
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
Po
P
*

Ar
t ifact *

A
EC

P
P

The Virtues of Conflict: Analysing Modern Concurrency

Ganesh Narayanaswamy
University of Oxford

ganesh.narayanaswamy@cs.ox.ac.uk

Saurabh Joshi
IIT Guwahati

sbjoshi@iitg.ernet.in

Daniel Kroening
University of Oxford
kroening@cs.ox.ac.uk

Abstract
Modern shared memory multiprocessors permit reordering of
memory operations for performance reasons. These reorderings are
often a source of subtle bugs in programs written for such archi-
tectures. Traditional approaches to verify weak memory programs
often rely on interleaving semantics, which is prone to state space
explosion, and thus severely limits the scalability of the analysis.
In recent times, there has been a renewed interest in modelling
dynamic executions of weak memory programs using partial or-
ders. However, such an approach typically requires ad-hoc mech-
anisms to correctly capture the data and control-flow choices/con-
flicts present in real-world programs. In this work, we propose a
novel, conflict-aware, composable, truly concurrent semantics for
programs written using C/C++ for modern weak memory architec-
tures. We exploit our symbolic semantics based on general event
structures to build an efficient decision procedure that detects asser-
tion violations in bounded multi-threaded programs. Using a large,
representative set of benchmarks, we show that our conflict-aware
semantics outperforms the state-of-the-art partial-order based ap-
proaches.

Categories and Subject Descriptors [F1.2]: Modes of Computa-
tion—Parallelism and concurrency

General Terms Verification

Keywords Concurrency, weak consistency models, software, ver-
ification

1. Introduction
1.1 Problem Description
Modern multiprocessors employ a variety of caches, queues and
buffers to improve performance. As a result, it is not uncommon
for write operations from a thread to be not immediately visible
to other threads in the system. Thus, writes from a thread, as seen
by an external observer, may appear to have been reordered. The
specifics of these processor-dependent reorderings are presented to
programmers as a contract, called the memory model. A memory
model dictates the order in which operations in a thread become
visible to other threads [5]. Thus, given a memory model, a pro-
grammer can determine which values could be returned by a given
read operation.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org or Publications
Dept., ACM, Inc., fax +1 (212) 869-0481.

PPoPP ’16 March 12-16, 2016, Barcelona, Spain
Copyright c© 2016 ACM 978-1-4503-4092-2/16/03. . . $15.00
DOI: http://dx.doi.org/10.1145/2851141.2851165

x = 0, y = 0;

s1 : x = 1;
s2 : r1 = y; ‖

s3 : y = 1;
s4 : r2 = x;

assert(r1 == 1 || r2 == 1)

(a)

x = 0, y = 0;

s1: x = 1;
s2: y = 1; ‖

s3: r1 = y;
s4: r2 = x;

assert(r1! = 1 || r2 == 1)

(b)

Figure 1: (a) Reordering in TSO (b) Reordering in PSO

While most developers are aware that instructions from two dif-
ferent threads could be interleaved arbitrarily, it is not atypical for
a programmer to expect statements within one thread to be exe-
cuted in the order in which they appear in the program text, the so
called program order (PO). A memory model that guarantees that
instructions from a thread are always executed in program order
is said to offer sequential consistency (SC) [27]. However, none
of the performant, modern multiprocessors offer SC: instead, they
typically implement what are known as relaxed or weak memory
models (R/WMM), by relaxing/weakening the program order for
performance reasons. In general, the weaker the model, the bet-
ter the opportunities for performance optimisations: the memory
model alone could account for 10–40% of the processor perfor-
mance in modern CPUs [40].

Such weakenings, however, not only increase performance, but
also lead to intricate weak-memory artefacts that make writing cor-
rect multiprocessor programs non-intuitive and challenging. A key
issue that compounds and exacerbates this difficulty is the fact that
weak-memory bugs are usually non-deterministic: that is, weak
memory defects manifest only under very specific, often rare, sce-
narios caused by a particular set of write orderings and buffer
configurations. Although all modern architectures provide mem-
ory barriers or fences to prevent such relaxation from taking place
around these barriers, the placement of fences remains a research
topic [3, 4, 7, 24, 26, 29, 30] due to the inherent complexities in-
volved caused by the intricate semantics of such architectures and
fences. Thus, testing-based methods are of limited use in detect-
ing weak memory defects, which suggests that a more systematic
analysis is needed to locate these defects.

In this work, we present a novel, true-concurrency inspired
investigation that leverages symbolic Bounded Model Checking
(BMC) to locate defects in modern weak memory programs. We
begin by introducing the problem of assertion checking in weak
memory programs using pre-C11 programs as exemplar, and intro-
duce the concerns that motivate our approach.

1.2 Example
Consider the program given in Fig. 1a. Let x and y be shared vari-
ables that are initialised with 0. Let the variables r1 and r2 be
thread local. Statements s1 and s3 both perform write operations.
However, owing to store-buffering, these writes may not be imme-

diately dispatched to the main memory. Next, after performing s1
and s3, both threads may now proceed to perform the read oper-
ations s2 and s4. Since the write operations might still not have
hit the memory, stale values for x and y may be read into r2 and
r1, respectively. This may cause the assertion to fail. Such a be-
haviour is possible in a processor that implements Total Store Or-
dering (TSO), which permits weakening (or relaxing) the write-
read ordering when the operations are performed on different mem-
ory locations. Note that on a hypothetical architecture that guaran-
tees SC, this would never happen. However, due to store buffering,
a global observer might witness that the statements were executed
in the order s2; s4; s1; s3 which resulted in the said assertion fail-
ure. We say that the events inside the pairs (s1, s2) and (s3, s4)
have been reordered.

Fig. 1b illustrates how the assertion might fail on architectures
that implement Partial Store Order (PSO), which permits write-
write and write-read reorderings when these operations are on
different memory locations. If SC was honoured, one would expect
to observe r2 == 1 if r1 == 1 has been observed. However,
reordering of the write operations (s1, s2) (under PSO) would lead
to the assertion failure.

In this work we would like to find assertion violations that
occur in programs written for modern multiprocessors. Specifically,
we will be focussing on C programs written for architectures that
implement reordering-based memory models like TSO and PSO.
We assume that the assertions to be checked are given as part of the
program text.

1.3 Our Approach
Our approach differs from most existing research in the way we
model concurrency. Most traditional work rely exclusively on inter-
leaving semantics to reason about real-world multiprocessor pro-
grams. An interleaving semantics purports to reduce concurrent
computations to their equivalent non-deterministic sequential com-
putations. For instance, let P be a system with two concurrent
events a and b; let’s denote this fact as P , a‖b. Interleaving
semantics then assigns the following meaning to P : JP K , a.b |
b.a where ‘.’ denotes sequential composition and ‘|’ denotes non-
deterministic choice. That is, a system in which a and b happens
in parallel is indistinguishable from a system where a and b could
happen in any order; we call a.b (also b.a) a schedule. The set of
all possible schedules is called the schedule space of P . As the in-
put program size increases, the (interleaved) schedule space of the
program may grow exponentially. This schedule space explosion
severely limits the scalability of many analyses. The state space is-
sues caused by interleaving semantics are only exacerbated under
weak memory systems: weakening a memory model increases the
number of admissible reorderings, and with it the degree of non-
determinism.

In this paper, we propose an alternative approach: to directly
capture the semantics of shared memory programs using true con-
currency [1, 18]. There are two competing frameworks for con-
structing a truly concurrent semantics, one based on event struc-
tures [39] and the other on pomsets [32]. A recent paper [9], the
work that is closest to ours, uses partial orders (pomsets) to capture
the semantics of shared memory program. The main insight is that
partial orders neatly capture the causality of events in the dynamic
execution of weak memory programs. But such a model cannot di-
rectly capture the control and data flow choices present in the pro-
grams: the semantics of programs with multiple, conflicting (that
is, mutually exclusive) dynamic executions is captured simply as a
set of candidate executions [9]. In this work, we advocate integrat-
ing program choices directly into the true concurrency semantics:
we show that this results in a more succinct, algebraic presentation,
leading to a more efficient analysis. Our true concurrency seman-

tics employs general event structures which, unlike partial orders,
tightly integrate the branching/conflict structure of the program
with its causality structure. Intuitively, such a conflict-aware truly
concurrent meaning of P can be given as follows: JP K , ¬(a#b)
∧ ¬(a < b); that is, the events a and b are said to be concurrent
iff they are not conflicting (#) and are not related by a ‘happens-
before’ (<) relation. This (logical) characterisation is strictly more
expressive compared to interleaving-based characterisation1; in ad-
dition, such a semantics does not suffer from the schedule space
explosion problem of a (more operationally defined) interleaving
semantics. Intuitively, a true concurrency admits the phenomenon
of concurrency to be a true, a first-class phenomenon that exists
in the real-world and needed to modelled as such, as opposed to
simply reducing it to a sequentialised choice.

