
ulers with an improved workflow completion time, as well
as a good scalability.

Categories and Subject Descriptors C.2.4 [Distributed

Systems]: Distributed applications

Keywords Scientific workflow system; near real-time sci-
ence; distributed workflow scheduler; stream processing;
load balancing; system dynamics

1. Introduction

In recent years, scientific data has continued to grow in both
size and complexity, arising both from large scientific exper-
iments and from extreme scale simulations. This has been
enabled by advances in instrumentation technologies that al-
low for highly detailed sensor readings generating large data
sets, and by hardware-enabled (e.g., deep memory hierarchy,
high-speed interconnect) high-fidelity simulations of com-
plex numerical models. For example, in the fusion experi-
ment performed in Korea, known as Korea Superconduct-
ing Tokamak Advanced Research (KSTAR) project, the data
production rate is expected to be 3 TB in a 100-second ex-
periment run when it is in full operation. Such prodigious
data generation rates tax the ability to store, index, and query
the results in traditional disk-based workflow approaches. As
such, supporting (near) real-time data analysis offers oppor-
tunities to reduce time from experiment to scientific insight.

As an effort to deal with overwhelming data from en-
terprise sources, streaming-based data processing has been
gaining substantial traction. Stream-based approaches have
long been a part of scientific computing as well, but they
have been restricted to real-time applications like haptic sup-
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port within immersive visualizations. However, its capabil-
ity for processing large volume data with low latency and
high throughput makes it an ideal candidate for an emerg-
ing class scientific data with Near Real-Time (NRT) re-
quirement. Specifically, this work looks to adapt streaming-
based approach to the context of a new class of large exper-
iments and simulations that have complex run-time control
and analysis issues. For example, the KSTAR experimental
tokamak mentioned above has been designed around the idea
of analyzing and interpreting the 3TB output in time to influ-
ence the 10-15 minute setup for the next experimental run.

Additionally, users at distant locations often desire to
launch private, ad hoc exploratory-nature online analytics
during the run. If there is an interesting or abnormal phe-
nomenon (for example those indicating instability developed
in an experiment that potentially could damage experimental
facilities) observed, an instant workflow needs to be injected
quickly for further analysis. Simply co-locating these ad hoc
tasks on-the-fly with tasks that have been already scheduled
or being processed proves to be problematic and may cre-
ate new contentions and pressures on the reserved resources.
Our work therefore looks for more careful ways to provision
and manage resources to cover both the real-time require-
ments and the support for ad hoc queries.

A key challenge for the types of data sources that we
address is that the processing time per data element is not
uniform. Generally, the processing involves the detection of
features (flame fronts, plasma fluctuations), where the time
to process will depend upon the number or complexity of
features found in a data element, rather than just the size
of the piece of data. As discussed in Section 2.2, flame
front analysis for a particular set of combustion experiments
utilizes two cameras, each generating an equivalent size data
stream, but due to differences in experimental conditions
between the two instruments the data streams may end up
with substantially different processing time. As a result,
standard load balancing would not be able to address the
real-time scenario.

As an additional constraint, system load (CPU/IO) can
vary significantly in the compute partition, and tasks that
run simultaneously on a node will compete for resources
[15]. As a result, some streams may get processed signifi-
cantly slower than the rest. Most previous work on stream-
ing data processing assign operators to each processing unit
in a static or semi-dynamic fashion [4, 6, 13, 21, 22]. By do-
ing worst case analysis at compilation and/or deployment,
the system may be over-provisioned but has a reasonable
chance to make the desired service level. However, once an
operator’s assignment is determined, it cannot be adjusted
later on. This strategy is capable of dealing with a certain
degree of load imbalance, but it struggles with use cases like
those targeted in this work because of the unpredictability
of compute load and system dynamics. Additionally, unlike
some dynamic workloads where things are completely ran-
dom, these dynamic changes have a high degree of correla-

tion both within and between streams, since feature creation,
migration, and destruction is driven by underlying physics.
This work aims to develop a management system for deal-
ing with such highly dynamic compute and analysis environ-
ments. As can be expected, this demands both light-weight
continual monitoring and a very flexible load management
strategy, as will be detained in later sections.

We observe that, at least for the exemplars of this class
of applications which we target, that data is generated in a
bursty fashion with the near real-time constraints being ap-
plied primarily between bursts, rather than within a stream.
In other words, a large amount of data will be delivered
within a relatively short duration, followed by an idle pe-
riod, during which the data stream analysis services must be
performed in order to evaluate/modify the generation of the
next burst in the stream. In general, we argue that this pattern
is prevalent in scientific applications, for both simulations
(e.g., periodic checkpointing) and experiments, which typ-
ically produce a large amount of data outputs during each
shot (i.e., in-shot), and then idle for a period of time (i.e.,
between-shot) during which preparation for the next shot
is done.

As a specific example, in the KSTAR facility [14], af-
ter a single parameter set evaluation (shot) is finished, there
is generally a period of time (typically 10-20 minutes) to
analyze the data before the next experiment (referred to as
between-shot analysis). During this time, scientists try to
further analyze the data to provide direct feedback to steer
the next experiment; given the distributed (cross-continent)
nature of the collaborations, being able to do these streamed
workflows using NRT network support could yield a sub-
stantial bonus. As another example, LAMMPS (Large Scale
Atomic/Molecular Massively Parallel Simulator) [17], a
molecular dynamics simulation workhorse used across a
number of scientific domains, including materials science,
biology, and physics to perform force and energy calcula-
tions on discrete atomic particles, typically produces data
outputs in the way that every so often, e.g., after a number
of user-defined epochs, it outputs the atomistic simulation
data (positions, atom types, etc.), with the size of this data
ranging from megabytes to terabytes depending on the sci-
ence being conducted. Scientists will then apply a series of
analyses on the output data to gain rapid insight like those
needed to check the “health” of their running simulations
[10]. The goal of this paper is, therefore, to perform as much
analysis during these between-shot periods as is feasible, to
reduce the time-to-knowledge, and to potentially save mil-
lion of dollars by providing an earlier problem detection
system for facilities like KSTAR where a bad parameter set
could cause significant damage to the facility. Specifically,
this paper makes the following contributions:

• We propose to express data streams as active data ob-
jects and embed analysis workflows in a group of re-
lated data objects for distributed data analysis. We break
data outputs generated from experiments or simula-
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Figure 2. Combustion Image Processing Workflow on
Flame Curvature Detection.

stead more strongly influenced by turbulence. In order to
gain this insight, the scientists conduct experiments by using
a low swirl burner with a variety of H2/CH4 and H2/CO
mixtures at several mean flow velocities over a wide range of
turbulence intensities, and then apply a customized analysis
pipeline, referred to as Flame Curvature Detection work-
flow, on the collected data.

In particular, the customized workflow consists of three
key analysis routines as shown in Figure 2. In order to better
distinguish reactants and products, the raw image for flame
tracking that is taken by experiment cameras during the ex-
periment needs to be median-filtered; the image is then bi-
narized with the threshold intensity selected using Otsu’s
method [2]; Consequently, 0 is used to represent the reac-
tants and 1 for the products [18]. The flame edge is then
extracted from the binarization of the image, in terms of x−
and y−coordinates. Finally, flame curvature, including cur-
vature PDFs, which is useful information for examining the
effects of flame stretch on the propagation rate of turbulent
premixed flames is calculated at the last stage of the cus-
tomized Flame Curvature Detection workflow.