Our event structure based semantics can naturally distinguish
computations at a granularity finer than trace equivalence. For
instance, consider threads t1, t2 and s, defined as follows: t1 = a.b
| a.c, t2 = a.(b|c) and s = a.c. Note than t1 and t2 are trace (and
partial order) equivalent. Let ‖ denote the (synchronous) parallel
composition [34]. Then, t1‖s can deadlock while t2‖s cannot. Our
semantics can distinguish t1 from t2, while current partial order
based methods cannot. This is because partial order based methods
capture the semantics as a set of complete executions, without ever
specifying how the partial sub-executions that constitute a trace
unfold. Thus, our semantics can be used to reason about deadlocks
over partial computations involving, say, lock/unlock operations —
not just assertion checking over complete computations involving
read/write operations.

Although event structures offer an attractive means to capture
the semantics of weak memory programs, we are not aware of any
event structure based tool that verifies modern weak memory pro-
grams written using real-world languages like C/C++. In this work,
we address this lacuna: by investigating the problem of assertion
checking in weak memory programs using event structures. We
first develop a novel true concurrency semantics based on general
event structures [39] for a bounded model checker. We then formu-
late a succinct symbolic decision procedure and use this decision
procedure to locate assertion violations in modern shared memory
programs. Our tool correctly and efficiently analyses the large, rep-
resentative set of programs in the SV-COMP 2015 [16] benchmark
suite. It also successfully handles all the intricate tests in the widely
used Litmus suite [10].

1.4 Contributions
Following are our contributions.

1. A compositional, symbolic (event structure based) true concur-
rency semantics for concurrent programs, and a characterisation
of assertion violation over this semantics (Section 4).

2. A novel decision procedure based on the above semantics that
locates assertion violations in multi-threaded programs written
for weak memory architectures (Section 5).

3. A BMC-based tool that implements our ideas and a thorough
performance evaluation on real-world C programs of our ap-
proach against the state-of-the-art research (Section 6).

We present our work in to three parts. The first part introduces
the relevant background on weak memory models (Section 2) and
true concurrency (Section 3). The second part defines an abstract,
true concurrency based semantics for weak memory programs writ-
ten in C (Section 4) and presents a novel decision procedure that
exploits this abstract semantics to find assertion violations (Sec-
tion 5). In the third part we discuss the specifics of our tool and

1 For systems with a finite set of events, the expressibility of both the notions
of concurrency coincides.

present a thorough performance evaluation (Section 6); we then
discuss the related work in Section 7 and conclude.

2. Background
This section summarises the ideas behind three concepts: weak
memory models, bounded model checking, and our intermediate
program representation.

2.1 Weak Memory Models
We introduce three memory models — SC, TSO and PSO — and
the necessary intuitions to understand them. We currently do not
directly handle other memory models; please consult the related
work section for further discussion on this.

SEQUENTIAL CONSISTENCY (SC): This is the simplest and the
most intuitive memory model where executions strictly maintain
the intra-thread program order (PO), while permitting arbitrary in-
terleaving of instructions from other threads. Intuitively, one could
view the processors/memory system that offers SC as a single-port
memory system where the memory port is connected to a switch/-
multiplexer, which is then connected to the processors. This switch
can only commit one instruction from a thread/processor at a time,
and it does so non-deterministically; this is depicted in Fig. 2a. The
illustrations in Fig. 2 are from the SPARC architecture manual [36].

TOTAL STORE ORDER (TSO): In TSO, in addition to the be-
haviours permitted in SC, a write followed by a read to a different
memory location may be reordered. Thus, the set of executions per-
missible under TSO is a strict superset of SC. This memory model
is used in the widely deployed x86 architecture. Writes in x86 are
first enqueued into the store buffer. These writes are later commit-
ted to memory in the order in which they are issued, i.e., the pro-
gram order of writes is preserved. The store buffer also serves as
a read cache for the future reads from the same processor. But any
read to a variable that is not in the store buffer can be issued directly
to memory and such reads could be completed before the pending,
enqueued writes hit the memory. Well known mutual exclusion al-
gorithms like Dekker, Peterson and Parker are all unsafe on x86.
A TSO processor/memory system could be seen as one where the
processor issues writes to a store buffer, but sends the reads directly
to memory; this is depicted in Fig. 2b.

PARTIAL STORE ORDER (PSO): PSO is TSO with an additional
relaxation: PSO guarantees that only writes to the same location
are committed in the order in which they are issued, whereas writes
to different memory locations may be committed to memory out of
order. This is intuitively captured by a processor/memory system
that employs separate store buffers for writes that write to different
memory addresses, but the reads are still issued directly to the
memory; this is depicted in Fig. 2c.

2.2 Bounded Model Checking
Bounded Model Checking (BMC) is a Model Checking technique
that performs a depth-bounded exploration of the state space. This
depth is often given in the form of an unwinding limit for the loops
in the program. Bugs that require longer paths (deeper unwindings)
are missed, but any bug found is indeed a real bug. Bounded Model
Checkers typically employ SAT/SMT-based symbolic methods to
explore the program behaviour exhaustively up to the given depth.
As modern SAT solvers are able to solve propositional formulas
that contain millions of variables, BMC is increasingly being used
to verify real-world programs [20].

2.3 Program Representation
We rely on a Bounded Model Checker that uses a symbolic static
single assignment form (SSA) to represent the input program.
Specifically, we use CBMC [21], a well-known bounded model
checker that supports C99 and most of the C11 standard. It can
handle most compiler extensions provided by gcc and Visual Stu-
dio. Over this CBMC-generated symbolic SSA, we define two
additional relations: a per-thread binary relation called preserved
program order (PPO) and a system-wide n-ary relation called po-
tential matches (POTMAT), where n is the total number of threads
in the system. The triple — SSA, PPO, and POTMAT — is then used
to define a truly concurrent semantics of the input program; one
can see this triplet as an intermediate form that we use to represent
all relevant aspects of the input program. These three components
are discussed in more detail below.

STATIC SINGLE ASSIGNMENT FORM (SSA): The control and data
flow of the input program is captured using guarded SSA form [22].
In a traditional SSA [31] or a concurrent SSA [28], a distict sym-
bolic variable is introduced when a program variable appears on
the left hand side (lhs) of an assignment, whereas φ and π function
represents the possible values that may flow into an assignment. In
the guarded SSA, each occurrence of the shared variable is treated
as a distinct symbolic variable, and is given a unique SSA index,
essentially allowing right hand side (rhs) symbols to remain un-
constrained. In the guarded SSA, assignments are converted into
equalities and conditionals act as guards to enforce these equali-
ties. To restrict the values to only those as permitted by the under-
lying memory model, additional equality constraints specific to the
memory model are then added. These constraints capture all pos-
sible interleavings and reordering of read and write operations as
required by the model. Thus, the π functions of concurrent SSA
are subsumed by these constraints. The details of the encoding are
provided in Section 5.

We rely on the underlying BMC tool to supply the necessary
(symbolic) variables and the constraints to cover the C constructs
used in the input program. Each SSA assignment is decomposed
into a pair of read and write events. These read/write events are aug-
mented with guards over symbolic program variables: this guard is
a disjunction (induced by path merging) of all conjunctions (in-
duced by nested branch) of all paths that lead to the read/write
events. For each uninitialised variable, we add a initial write that
sets the variable to a non-deterministic, symbolic value. From now
on, we will refer to our guarded SSA simply as SSA.

PRESERVED PROGRAM ORDER (PPO): This is a per-thread binary
relation specific to the memory-model that is directed, irreflexive
and acyclic. PPO captures the intra-thread ordering of read/write
events. Given an input program in SSA form, different memory
models produce different PPOs. Let TPPO be a binary relation over
the read/write events where, for every event e1 and e2, (e1, e2) ∈
TPPO iff the event e1 cannot be relaxed after e2. Note that TPPO is a
partial order: it is transitive, anti-symmetric and reflexive. TPPO is
collectively determined by the memory model under investigation
and the fences present in the input program. We define PPO to be
the (unique) transitive reduction [6] of the TPPO.