One main challenge that the scientists encounter while
processing their data according to the three-step workflow is
that the processing time required by the last stage of their
specified workflow, i.e., flame curvature calculation, may
vary significantly with different experiment output data, re-
ferring to as the flame front tracking image in this case. This
is due to the fact that some flames may be much more ir-
regular than others as shown in the two sample flame im-
ages in Figure 2. In particular, Figure 3 displays some of
the variability in the processing time for a stream of flame
front tracking images output from the combustion experi-
ment with the use of LSB. The experiment was performed
with a fuel composition of 50-50 H2-CO, a swirl numer of
0.58, a mean flow velocity of 30 m/s, and an unstretched
laminar flame speed of 34 cm/s. The results are normalized
against the maximal processing time. As one can see in the
figure, the processing time varies significantly with differ-
ent experiment output data. Furthermore, the individual pro-
cessing time may not be well predicted without interpreting
the input 2D data. Therefore, without an efficient workflow
management system, it may result in uneven computation
loads among different workflow processing resources, and
in the pathological case, it could cause significant delays in
delivering key scientific results for the stragglers.
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Figure 3. Processing time variation of “Flame Curvature
Calculation”.
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Figure 4. Active workflow system architecture

3. System Design

In this section, we describe the proposed system architecture
from a high level. The design goal of the active workflow
system is to develop a runtime engine that monitors a dis-
tributed streaming environment, schedules streams and mi-
grates streams when there is a bottleneck present, in a NRT
fashion. The monitoring subsystem needs to be designed to
deal with a large number of streams at distributed workflow
processing resources. To realize this goal, we implement
a hierarchical control framework where there is a global
stream dispatcher and distributed workflow schedulers with
each per workflow instance.

As shown in Figure 4, the active workflow system con-
sists of three key components: a stream data object assem-

bler, a global data object dispatcher, and distributed work-

flow schedulers which are located at each workflow process-
ing instance. These components work together and orches-
trate end-to-end processing. Without loss of generality, a
workflow engine is also assumed to be present in the system
as a gateway between scientists and the workflow system.
For example, the leader of a research team may want to insert
a new analysis routine to an existing workflow, given an in-
teresting or abnormal phenomenon such as those indicating
instability developed in an experiment that potentially could
damage experimental facilities observed. However, in this
work we mainly focus on how to devise a best-effort oppor-
tunistic workflow system according to system runtime status
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given the unpredictability of the system runtime behavior.
Thus, we only evaluate and adopt some existing workflow
techniques for the completeness of the system. Note that in
terms of stream scheduling, the global stream data object
dispatcher and the distributed workflow schedulers function
at a different level and granularity. Namely, the stream data
object dispatcher calculates a high-level and coarse-grained
schedule using limited or perhaps inaccurate view of the en-
tire system. Local workflow schedulers further adjust the
schedule and migrate objects if necessary according to ac-
curate local states, i.e., in a fine-grained scheduling fashion.

Active Data Object Assembler: It packs metadata,
codes along with workflow specifications into active data
objects. This makes it possible that, when a processing site
receives a data object, it can decapsulate the object and un-
derstand the processing flow that is designated to it. Now in
the case that an object is scheduled to be migrated, interme-
diate processing results are also encapsulated such that when
the recipient receives the object, the workflow pipeline can
restart and continue execution.

Data Object Dispatcher: It is responsible for dispatch-
ing stream data objects at data source. It obtains resource
availability information from each workflow processing
cluster and figures out the optimal way of processing data
streams, in terms of what and where to process. In order to
scale up to a large number of streams and sites, resource
availability information needs to be disseminated in an effi-
cient manner by limiting the amount of information flooded
within the entire system. This can be done either by reducing
the frequency of updates or by sending reduced information,
which could, however, lead to a stale view of the system state
in either case. This clearly requires an runtime adjustment,
which is the main target of this paper.

Workflow Scheduler: A workflow scheduler resides at
each processing instance and is responsible for 1) moni-
toring the local compute/IO load and reporting back to the
global dispatcher so that the load information can be utilized
to facilitate a future stream dispatch; 2) coordinating stream
migration to another instance. If some workflow process-
ing instances progress slower than others due to heavy load,
part of its load can be shed and re-directed to another less
loaded processing instance. This is done via closely moni-
toring data object queue levels, and once any queue level is
below a pre-determined threshold, data object migrations are
initiated. That is, at each individual workflow processing in-
stance, we deploy a workflow scheduler which “watches” its
local workload status. Once the local workflow scheduler ob-
serves that all the local tasks (in terms of data objects) have
been provided with required analysis services, it broadcasts
an “IDLE” message to all its peers within the entire work-
flow system; At the return of its expected feedback, it then
decides which peer to “grab” tasks to provide services for.