POTENTIAL MATCHES RELATION (POTMAT): While PPO models
the intra-thread control and data flow, the potential matches relation
aims at the inter-thread data flow. It is an n-ary relation with two
kinds of tuples. Let m be a tuple and let m(i) denote the ith entry
(for thread i) in the tuple. The first kind of tuple with one event —
where m(i) = e — captures the idea that the event e (in thread
i) can happen by itself; the remaining tuple entries contain ‘*’. We

PROCESSORS

P1P0 P2

r
w

r
w

r
w

SINGLE PORT MEMORY

commits

(a)

PROCESSORS

P1P0 P2

r

w

r

w

r

w
FIFO
store
buffer

SINGLE PORT MEMORY

commits

(b)

PROCESSORS

P0 P1

r

w

r

w
x ...z x ...z

per-addr
store
buffer

SINGLE PORT MEMORY

commits

(c)

Figure 2: Execution Models: (a) SC (b) TSO (c) PSO

Thread 1:
x = 1; // Wx3
if(y % 2) // Ry3

x = 3; // Wx4
else

x = 7; // Wx5
y = x; // Wy4, Rx6

Thread 2:
y = 1; // Wy5
if(x % 2) // Rx7

y = 3; // Wy6
else

y = 7; // Wy7
x = y; // Wx8, Ry8

guard1 , >
guard1 ⇒(x3=1)

guard2 ,(y3%2=0)

guard3 ,(guard1∧guard2)
guard4 ,(guard1 ∧ ¬guard2)
guard4 ⇒(x4=3)
guard3 ⇒(x5=7)
guard1 ⇒(xφ1=guard2?x5:x4)
guard1 ⇒(y4=x6)

guard5 , >
guard5 ⇒(y5=1)

guard6 ,(x7%2=0)

guard7 ,(guard5∧guard6)
guard8 ,(guard5 ∧ ¬guard6)
guard8 ⇒(y6=3)
guard7 ⇒(y7=7)
guard5 ⇒(yφ1=guard6?y7:y6)
guard5 ⇒(x8=y8)

(a)

Ry3

Wx3

Wx4 Wx5 Rx6 Wy4

Thread 1

Rx7

Wy5

Wy6 Wy7 Ry8 Wx8

Thread 2

(b)

Figure 3: A program and its corresponding Intermediate form.

say that such an e is a free event. Note that writes are free events,
as they can happen by themselves.

Let i and j be two distinct thread indices that is, i 6= j and —
0 ≤ i, j < n. The second kind of tuple, involving two events —
where m(i) = r and m(j) = w — denotes a potential inter-thread
communication where a read r (from thread i) has read the value
written by the write w (from thread j); the rest of the tuple entries
contain ‘*’. Such an r is called a synchronisation event. Reads are
synchronisation events as they cannot happen by themselves: reads
always happen in conjunction with a free (write) event. One should
see synchronisation events as events that consume other events,
thus always needing another (free) event to happen. As we will see
later (Section 3), these two kinds of tuples/events are fundamental
to our semantics.

Informally, POTMAT should be seen as a over-approximation of
all possible inter-thread choices/non-determinism available to each
shared read (and write) in a shared-memory program. We assume
that for every shared read, there is at least one corresponding tuple
(m) that matches the said read with a write: this corresponds to our
intuition that every successful read must have read from some write.
We do not demand the converse: there indeed could be writes that
were not read by any of the reads. Also, any suchm can only relate
reads and writes that operate on the same memory location: that
is, reads and write are related by the potential matches iff they op-
erate on the same (original) program variable. A tuple in POTMAT
is a potential inter-thread match — either containing an event that
matches with itself, or a pair of events that could match with one
another — hence the name potential matches. We sometimes de-
note the potential matches relation as M. We currently construct M
as a (minimally pruned) subset of the Cartesian product between

per-thread events that share the same address2. This subset consists
only of the two aforementioned types of tuples, and has at least one
tuple for every read (containing two events) and write (containing
one event).

EXAMPLE: Consider the two-thread program in Fig. 3a. The bot-
tom half gives the corresponding SSA form. Both x and y are
shared variables. The guards associated with each event can also
be seen in the figure. As the distinct symbolic variables are intro-
duced for every occurrance of a program variable, assignments can
be converted to guarded equalities. Guards capture the condition
that must hold true to enforce an equality. The symbols guard3 and
guard4 illustrate how path conditions are conjucted as we go along
branches. These symbols are also said to guard the events partici-
pating in the equality. For example, guard1 ⇒ (y4=x6) denotes
not only that guard1 implies the equality but also that it acts as
guard to corresponding events Wy4 and Rx6: that is, guard (Wy4)
= guard (Rx6) = guard1. When the local paths merge, auxiliary
variables (e.g., xφ1) are introduced, which hold appropriate intra-
thread values depending upon which path got executed. Note that
x6 is completely free in the constraints given in the figure. Later on,
additional constraints are added, which restrict the value of x6 to ei-
ther an intra-thread value of xφ1 or an inter-thread value of x8. The
corresponding TSO intermediate form is given in Fig. 3b: note that
TSO relaxes the program order between (Wx3, Ry3) and (Wy5, Rx7).
The (intra-thread) solid arrows depict the (intra-thread) preserved
program order, and dashed lines depict the potential matches rela-

2 More formally, M is proper subset of the n-ary fibred product between
per-thread event sets (say, Ei∪ ‘*’) where the event labels agree. The label
of ‘*’ agrees with all the events in the system.

tion. The magenta lines show the matches involving x and the blue
lines show the matches involving y. The initial writes are omited
for brevity. The horizontal dash-dotted line demarcates the thread
boundaries.

3. True Concurrency
Although most of the existing literature on event structures deal
with prime or stable event structures [39], we will be using (a heav-
ily modified) general event structure. General event structures are
(strictly) more expressive compared to prime/stable event struc-
tures [37, 38]. In addition, the constructions we employ — parallel
composition and restriction of event structures — have a consider-
ably less complex presentation over general event structures.

We now present the concepts and definitions related to event
structures. In each case, we give the formal definitions first, fol-
lowed by an informal discussion as to what these definitions cap-
ture. Also, hereafter we will simply say ‘event structures’ to mean
the modified general event structure defined by us.

A GENERAL EVENT STRUCTURE is a quadruple (E,Con,`, label)3,
where:

• E is a countable set of events.

• Con , {X|X ⊆finite E, ∀e1 6= e2 ∈ X ⇒ (e1, e2) /∈ #}. #
is an irreflexive, symmetric relation on E, called the conflict
relation. Intuitively, Con can be viewed as a collection of
mutually consistent sets of events.

• ` ⊆ Con× E is an enabling relation.

• label : E → Σ is a labeling function and Σ is a set of labels.

such that:

− Con is consistent: ∀X,Y ⊆ E, X ⊆ Y , Y ∈ Con⇒ X ∈
Con

− ` is extensive: ∀e ∈ E, ∀X,Y ∈ Con, X ` e, X ⊆ Y
⇒ Y ` e

Let us now deconstruct the definition above. We would like to
think of a thread as a countable set of events (E), which get exe-
cuted in a particular fashion. Since we are interested only in finite
computations, we require that all execution ‘fragments’ are finite.
Additionally, for fragments involving conflicting events, we require
that at most one of the conflicting events occurs in the execution
fragment. The notion of computational conflict (or choice) is cap-
tured by the conflict relation (#). We call executions that abide by
all the requirements above consistent executions; Con denotes the
set of all such consistent executions. Thus, Con ⊆ 2E is the set
of conflict-free, finite subsets of E. Since we want the ‘prefixes’
of executions to be executions themselves, we demand that Con
is subset closed. Such execution fragments can be ‘connected’ to
events using the enabling (`) relation: X ` e means that events of
X enable the event e.

For example, in an SC architecture if there is a write event w
followed by a read event r, then ({w}, r) ∈ ` as w must happen
before r could happen. In general, ` allows us to capture the
dependencies within events as dictated by the underlying memory
model. Note that since the enabling relation connects the elements
ofCon with that ofE, it is automatically branching/conflict aware.
We do not require that a set X enabling e to be the minimal set
(enabling e): extensiveness only requires that X contains a subset
that enables e. The labeling function, label(e), returns the label of

3 Hereafter, for brevity, (E,Con,`) will stand for (E,Con,`, label): that
is, every event structure is implicitly assumed to be equipped with a label
set Σ and a labling function label : E → Σ.

the read/write event e. These labels are interpreted as addresses of
the events. Finally, it is often useful to see E as a union of three
disjoint sets R, W and IRW , where R corresponds to the set of
reads, W to the set of writes and IRW correspond to the set of
local reads (see Section 4).

CONFIGURATION: A configuration of event structure (E,Con,`)
is a subset C ⊆ E such that:

− C is conflict-free: C ∈ Con
− C is secured: ∀e ∈ C, ∃e0, . . . , en ∈ C, en = e ∧ ∀i

0 ≤ i ≤ n . {e0, . . . , ei−1} ` ei

A configuration C ⊆ E is to be understood as a history of com-
putation up to some computational state. This computational his-
tory cannot include conflicting events, thus we would like all finite
subsets of C to be conflict free; this can also be ensured by requir-
ing that all finite subsets ofC be elements ofCon. Securedness en-
sures that for any event e in a configuration, the configuration has
as subsets a sequence of configurations ∅, {e0} , . . . , {e0, . . . , en}
— called a securing for e in C, such that one can build a ‘chain of
enablings’ that will eventually enable e; all such chains must start
from ∅.

Let the set of all configurations of the event structure (E,Con,`)
be denoted by F(E). A maximal configuration is a configuration
that cannot be extended further by adding more events.

COINCIDENCE FREE: Given an event structure (E,Con,`), we
say that it is coincidence free iff ∀X ∈ F(E), ∀e, e′ ∈ X ,
e 6= e′ ⇒ ∃Y ∈ F(E), Y ⊆ X , (e ∈ Y ⇔ e′ /∈ Y). Intuitively,
this property ensures that configurations add at most one event at
a time: this in turn ensures that secured configurations track the
enabling relation faithfully. We require our event structures to be
coincidence free. This is a technical requirement that enables us
to assign every event in a configuration a unique clock order (see
below).

TRACE AND CLOCK ORDERS: Given an event e in configurationC
and a securing up to ek — that is, {ei=0, ei=1, . . . , ei=k−1} `
ei=k — we define the following injective map traceC(e) : E|C →
N0 as traceC(e) , i. Informally, traceC(e) is the trace position
of event e in C: traceC(e1) < traceC(e2) implies that the event
e1 occurred before e2 in the given securing of the configuration C.
Given such a traceC map, we define a monotone map named clock
as clockC(e) : e → N0 that is consistent with traceC . That
is, ∀e1, e2 ∈ C, traceC(e1) < traceC(e2) ⇒ clockC(e1) <
clockC(e2). Informally, the clockC map relaxes the traceC map
monotonically so that clockC can accommodate events from other
threads, while still respecting the ordering dictated by traceC .

PARTIAL FUNCTIONS: As part of our event structure machinery,
we will be working with partial functions on events, say f : E0 →
E1. The fact that f is undefined for a e ∈ E0 is denoted by
f(e) = ⊥. As a notational shorthand, we assume that whenever
f(e) is used, it is indeed defined. For instance, statements like
f(e) = f(e′) are always made in a context where both f(e)
and f(e′) are indeed defined. Also, for a X ⊆ E0, f(X) =
{f(e) | e ∈ X and f(e) is defined}.

MORPHISMS: A morphism between event structures is a structure-
preserving function from one event structure to another. Let Γ0 =
(E0, Con0,`0) and Γ1 = (E1, Con1,`1) be two stable event
structures.

A partially synchronous morphism f : Γ0 → Γ1 is a function
f from read set (R0) to write set (W1) such that:

− f preserves consistency: ∀X ∈ Con0⇒ f(X) ∈ Con1.

− f preserves enabling: ∀X `0 e, def(f(e))4 ⇒ f(X) `1 f(e)

− f preserves the labels: f(e) = e′⇒ label(e) = label(e′)

− f does not time travel: X ∈ Con0, Y ∈ Con1, f(e) = e′ ⇒
clockX(e) > clockY (e′)

− f ensures freshness: X ∈ Con0, Y ∈ Con1, f(e) = e′,
then ∀e′′ ∈ Y such that label(e′′) = label(e), clockY (e′′) <
clockX(e)⇒ clockY (e′′) < clockY (e′)

Such an f is called synchronous morphism if it is total.
A morphism should be seen as a way of synchronising reads of

one event structure with the writes of another. We naturally require
such a morphisms to be a function in the set theoretic sense: this
ensures that a read always reads from exactly one write. Note that
the requirement of f being a function introduces an implicit conflict
between competing writes. Given a morphism f : Γ0 → Γ1,
f(r0) = w1 is to be understood as r0 reading the value written
by w1 (or r0 synchronising with w1). Thus, the requirement that
f is a function will disallow (or will ‘conflict’ with) f(r0) = w2.
Such a morphism need not be total over E0. The events for which
f is defined are called the synchronisation events; thus, reads are
synchronisation events. Recall that synchronisation events are to
be seen as events that consume other (free) events. The events for
which f is undefined are called free events. Writes are free events as
they can happen freely without having to synchronise with events
from another event structure. We do not require these morphisms
to be injective: this allows for multiple reads to read from the same
write. We require such a morphism to be consistency preserving:
that is, morphisms map consistent histories in Con1 to consistent
histories in Con2. We require that the morphisms preserve the `
relation as well.

The next three requirements capture the idiosyncrasies of shared
memory. First, we require that a morphism preserves labels. The
labels are understood to be as addresses of program variables: this
ensures that read and write operations can synchronise if and only if
they are performed on the same address/label. Second, we demand
that a morphism never reads a value that is not written: that is, any
write that a read reads must have happened before the read. The
final requirement ensures that a read always reads the latest write.

PRODUCT×: Let Γ0 = (E0, Con0,`0) and Γ1 = (E1, Con1,`1)
be two stable event structures. The product Γ = (E,Con,`),
denoted Γ0 × Γ1, is defined as follows:

− E , {(e0, ∗) | e0 ∈ E0}
⋃
{(∗, e1) | e1 ∈ E1}

⋃
{(e0, e1) | e0 ∈ E0,e1 ∈ E1, label(e0) = label(e1)}

− Let the projection morphisms πi : E → Ei be defined as
πi(e0, e1) = ei, for i = 0, 1. Using these projection mor-
phisms, let us now define theCon of the product event structure
as follows: for X ⊆ E, we have X ∈ Con when

{X |X ⊆finite E}
π0X ∈ Con0, π1X ∈ Con1

Read events in X form a function: ∀e, e′ ∈ X ,
(
(π0(e) =

π0(e′) 6= ∗) ∧ (π0(e) ∈ R0)
)
∨
(
(π1(e) = π1(e′) 6=

∗) ∧ (π1(e) ∈ R1)
)
⇒ e = e′

events in X do not time travel: that is, ∀e ∈ X ,
(
(π0(e) ∈

W0∧π1(e) ∈ R1)⇒ clockπ0X(π0(e))5 < clockπ1X(π1(e))
)

4 The def(f(e)) predicate returns true if f(e) is defined.
5 clockπiX(wi) denotes the clock value of the event wi in πiX; i denotes
the index of the process/thread that issued wi. Note that our clock con-

∧
(
(π0(e) ∈ R0 ∧ π1(e) ∈ W1) ⇒ clockπ1X(π1(e)) <

clockπ0X(π0(e))
)

read events in X read the latest write: ∀e ∈ X , π0(e) ∈
W0 ∧ π1(e) ∈ R1,

∀wi ∈W0(label(π0(e)))6 \ π0(e),
clockπ1X(π1(e)) > clockπiX(wi)

⇒ clockπ0X(π0(e)) > clockπiX(wi)
7

in any given X , all the write events to the same address are
totally ordered. Let Σ be a finite, label set, denoting the set
of addresses/variables in the program. Then,
∀l ∈

⋃
i Σi, i ∈ {0, 1}, ∀w,w′ ∈ W (l), (clockπiX(w) <

clockπiX(w′)) ∨ (clockπiX(w′) < clockπiX(w))

− X ` e , ∀X ∈ Con, ∀e ∈ E, 0 ≤ i, j ≤ 1, i 6= j,
ei = πi(e), ej = πj(e),(
ei ∈ Ri ⇒ ej 6= ∗

)
∧
(
ei = ∗ ∧ ej ∈Wj ⇒ πjX `j ej

)
∧(

ei = ∗ ∧ ej ∈ IRWj
8 ⇒ πjX `j ej

)
∧(

ei ∈ Ri ∧ ej ∈Wj ⇒ πiX `i ei ∧ πjX `j ej
)

Products are a means to build larger event structures from com-
ponents. The event set of product event structure has all the combi-
nations of the constituent per-thread events to account for all pos-
sible states of the system. A product should also accommodate the
case where events in a thread do not synchronise with any event in
other threads. This is ensured by introducing the dummy event ‘∗’.

We next demand that admissible executions in the product event
structure yield admissible executions in the constituent, per-thread
event structures. This is ensured by introducing projection mor-
phisms that ‘project’ executions of the product event structure to
their respective, per-thread ones: we require these projected, per-
thread executions to be consistent executions. Next, we forbid any
read in an execution to match with more than one write, ensure
that a read’s clock is greater than that of the corresponding write’s
clock, and that a read always reads the latest write. We also demand
that the writes to an address are always totally ordered. Finally, we
demand that the enabling relation of product reflects all the per-
thread enabling relations. This is ensured by requiring any product-
wise enabling yields a valid per-thread enabling. It is important to
note that every event in the product event structure is a free event,
and product events do not synchronise with any other event.

RESTRICTION d: Let Γ = (E,Con,`) be an event structure. Let
A ⊆ E. We define the restriction of Γ to A, denoted Γ

⌈
A
,

(EA, ConA,`A), as follows.

− EA , A

− X ∈ ConA ⇔ X ⊆ A, X ∈ Con
− X `A e , X ⊆ A, e ∈ A, X ` e

Restriction builds a new event structure containing only events
named in the restriction set: it restricts the set of events to A,
isolates consistent sets involving events in A, and ensures that
events of A are enabled appropriately.

straints only restrict the clocks of per-thread events, and the clock values of
the product events are left ‘free’.
6W0(label(π0(e))) denotes the set of write events in thread 0 that share
the same address/label as π0(e).
7 The dual of this requirement, where we swap 0 and 1, is also assumed; we
omit stating it for brevity.
8 The set IRWj ⊆ Ej denotes the set of internal/local reads in thread j:
IRWj = {RWlm | rl ∈ Rj , wm ∈Wj , label(rl) = label(wm)}.