The key enabling technique of the two-tier scheme is that
we break data outputs generated from experiments or simu-
lations into multiple self-describing “data chunks”, namely,

active data objects. Similar to the concept of data in motion
[3], we then stream the data objects to distributed workflow
processing resources for further science knowledge discov-
ery. In particular, an active stream data object is defined as
a data chunk associated with efficient metadata that speci-
fies data attributes that describe the data elements captured
in the data stream and their layouts within the data chunk.
Also, each data element may have a time stamp, and be as-
sociated with its spatial information. Furthermore, to over-
come the challenge that we may confront in the exascale
computing era, that is, there might be thousands or even mil-
lions of data objects streaming in the network and thus a
central workflow execution scheduler may not scale due to
the synchronizations that may occur in workflows, we also
embed the codes of analysis or a reference to the analysis
codes, and the workflow specification information with each
stream data object. Given these essential self-describing in-
formation that is embedded in stream data objects, the ac-
tive workflow system gains better flexibility and opportuni-
ties for making runtime scheduling and execution decisions
as a stream traverses from data source to data sink.

Additionally, the data-streaming facility in our active
workflow system also requires a mechanism for enacting the
flow of data objects among system-wide distributed work-
flow processing instances. In this work, we leverage EV-
Path, an event processing architecture built on Fast Flexible
Serialization (FFS) which is designed to support high per-
formance data streaming in overlay networks with internal
data processing [11, 12]. In particular, EVPath enables the
construction of active messaging overlay networks in the
way that data stream analysis services such as data filtering
and transformation functions reside in lightweight “stones”
that serve as processing points in the overlay, and stones are
linked to form overlay “paths”. Also, the processes hosting
these stones may reside on the same physical machine, on
cluster nodes, or even on machines at different geographi-
cal locations, which enables the basics of adaptive, online
workflow assembling in this work. Specifically, the analysis
services run by stones are implemented by registered call-
back handlers written in C and statically associated with
stones, or as inline functions deployed at runtime generated
with the CoD (C-on-Demand) language. More details can be
referred to in [11].

4. System Evaluation

In this section, we first give a detailed description on our
experimental setup, followed by an introduction to the base-
line used in this work. And then we compare the proposed
active workflow system (ActiveWorkflow) against the base-
line system (ParDynamic), in terms of system performance
and overhead.
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4.1 Experiment Setup and Baseline

Experiment Setup Due to logistic and regulation reasons,
we are still in the process of getting access to real-world sci-
entific experimental data and the associated science work-
flows. As a result, in this paper we are not able to conduct
evaluations on the proposed active workflow system using
real experimental data. However, we have been making key
breakthroughs collaborating with domain scientists to move
closer in this direction. In this paper, we only evaluate sys-
tem performance using synthetic scientific data and work-
flows, which are carefully constructed to be consistent with
the observations from the real-world use case. We compose
the synthetic workflows closely following the Flame Curva-

ture Detection use case (see Section 2.2 for more detail),
since we have been closely working with combustion scien-
tists, who have shown great interests in seeing how our sys-
tem will improve combustion application performance and
share with us the key parameters of their workflow.