∅

Wx3

Ry3

◦

Wx4 RWx64

Rx6

Wx5 RWx65

◦ Wy4

Thread 1 #1 = {(e1, e2) | e1, e2 ∈ E1 ∧ guard(e1) ∧ guard(e2) 6= ⊥}
⋃

{(RWx64, RWx65), (Rx6, RWx64), (Rx6, RWx65)}
Σ1 = {x, y}

∅

Wy5

Rx7

◦

Wy6 RWy86

Ry8

Wy7 RWy87

◦ Wx8

Thread 2 #2 = {(e1, e2) | e1, e2 ∈ E2 ∧ guard(e1) ∧ guard(e2) 6= ⊥}
⋃

{(RWy86, RWy87), (Ry8, RWy86), (Ry8, RWy87)}
Σ2 = {x, y}

(a) The per-thread event structures

E = {(Ry3,Wy5), (Ry3,Wy6), (Ry3,Wy7), (RWx64, ∗), (RWx65, ∗), (Rx6,Wx8),

(Wx3, Rx7), (Wx4, Rx7), (Wx5, Rx7), (∗, RWy86), (∗, Ry87), (Wy4, Ry8), } Σ = Σ1 ∪ Σ2 = {x, y}
= {((R−i,W−j), (R−i,W−k)) | (R−i,W−j), (R−i,W−k) ∈ E,− ∈ Σ}

(b) Semantics of the shared memory program

Figure 4: Event structure constructions for the example given in Fig. 3

4. Semantics for weak memory
Let P be a shared memory program with n threads. Each thread
is modelled by an event structure Γi = (Ei, Coni,`i), which we
call a per-thread event structure. The per-thread event structures
are constructed using our per-thread PPOs and the guards associated
with the read/write events. The computed guards naturally carry the
control and data flow choices of a thread into the conflict relation
of the corresponding per-thread event structure: two events are
conflicting if their guards are conflicting; conflicting guards are
those that cannot together be set to true.

As we build our Ei from PPOi, in addition to all the read/write
events in the PPOi, we also add the set of local reads (IRWi) (of
thread i) into Ei as free events; we call a read event RWxkl a
local or internal read if it reads from a write Wxl from the same
thread. Note that all possible write events that can feed a value to
a given local read can be statically computed (e.g., using def-use
chains). Such local reads (say RWxkl) are added as free events
in Ei: in doing so, we require that the guards of the constituent
events (guard (RWxkl) and guard (Wxl)) do not conflict, and
that functoriality/freshness of reads/writes is guaranteed in all per-
thread X ∈ Coni involving them. The intuition is that reads
reading from local writes are free to do so without ‘synchronising’
with any other thread. Our POTMAT relation is constructed after
adding such free, local reads. Since a read event can either read a
local write or a (external) write from another thread, local reads
are considered to be in conflict with the external reads that has to
‘synchronise’ with other threads. This conflict captures the fact that
at runtime only one of these events will happen.

Let us also denote the system-wide POTMAT as M. We are
now in a position to define our truly concurrent semantics for
the shared memory program P : the system of the n-threaded pro-
gram P is over-approximated by JP K , ΓP = (E,Con,`) ,(∏n−1

i=0 (Ei, Coni,`i)
)⌈

M
. This compositional, conflict-aware,

truly concurrent semantics for multi-threaded shared memory pro-
grams, written for modern weak memory architectures is a novel
contribution. Our symbolic product event structure faithfully cap-
tures the (abstract) semantics of the multi-threaded shared mem-
ory program: since it is conflict-aware, this semantics can also dis-
tinguish systems at least up to ‘failure equivalence’ [33], whereas

coarser partial order based semantics like [9] can only distinguish
systems up to trace equivalence.

AN EXAMPLE: Fig. 4 depicts the event structure related constructs
for the example given in Fig. 3. The top row, Fig. 4a, gives the
per-thread event structures. The nodes depict the events and the
arrows depict the pre-thread enabling relation; the dummy node
‘◦’ is added only to aid the presentation. The solid, black lines
depict non-conflicting enablings while the dotted, red lines show
the enablings that are conflicting: for instance, in Thread 1, ∅
enables both eventsWx3 andRy39, while {∅,Wx3, Ry3} enables
only one of Wx4 or Wx6. Note that the added local read events
RWx64 and RWx65 are mutually conflicting, and these local
reads in turn conflict with the Rx6 event that could be satisfied
externally. The conflict relation for both the threads is given on the
right hand side of the diagrams; the symmetries are assumed. The
label set is given by (base) names of the SSA variables: that is, Σ =
x, y; the labeling function is a natural one taking the SSA variables
to their base name, forgetting the indices. The bottom row, Fig. 4b,
gives the event set and conflict relation for our semantics. That is,
it gives ΓP = (E,Con,`) ,

(∏n−1
i=0 (Ei, Coni,`i)

)⌈
M

. Note
that E has only those product events that are present in M; we
omit the write events of M for brevity. In this slightly modified,
but equivalent, presentation we included the functoriality condition
of the product into the conflict relation. That is, for every variable
(as given by the label set Σ), we demand that any read event
synchronising with some write event conflicts with the same read
event synchronising with any other write event. We conspicuously
omit presenting Con as it is an exponential object (in number of
events): the elements of Con, apart from being conflict free, are
required to read the latest write, and that the reads do not time
travel. The enabling relation of the final event structure relates
an element C of Con with an element e of E if the per-thread
projections of C themselves enable all the participating per-thread
events in e.

9 We are omitting the corresponding internal read RWy30 for brevity,
which may capture the potential read from initial write Wy0, capturing
a read from an uninitialized value (Ref. section 2.3) on SSA.

4.1 Reachability in Weak Memory Programs
Having defined the semantics of weak memory programs, we now
proceed to show how we exploit this semantics to reason about
valid executions/reachability of shared memory programs. Let P =
(Pi), 0 ≤ i < n is a shared memory system with n threads. Let
JP K , ΓP = (E,Con,`) =

(∏n−1
i=0 (Ei, Coni,`i)

)⌈
M

be an
event structure.

Let ΓN = (EN, ConN,`N) be an event structure over natural
numbers: EN , N0; ConN , {∅, {∅, 0}, {∅, 0, 1}, · · · }; ` ,
∀i ∈ N0.{∅, · · · , i − 1} `N i. We call this event structure a clock
structure. We would like to exploit the linear ordering provided
by the clock structure to ‘linearise’ events in the product event
structure; this linearisation correspond to an execution trace of the
system. Naturally, we would like this linearisation to respect the
original event enabling order. This requirement is captured using a
partial synchronous morphism from ΓP into ΓN. Let τ : ΓP → ΓN
be such a partial synchronous morphism. Intuitively, such a τ yields
a ‘linear’ execution that honours ` and Con. In other words, every
match event is mapped (linearised) to an integer clock position in
the clock structure. Each such τ yields a valid execution of ΓP .

Given such a τ , let us now define a per-thread τi : Ei → EN as
follows: ∀e ∈ E, τi(ei) = τ(e), where ei = πi(e) if def(πi(e));
τi(ei) is undefined otherwise. By construction each such τi yields
a valid execution for the thread i. Any per-thread assertion in the
original program can then be reasoned using such τis: that is, a
thread i violates an assertion iff we have a τi (from a τ) in which
that assertion is, first reached, and then violated. In general, any
(finite) reachability related question can be answered using our
semantics.

We say that a product event structure violates an assertion
whenever in (at least) one of its secured maximal configurations,
(at least) one of its per-thread event structure’s (projected) maximal
configuration includes the negation of the said assertion in that (se-
cured) maximal configuration. The following theorem formalises
this.

THEOREM 1. The input program P has an assertion violation iff
there exists a maximal C ∈ F(E) such that at least one of
τi
∣∣
C
∈ F(Ei), 0 ≤ i < n contains the negation of an assertion,

under the specified memory model.

The proof of the first part of the theorem (sans the memory model)
follows directly from construction. Next, we present a proof sketch
that addresses memory model specific aspects. Here we focus on
TSO; suitable strengthening/weakening (as dictated by PPO) will
yield a proof for SC/PSO.

A shared memory execution is said to be a valid TSO execution
if it satisfies the following (informally specified) axioms [35, 36].
An execution is TSO iff:

1. coherence: Write serialisation is respected.

2. atomicity: The atomic load-store blocks behave atomically
w.r.t. other stores.

3. termination: All stores and atomic load-stores terminate.

4. value: Loads always return the latest write.

5. storeOrd: Inter-store program order is respected.

6. loadOrd: Operations issued after a load always follow the said
load in the memory order.

Our semantics omits termination. Recall that clock denotes
the clock order. Intuitively, the clock order represents the mem-
ory order. Also, recall that an execution corresponds to a (se-
cured) maximal configuration. We now refer to the product defi-

nition (see Fig. 4b), and show how the maximal configuration con-
struction more or less directly corresponds to these axioms.