In particular, we simulate data outputs from scientific ex-
periments with Data Generator which produces a chunk of
3D data with the size of ∼2MB every 1 second during a 50
second period, which is consistent with the observation on
the size of the raw flame tracking images generated by the
combustion experiment as discussed in Section 2.2. Also,
to be consistent with the key features of its associated work-
flow, we deploy a randomized algorithm to simulate the vari-
ation on the processing time occurred in the last step. Specif-
ically, we introduce a variation according to A+B ∗r where
r ∈ [0, 15]. This is inspired by the difference in complexity
that comes from the changes in the flame front. In this work,
for simplification, we adopt A = 4 and B = 1 for the sys-
tem evaluation. Therefore, the processing time by the last
stage of the workflow will vary within the range of [4, 19]
seconds. Note that the parameters of the rest scheduler sys-
tem may need adjustment for the specific timing of the real
data, but the algorithm should hold. Additionally, we con-
struct the synthetic workflow to perform analysis services
on the output data objects as shown in Figure 5. Specifi-
cally, the synthetic workflow incorporates the key features
of the Flame Curvature Detection image processing work-
flow in ways that (i) it consists of three analysis routines;
(ii) each analysis routine performs service on each data ob-
ject independently; (iii) only the last analysis routine of the
3-step workflow demonstrates a variation on its processing
time with different experiment data outputs. Note that the
specific analysis routines that are used to compose the syn-
thetic workflow, including Derivative, Second Derivative,
and Local Min&Max, are designed in the way to ease the
synthetic workflow construction, as well as to be meaningful
for the simulated data outputs. However, any other workflow
with the three key features as described above can be easily
adopted for the system evaluation.

Specifically, in the following measurements, we fixed the
ratio of the total number of compute cores used by workflow
processing instances to data generator to 0.2. Also, in order

Simulated Data 

Generator

(~2MB per sec)

1st-Order 

Derivation

2nd-Order 

Derivation

Local 

Min&Max

(All the analysis routines are performed 

independently for each object)

Processing time may 

vary significantly w.r.t 

different data input

Figure 5. Synthetic workflow for system evaluation.

to simulate a cloud of resources providing workflow services
that are distributed across networks, we assume that there
are two independent clusters with each instantiating half of
the total workflow processing instances. Accordingly, two
independent clusters of workflow processing instances with
each having 2 processing instances will be deployed into
the system. Lastly, the proposed active workflow system is
evaluated using the Sith cluster hosted at Oak Ridge National
Laboratory, which consists of 40 compute nodes and each
node is equipped with four 2.3 GHz 8 core AMD Opteron
processors and 64 GB of memory.

Baseline In this paper, we introduce one primary baseline
for comparison purpose, referred to as ParDynamic. Simi-
lar to ActiveWorkflow, the baseline system tries to predict
a best distribution strategy for distributing output data that
is streaming out from Data Generator to the pool of dis-
tributed workflow processing instances at the end of an ex-
perimental shot. ParDynamic is similar to the state-of-the-art
work [4, 6, 13, 21] in the sense that the scheduler determines
the stream assignment during runtime according to the latest
system-wide state. However, as opposed to ActiveWorkflow,
the baseline system is not aware of system runtime varia-
tions.

4.2 Impacts on Workflow Completion Time

In this experiment, we evaluate the effects on the near real-
time extreme-scale science in terms of workflow completion
time, by the active workflow management system. In partic-
ular, we use weak scaling to show how the system behaves
in terms of different scales of data generator participants.

Figure 6 demonstrates the entire workflow completion
time by ActiveWorkflow, and ParDynamic, respectively, with
respect to a series of different scales of data generator par-
ticipants. As shown in the figure, compared to the baseline
system, the active workflow system can speed up the work-
flow completion time by up to 27.7%. This is achieved by the
proactive role of the distributed workflow scheduler compo-
nent.

In particular, Figures 7 and 8 give a detailed descrip-
tion on the corresponding dynamics of the tasks (in terms
of semi-processed data objects) for the last analysis routine
whose processing time varies significantly regarding differ-
ent experiment output data, with the experiment configura-
tion of 20 data generator participants. We refer to a specific
instance in the form of (Ri, Ij), where i and j represent the
specific cluster, and instance, respectively. As shown in Fig-
ure 7, instances (R1, I1) and (R1, I2) can be identified as
“swift” workflow processing entities, since they retire their
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Figure 7. Queue dynamics (in terms of semi-processed data
objects) for Stage#3 by ActiveWorkflow, w.r.t the scale of 20
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Figure 8. Queue dynamics (in terms of semi-processed data
objects) for Stage#3 by ParDynamic, w.r.t the scale of 20 Data
Generator processes.
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Figure 6. Workflow completion time by ActiveWorkflow,
and ParDynamic, respectively.