The coherence requirement is a direct consequence of demand-
ing that writes (to the same memory location) are totally ordered
with respect to each other. The atomicity axiom is enforced by as-
signing each atomic load-store block the same clock value: this is
done by making the atomic block elements as incomparable/equal
under PPO. The value requirement is taken as is, with time travel
restrictions in the definition. The storeOrd and loadOrd require-
ments are enforced by PPO, and are captured by the enabling re-
lation. This shows that any valid maximal configuration respects
TSO. The converse holds as the product simply uses the Cartesian
product of participating per-thread event sets and prunes it to the
TSO specification.

This completes our sketch of the proof for TSO. Strengthening
of loadOrd and weakening of storeOrd — via PPO — yield SC and
PSO, respectively.

5. Encoding
Let JP K , (E,Con,`) =

(∏n−1
i=0 (Ei, Coni,`i)

)⌈
M

be an
event structure. We build a propositional formula Φ that is satis-
fiable iff the event structure (hence the input program) has an asser-
tion violation; Φ is unsatisfiable otherwise.

The formula Φ will contain the following variables: A Boolean
variable Xe (for every e ∈ E), a set of bit-vector variables Vx
(for every program variable x) and a set of clock variables Ceij
(for every eij ∈ Ei). Given a per-thread event structure Γi =
(Ei, Coni,`i), the (conflict-free) covering relation [38] of Γi and
the PPOi coincide: informally, given a event structure over E, an
event e1 is covered by another event e2 if e1 6= e2 and no other
event can be ‘inserted’ between them in any configuration. Let us
denote this covering relation of the event structure Γi as `ii. Intu-
itively, `ii captures the per-thread immediate enabling, aka PPOi.
Let guard(e) denote the guard of the event e.

Let assert be the set of program assertions whose violation we
would like to find; these are encoded as constraints over the Vx
variables. Each element of assert can be seen as a set of reads,
with a set of values expected from those reads, where the guards
of all these reads evaluate to true. Equipped with `ii, guard(e),
three types of variables (Xe/Ve/Ce), and a set of asserts, we now
proceed to define the formula Φ as follows:

Φ , ssa ∧ ext ∧ succ ∧m2clk ∧ unique ∧ ¬(
∧
i

assert i)

The constituents of Φ are discussed as below.

1. ssa (ssa): These constraints include the intra-thread SSA data/-
control flow constraints; we rely on our underlying, modified
bounded model checker to generate them.

2. extension (ext): A match can happen as soon as its guards are
set to true, its reads are not reused, and the read has read the
latestw write. The funct constraint ensures that once a read
is matched, it cannot be reused in any other match; that is, it
makes f : R → W a function. Thus, the ext formula uses the
enabling and conflict relation to define left-closed, consistent
configurations.

3. successors (succ): We require that the clocks respect the per-
thread immediate enabling relation. This is the first step in
ensuring that configurations are correctly enabled and secured.

4. match2clock (m2clk): A match forces the clock values of a
write to precede that of the read (for non-local reads). This en-
sures that any write that a read has read from has already hap-
pened. A match also performs the necessary data-flow between

ext ,
∧

m=(r,w)∈POTMAT;e∈E(r)∩E(w)

(
Xe ⇔

(
latestw(r, w) ∧ funct(r, e) ∧

(
guard(r) ∧ guard(w)

)))
succ ,

∧
p∈Ei;p`iiq;

(
isBefore(Cp, Cq)

)

m2clk ,
∧

m=(r,w)∈POTMAT;e∈E(r)∩E(w)

(
Xe ⇒ isBefore(Cw, Cr) ∧ isEqual(V[r], V[w])

)
latestw(r, w) ,

∧
(r,w′)∈POTMAT;w 6=w′

(
(¬isBefore(Cr, Cw′) ∧ guard(w′))⇒ ¬isBefore(Cw, Cw′)

)
funct(q,m) ,

∧
q∈Ri;e∈E(q)\m

¬Xe

A note on notations: Empty conjunctions are interpreted as ‘true’ and empty disjunctions as ‘false’. We read ‘;’ as such that: that is,
‘e ∈ F ; e ∈ Ei’ should be read as ‘e ∈ F such that e ∈ Ei’. We use the shorthand (r, w) for the unique n-tuple (· · · , r, · · · , w, · · ·) in M.

the reads and writes involved: that is, a read indeed picks up
the value written by the write. The constraint m2clk , together
with succ, ensures that the latestw has the expected, system-
wide meaning; they together also lift the per-thread enablings
and securings to system-wide enablings and securings.

5. uniqueness (unique): We require that the clocks of writes that
write to the same location are distinct. Since the clock ordering
is total, this trivially ensures write serialisation.

6. clock predicates (isBefore and isEqual): The constraints
isBefore and isEqual define the usual < and = over the in-
tegers. We use bit-vectors to represent bounded integers.

Let k , |R|+ |W |, where |R| and |W | denote the total number
of reads and writes in the system. That is, k is the total number
of shared read/write events in the input program. The worst case
cost of our encoding is exactly 1

4
k2 + k · log k Boolean variables;

this follows directly from the observation that each entry in the
potential-matches relation can be seen as an edge in the bipartite
graph with vertex set E = R ∪ W . Maximising for the edges
(matches) in such a bipartite graph yields the 1

4
k2 component. The

k log k arises from the fact that we need k bit-vectors, each with
log k bits to model the clock variables.

5.1 Soundness and Completeness: Φ� ΓP

The following theorems establish the soundness and completeness
of the encoding with respect to the assertion checking characterisa-
tion introduced in Section 4.1. Note that any imprecision in com-
puting the potential-matches relation will not yield any false posi-
tives in Φ, as long as the PPO is exact. This is so even if POTMAT is
simply the Cartesian product of reads and writes.

THEOREM 2. [Completeness: ΓP ⇒ Φ]
For every assertion-violating event structure ΓP = (E,Con,`) =(∏n−1

i=0 (Ei, Coni,`i)
)⌈

M
, there exists a satisfying assignment

for Φ that yields the required assertion violation.

THEOREM 3. [Soundness: Φ⇒ ΓP]
For every satisfying assignment for Φ, there is a corresponding
assertion violation in the event structure ΓP = (E,Con,`) =(∏n−1

i=0 (Ei, Coni,`i)
)⌈

M
.

We omit the proofs owing to lack of space. Instead, we here pro-
vide the intuition behind our encoding. It is easy to see that ext and
succ together ‘compute’ secured, consistent, per-thread configura-
tions whose initial events are enabled by the empty set: funct guar-
antees every read reads exactly one write and latestw ensures that

reads always pick up the latest write (as ordered by succ) locally.
assert picks out all secured, consistent configurations that violates
any of the assertions. But an assignment satisfying these three con-
straints needs not satisfy the system-wide latest write requirement.
This is addressed by the m2clk constraint: this constraint ‘lifts’ the
per-thread orderings to a valid inter-thread total ordering; it also
performs the necessary value assignments. Equipped with m2clk ,
the latestw now can pick the writes that are indeed latest across the
system. The transitivity of isBefore (in succ, latestw , m2clk) cor-
rectly ‘completes’ the per-thread orderings to an arbitrary number
of threads, involving arbitrary configurations of arbitrary matches.

6. Evaluation
We have implemented our approach in a tool named WALCYRIE10

using CBMC [21] version 5.0 as a base. The tool currently supports
the SC, TSO and PSO memory models. WALCYRIE takes a C/C++
program and a loop bound k as input, and transforms the input pro-
gram into a loop-free program where every loop is unrolled at least
k times. From this transformed input program we extract the SSA
and the PPO and POTMAT relations. Using these relations, and the
implicit event structure they constitute, we build the propositional
representation of the input program. This propositional formula is
then fed to the MiniSAT back-end to determine whether the input
program violates any of the assertions specified in the program. If
a satisfying assignment is found, we report assertion violation and
present the violating trace; otherwise, we certify the program to be
bug free, up to the specified loop bound k.

We use two large, well established, widely used benchmark
suites to evaluate the efficacy of WALCYRIE: the Litmus tests
from [10] and SV-COMP 2015 [16] benchmarks. We compare our
work against the state of the art tool to verify real-world weak
memory programs, [9]; hereafter we refer it as CBMC-PO. We
remark that ([9], page 3) employs the term “event structures” to
mean the per-processor total order of events, as dictated by PO.
This usage is unrelated to our event structures; footnote #4 of [9]
clarifies this point. We run all our tests with six as the unrolling
bound and 900 s as the timeout. Our experiments were conducted
on a 64-bit 3.07 GHz Intel Xeon machine with 48 GB of memory
running Linux. Out tool is available at https://github.com/
gan237/walcyrie; the URL provides all the sources, benchmarks
and automation scripts needed to reproduce our results.