data objects in a relatively faster fashion, i.e., the decreasing
slope of the queue dynamics is steeper, compared to their
“clumsy” peers of (R2, I1) and (R2, I2). One can observe
from the figure that two major load shifting actions occur in
the system: (i) when the instance (R1, I1) turns into idle af-
ter servicing all its streams; and (ii) when the instance (R1,
I2) turns into idle. Accordingly, the instance (R2, I1) sheds
half of its tasks to the instance (R1, I1) at the first load shift-
ing. This can be observed from the fact that the decreasing
slope of the corresponding “clumsy” instance experiences a
sharp change near the timestamp of 1700 since the workflow
system starts and then return to its regular “retiring” speed.
Therefore, as promised by the active workflow system, once
there is a transient hotspot observed in the system like those
occur at the time of un-even computation load distribution, a
load shifting is accordingly performed by breaking the pre-
vious schedule of the stream and searching for a least loaded
location to continue the execution of the remaining workflow
steps. In contrast, the baseline system does not introduce any
exchange of the semi-processed tasks among different work-
flow processing instances once the system starts as shown in
Figure 8, due to its unawareness of the system runtime be-
havior.

4.3 System Overhead

In this experiment, we evaluate the system overhead in terms
of “extra” data traffic caused by the active load shifting with
the use of the active workflow system, with respect to a
series of different scales of data generator participants. In
particular, we refer to TotalDataMovement

TotalDataGeneratorOutput
as the extra

data traffic for the system.
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Figure 9. Extra data traffic by ActiveWorkflow.

As shown in Figure 9, the extra data traffic introduced
into the system by the active load shifting is reasonably scal-
able with the increase of data generator participants in the
context of weak scaling. Also, due to the broadcast-based
message exchanging protocol used by the workflow sched-
uler for active load balancing, each data movement is pre-
ceded with 2 ∗N − 1 light-weight control messages, where
N is the total number of workflow processing instances that
are deployed in the system. Next, we are planning to de-
vise a more intelligent strategy for the distributed workflow
schedulers, trading off between a better utilization of work-
flow processing resource and the overhead of data movement
given the current network resource status, in order to achieve
a best-effort active workflow management system in our fu-
ture work.

5. Related Work

In the last several years, extensive research has been done to-
wards developing distributed data stream processing systems
from both academics and industries [1, 4–7, 9, 20]. Due to
lack of space, however, we mainly discuss the pieces that are
particularly relevant to our work and highlight the primary
differences.

As one may expect, one key component of any data
stream processing system is a scheduler that promises a best-
effort resource allocation. Wolf et al propose an optimizing
scheduler for the System S [21], referred to as SODA, which
determines a global placement and scheduling plan to ad-
vise processing element executions on processing nodes,
according to the collected runtime statistics by its resource
manager. Different from the active workflow system pro-
posed in this work, the optimization-based scheduler is to
maximize a utility-theoretic function on the “importance”
measured at the terminal streams of the data flow graphs,
with the assumption that it has a good knowledge on the
resource requirement of each processing element, as well
as the system runtime status. While in this work, we ac-
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knowledge that it is not entirely possible to pre-determine
how much resources (e.g., CPU) need to be allocated at each
processing node for exploratory-nature analytics. Also, sys-
tem load (CPU/IO) can vary significantly and tasks that run
simultaneously on a node can compete for resources and
interference with each other.

In another recent study [13], Khandekar et al. propose
to leverage a minimum-ratio cut-based algorithm to opti-
mally fuse compile-time operators into processing elements,
in order to maximize job throughput by minimizing the
processing cost associated with inter-processing elements
stream traffic. In particular, the specific optimizer relies on
application-level information such as performance metrics
indicating the CPU demands of the operators and data rates
of each stream in the system. This violates the observations
as discussed in Section 1, i.e., a reasonable prediction re-
garding stream processing time may not be feasible [16].
Schneider et al. [19] devise an adaptive algorithm to scale
the performance of data analytics operators for stream pro-
cessing in response to changes in incoming workload and
the availability of processing cycles, by adjusting the level of
parallelism at runtime such as creating new worker threads
or putting workers into sleep. Instead, the active workflow
system is built upon the practice that the level of parallelism
is fixed once the system starts due to the fact that with current
high end machines, batch schedulers typically assign to each
user the amount of requested resource for the entire duration
of their applications execution.

Aurora project [4] is another recent effort that aims to
develop a single infrastructure that can process continuous
push-based data streams efficiently. It looked at many re-
search challenges, such as query scheduling, runtime stream
management to deal with transient load spikes, failure de-
tection and recovery, from the new pushed-based paradigm.
Carney et al. [8] propose a two-level scheduler to be used in
Aurora for a dynamic scheduling-plan construction, in terms
of which operators to schedule, in which order to schedule
the operators, and how many tuples to process at each oper-
ator execution. Also, a load shedder will be activated once
an overload situation is detected. In contrast to this work,
our active workflow system propose to break data from data
source into multiple active data objects which contain self-
describing information like analysis specification. Thus, a
stream is free to break its previous schedule at any time for
a better system performance, if necessary.

Another recent paper that comes out from Aurora project
which is very relevant to this paper is the dynamic load dis-
tribution strategy [22]. By and large, the goal of query opti-
mization is to map operators efficiently to resources in a dis-
tributed environment. However, due to the load dynamics,
this mapping will need to adapt, thereby avoiding hotspots
in the system. Xing at al, developed a correlation based load
distribution algorithm that avoids load spikes and minimizes
latency by minimizing load variance. However, once oper-
ators are mapped to resources, a stream coming in is fixed

in terms where to go and what to be processed in its life-
time. This work, in contrast, goes one step ahead and develop
an elastic system that allow a stream to change its schedule
while it’s being processed.

6. Conclusion and Future Work

Given the observations on the increasing unpredictability of
compute load and system dynamics such as data element
processing time may not be reasonably predicated [16] and
system load (CPU/IO) can vary significantly in the compute
partition because tasks that run simultaneously on a node
will compete for resources [15], this work proposes an ac-
tive workflow management system for dealing such highly
dynamic compute and analysis environments. In particular,
we deploy a novel two-tier scheme for handling the increas-
ing unpredictability of runtime behaviors: Instead of rely-
ing on determining what and where to run the scientific
workflows beforehand or partial dynamically, the decision
will also be adaptively enhanced online according to sys-
tem runtime status. This is enabled by embedding workflow
along with data streams. Specifically, we break data out-
puts generated from experiments or simulations into mul-
tiple self-describing “chunks”, which we call active data

objects. As such, if there is a transient hotspot observed,
a data object with unfinished workflow pipeline can break
its previous schedule and search for a least loaded location
to continue the execution. Our preliminary experiment re-
sults demonstrate the proposed active workflow system as a
very promising solution by outperforming the state-of-the-
art semi-dynamic workflow schedulers with an improved
workflow completion time, as well as a good scalability.

As an initial effort, this work mainly discusses the design
of the distributed workflow scheduler component of the ac-
tive workflow management system, given the unpredictabil-
ity of compute load and system dynamics. In particular, a
threshold-based strategy is used to advise the runtime adjust-
ment as detailed in Section 3. Next, we are planning to de-
ploy a more intelligent strategy for the distributed workflow
schedulers, to best tradeoff between workflow processing re-
source utilization and extra data movement traffic introduced
into the system given the current network resource status.
Any online adjustment comes at a price, even if it may be a
light weight method. Therefore, we also want to investigate
how to best devise the global dispatcher, to make the local
workflow schedulers invoked as infrequent as possible, in
order to reduce overhead due to active runtime adjustments.
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