Litmus tests [10] are small (60 LOC) programs written in a toy
shared memory language. These tests capture an extensive range

10 A hark back to the conflict-friendly Norse decision makers; also an ana-
gram of Weak memory AnaLysis using ConflIct aware tRuE concurrencY.

https://github.com/gan237/walcyrie
https://github.com/gan237/walcyrie

of subtle behaviours that result from non-intuitive weak memory
interactions. We translated these tests into C and used WALCYRIE
to verify the resulting C code. The Litmus suite contains 5804 tests
and we were able to correctly analyse all of them in under 5 s.

The SV-COMP’s concurrency suite [16] contains a range of
weak-memory programs that exercise many aspects of different
memory models, via the pthread library. These include crafted
benchmarks as well as benchmarks that are derived from real-
world programs: including device drivers, and code fragments from
Linux, Solaris, NetBSD and FreeBSD. The benchmarks include
non-trivial features of C such as bitwise operations, variable/func-
tion pointers, dynamic memory allocation, structures and unions.
The SC/TSO/PSO part of the suite has 600 programs; please refer
to [16] for the details. WALCYRIE found a handful of misclassifi-
cations (that is, programs with defects that are classified as defect-
free) among the benchmarks; there were no misclassifications in
the other direction, that is, all programs classified by the develop-
ers as defective are indeed defective. Such misclassifications are a
strong indication that spotting untoward weak memory interactions
is tricky even for experts. We have reported these misclassifications
to the SV-COMP organisers.

The work that is closest to us is CBMC-PO [9]: like us, they use
BMC based symbolic execution to find assertion violations in C
programs. The key insight here is that executions in weak memory
systems can be seen as partial orders (where pair of events relaxed
are incomparable). Based on this, they developed a partial order
based decision procedure. Like us, they rely on SAT solvers to find
the program defects. But our semantics is conflict-aware, conse-
quently the resulting decision procedure is also different; the for-
mula generation complexity for both approaches is cubic and both
of us generate quadratic number of Boolean variables. The original
implementation provided with [9] handled thread creation incor-
rectly. We modified CBMC-PO to fix this, and we use this corrected
version in all our experiments. Though the worst case complexity of
both approaches is the same, our true concurrency based encoding
is more compact: WALCYRIE often produced nearly half the num-
ber of Boolean variables and about 5% fewer constraints compared
to CBMC-PO (after 3NF reduction).

Our results are presented as scatter plots, comparing the total ex-
ecution times of WALCYRIE and CBMC-PO: this includes parsing,
constraint generation and SAT solving times; the smaller the time,
the better the approach. The x axis depicts the execution times for
WALCYRIE and the y axis depicts the same for CBMC-PO. The SAT
instances are marked by a triangle (N) and the UNSAT instances
are marked by a cross (×). The first set of plots (Fig. 5a, Fig. 5b
and Fig. 5c) presents the data for the Litmus tests. There are three
plots and each corresponds to the memory model against which we
tested the benchmarks. Both WALCYRIE and CBMC-PO solve these
small problem instances fairly quickly, typically in under 5 s; re-
call that individual Litmus tests are made of only tens of LOC. But
CBMC-PO appears to have a slight advantage: we investigated this
and found that CBMC-PO’s formula generation was quicker while
the actual SAT solving times were comparable. WALCYRIE’s cur-
rent implementation has significant scope for improvement: for in-
stance, the latestw and funct constraint generation could be inte-
grated into one loop; also, the match generation could be merged
with the constraint generation.

The scatter plot Fig. 5d compares the runtimes of SC bench-
marks. Under SC, the performance of CBMC-PO and WALCYRIE
appears to be mixed: there were seven (out of 125) UNSAT in-
stances where WALCYRIE times out while CBMC-PO completes the
analysis between 10 and 800 s. In the majority of the cases, the per-
formance is comparable and the measurements cluster around the
diagonal. Note that no modern multiprocessor offers SC, and the
SC results are presented for sake of completeness.

Fig. 5e presents the results of SV-COMP’s TSO benchmarks.
The situation here is markedly different, compared to the Litmus
tests and SC. Here, WALCYRIE clearly outperforms CBMC-PO, as
indicated by the densely populated upper triangle. This is contrary
to usual intuition: TSO, being weaker than SC, usually yields a
larger state space, and the conventional wisdom is that the larger
the state space, the slower the analysis. Our results appear to con-
tradict this intuition. The same trend is observed in the PSO sec-
tion (Fig. 5f) of the suite as well. In fact, WALCYRIE outperforms
CBMC-PO over all inputs.

We investigated this further by looking deeper into the inner-
workings of the SAT solver. SAT solvers are complex engineering
artefacts and a full description of their internals is beyond the scope
of this article; interested readers could consult [23, 25]. Briefly,
SAT solvers explore the state space by making decisions (on the
truth value of the Boolean variables) and then propagating these
decisions to other variables to cut down the search space. If a prop-
agation results in a conflict, the solver backtracks and explores a
different decision. There is a direct trade-off between propagations
and conflicts, and a good encoding balances these concerns judi-
cially. To this end, we introduce a metric called exploration ef-
ficacy, ρ, defined as the ratio between the total number of prop-
agations (prop) to the total number of conflicts (conf). That is,
ρ , prop/conf . The numbers prop and conf are gathered only
for those benchmarks where both the tools provided a definite
SAT/UNSAT answer. Intuitively, one would expect SAT instances
to have a higher ρ, while UNSAT instances are expected to have a
lower ρ. To find a satisfying assignment, one needs to propagate ef-
fectively (without much backtracking) and to prove unsatisfiability,
one should run into as many conflicts as early as possible. Thus, for
SAT instances, a higher ρ is indicative of an effective encoding; the
converse holds true for UNSAT instances.

Figs. 5g to 5i present the scatter plots for ρ for CBMC-PO
and WALCYRIE, for three of our memory models. For SC, the ρ
values are basically the same. This explains why we observed a
very similar performance under SC. The situation changes with
TSO and PSO. The clustering of ρ values on the either side of the
diagonal hints at the reason behind the superior performance of our
conflict-aware encoding. In both TSO and PSO, our ρ values for
the SAT instances are two to four times higher; our ρ values for
the UNSAT instances are one to two times lower. In PSO, the prop
values increase (as the state space grows with weakening) and the
number of conflicts conf also grow in tandem, unlike CBMC-PO.
We conjecture that this is the reason for the performance gain as
we move from TSO to PSO using WALCYRIE.

At the encoding level, the ρ values can be explained by the
way WALCYRIE exploits the control and data-flow conflicts in the
program. Since CBMC-PO is based on partial orders (which lack
the notion of conflict), their encoding relies heavily on SAT solver
eventually detecting a conflict. That is, CBMC-PO resolves the con-
trol and data conflicts lazily. By contrast, WALCYRIE exploits the
conflict-awareness of general event structures to develop an encod-
ing that handles conflicts eagerly: branching time objects like event
structures are able to tightly integrate the control/data choices, re-
sulting in faster conflict detection and faster state space pruning.
For instance, our funct constraint (stemming from the the require-
ment that morphisms be functions) ensures that once a read (r) is
satisfied by a write w (that is, when Xrw is set to true; equally,
f(r) = w), all other matches involving the r (say, Xrw′) are in-
validated immediately (via unit propagation). This, along with the
equality in ext , ensures that any conflicts resulting from guard and
latestw are also readily addressed simply by unit propagation. In
CBMC-PO, this conflict (that Xrw′ cannot happen together with
Xrw) is not immediately resolved/learnt and the SAT solver is let to
explore infeasible paths until it learns the conflict sometime in the

10−1 100 101
10−1

100

101

WALCYRIE (secs)

C
B

M
C

-P
O

(s
ec

s)

(a) Litmus: SC

10−1 100 101
10−1

100

101

WALCYRIE (secs)

C
B

M
C

-P
O

(s
ec

s)

(b) Litmus: TSO

10−1 100 101
10−1

100

101

WALCYRIE (secs)

C
B

M
C

-P
O

(s
ec

s)

(c) Litmus: PSO

101 102 103
101

102

103 900sec

WALCYRIE (secs)

C
B

M
C

-P
O

(s
ec

s)

(d) SV-COMP 2015: SC

101 102 103
101

102

103 900sec

WALCYRIE (secs)

C
B

M
C

-P
O

(s
ec

s)

(e) SV-COMP 2015: TSO

101 102 103
101

102

103 900sec

WALCYRIE (secs)

C
B

M
C

-P
O

(s
ec

s)

SAT
UNSAT

(f) SV-COMP 2015: PSO

27 28 29 210 211 212

27

28

29

210

211

212

WALCYRIE

C
B

M
C

-P
O

(g) SC: exploration efficacy (ρ)

29 210 211 212
29

210

211

212

WALCYRIE

C
B

M
C

-P
O

(h) TSO: exploration efficacy (ρ)

29 210 211 212
29

210

211

212

WALCYRIE

C
B

M
C

-P
O

(i) PSO: exploration efficacy (ρ)

Figure 5: Evaluating WALCYRIE against CBMC-PO

future. Thus, our true concurrency based, conflict-aware semantics
naturally provides a compact, highly effective decision procedure.

7. Related Work
We give a brief overview of work on program verification under
weak memory models with particular focus on assertion checking.
Finding defects in shared memory programs is known to be a hard
problem. It is non-primitive recursive for TSO and it is undecid-
able if read-write or read-read pairs can be reordered [12]. Avoid-
ing causal loops restores decidability but relaxing write atomicity
makes the problem undecidable again [13].

Verifiers for weak memory broadly come in two flavours:
the “operational approach”, in which buffers are modelled con-
cretely [3, 17, 26, 29, 30], and the “axiomatic approach”, in
which the observable effects of buffers are modelled indirectly
by (axiomatically) constraining the order of instruction execu-
tions [2, 9, 11, 15]. The former often relies on interleaving se-
mantics and employs transition systems as the underlying mathe-
matical framework. The later relies on independence models and
employs partial orders as the mathematical foundation. The ax-
iomatic method, by abstracting away the underlying complexity
of the hardware, has been shown to enable the verification of re-
alistic programs. Although we do not use partial orders, our true
concurrency based approach falls under the axiomatic approach.

These two approaches have been used to solve two distinct, but
related problems in weak memory. The first one is finding assertion
violations that arise due to the intricate semantics of weak memory;
this is the problem we address as well. The other is the problem of
fence insertion. Fence insertion presents two further sub-problems:
the first is to find a (preferably minimal, or small enough) set of

fences that needs to be inserted into a weak memory program to
make it sequentially consistent [7, 11, 17]; the second is to find a
set of fences that prevents any assertion violations caused by weak
memory artefacts [4, 19, 24, 29].

There are three works — [2, 8, 9] — that are very close to
ours. The closest to our work, [9], was discussed in Section 6.
Nidhugg [2] is promising but can only handle programs without
data nondeterminism. The work in [8] uses code transformations
to transform the weak memory program into an equivalent SC
program, and uses SC-based to tools to verify the original program.

There are further, more complex memory models. Our approach
can be used directly to model RMO. However, we currently cannot
handle POWER and ARM without additional formalisms. Recent
work [14] studies the difficulty of devising an axiomatic memory
model that is consistent with the standard compiler optimizations
for C11/C++11. Such fine-grained handling of desirable/undesir-
able thin-air executions is outside of the scope of our work.

8. Conclusion
We presented a bounded static analysis that exploits a conflict-
aware true concurrency semantics to efficiently find assertion vi-
olations in modern shared memory programs written in real-world
languages like C. We believe that our approach offers a promising
line of research: exploiting event structure based, truly concurrent
semantics to model and analyse real-world programs. In the fu-
ture, we plan to investigate more succinct intermediate forms like
Shasha-Snir traces to cover the Java or C++11 memory model and
to study other match-related problems such as lock/unlock or mal-
loc/free.

Acknowledgements We would like to thank the reviewers and
Michael Emmi for their constructive input that significantly im-
proved the final draft. Ganesh Narayanaswamy is a Commonwealth
Scholar, funded by the UK government. This work is supported by
ERC project 280053.

References
[1] Debate’90: An electronic discussion on true concurrency. In Vaughan

Pratt, Doron A. Peled, and Gerard J. Holzmann, editors, DIMACS
Workshop on Partial Order Methods in Verification, 1997.

[2] Parosh Aziz Abdulla, Stavros Aronis, Mohamed Faouzi Atig, Bengt
Jonsson, Carl Leonardsson, and Konstantinos F. Sagonas. Stateless
model checking for TSO and PSO. In Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), 2015.

[3] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Carl
Leonardsson, and Ahmed Rezine. Counter-example guided fence
insertion under TSO. In Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), 2012.

[4] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Carl
Leonardsson, and Ahmed Rezine. Memorax, a precise and sound tool
for automatic fence insertion under TSO. In Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), 2013.

[5] Sarita V. Adve and Kourosh Gharachorloo. Shared memory consis-
tency models: A tutorial. Computer, 1996.

[6] Alfred V. Aho, M. R. Garey, and Jeffrey D. Ullman. The transitive
reduction of a directed graph. SIAM Journal of Computing, 1972.

[7] Jade Alglave, Daniel Kroening, Vincent Nimal, and Daniel Poetzl.
Don’t sit on the fence – A static analysis approach to automatic fence
insertion. In International Conference on Computer Aided Verification
(CAV), 2014.

[8] Jade Alglave, Daniel Kroening, Vincent Nimal, and Michael
Tautschnig. Software verification for weak memory via program trans-
formation. In European Conference on Programming Languages and
Systems (ESOP), 2012.

[9] Jade Alglave, Daniel Kroening, and Michael Tautschnig. Partial orders
for efficient bounded model checking of concurrent software. In In-
ternational Conference on Computer Aided Verification (CAV), 2013.

[10] Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. Litmus:
Running tests against hardware. In Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), 2011.

[11] Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. Fences
in weak memory models (extended version). Formal Methods in
System Design, 40(2), 2012.

[12] Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burckhardt, and
Madanlal Musuvathi. On the verification problem for weak memory
models. In Symposium on Principles of Programming Languages
(POPL), 2010.

[13] Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burckhardt, and
Madanlal Musuvathi. What’s decidable about weak memory models?
In European Conference on Programming Languages and Systems
(ESOP), 2012.

[14] Mark Batty, Kayvan Memarian, Kyndylan Nienhuis, Jean Pichon-
Pharabod, and Peter Sewell. The problem of programming language
concurrency semantics. In European Conference on Programming
Languages and Systems (ESOP), 2015.

[15] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark
Weber. Mathematizing C++ concurrency. In Symposium on Principles
of Programming Languages (POPL), January 2011.

[16] Dirk Beyer. Software verification and verifiable witnesses (report on
SV-COMP 2015). In Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), 2015.

[17] Ahmed Bouajjani, Egor Derevenetc, and Roland Meyer. Checking
and enforcing robustness against TSO. In European Conference on
Programming Languages and Systems (ESOP), 2013.

[18] Howard Bowman and Rodolfo Gomez. Concurrency Theory: Calculi
an Automata for Modelling Untimed and Timed Concurrent Systems.
2005.

[19] Sebastian Burckhardt, Rajeev Alur, and Milo M. K. Martin. Check-
Fence: Checking consistency of concurrent data types on relaxed
memory models. In Programming Language Design and Implementa-
tion (PLDI), 2007.

[20] Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu.
Bounded model checking using satisfiability solving. Formal Meth-
ods in System Design, July 2001.

[21] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for check-
ing ANSI-C programs. In Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), 2004.

[22] Edmund Clarke, Daniel Kroening, and Karen Yorav. Behavioral con-
sistency of C and Verilog programs using bounded model checking. In
Design Automation Conference, 2003.

[23] Carla P. Gomes, Henry Kautz, Ashish Sabharwal, and Bart Selman.
Chapter 2, satisfiability solvers. In Handbook of Knowledge Repre-
sentation. 2008.

[24] Saurabh Joshi and Daniel Kroening. Property-driven fence insertion
using reorder bounded model checking. In International Symposium
on Formal Methods (FM), LNCS, 2015.

[25] Hadi Katebi, Karem A. Sakallah, and João P. Marques-Silva. Em-
pirical study of the anatomy of modern SAT solvers. In Theory and
Application of Satisfiability Testing (SAT), 2011.

[26] Michael Kuperstein, Martin Vechev, and Eran Yahav. Partial-
coherence abstractions for relaxed memory models. SIGPLAN No-
tices, June 2011.

[27] Leslie Lamport. How to make a multiprocessor computer that cor-
rectly executes multiprocess programs. IEEE Transaction on Comput-
ing, 1979.

[28] Jaejin Lee, Samuel P. Midkiff, and David A. Padua. Concurrent static
single assignment form and constant propagation for explicitly parallel
programs. In Languages and Compilers for Parallel Computing, 1997.

[29] Alexander Linden and Pierre Wolper. A verification-based approach
to memory fence insertion in PSO memory systems. In Tools and
Algorithms for the Construction and Analysis of Systems (TACAS),
2013.

[30] Feng Liu, Nayden Nedev, Nedyalko Prisadnikov, Martin Vechev, and
Eran Yahav. Dynamic synthesis for relaxed memory models. In
Programming Language Design and Implementation (PLDI), 2012.

[31] Steven S. Muchnick. Advanced Compiler Design and Implementation.
San Francisco, CA, USA, 1997.

[32] Vaughan Pratt. Modeling concurrency with partial orders. Interna-
tional Journal of Parallel Program, (1), February 1986.

[33] A.W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall
International Series in Computer Science. 1998.

[34] A.W. Roscoe. Understanding Concurrent Systems. 1st edition, 2010.

[35] Pradeep Sindhu, Michel Cekleov, and Jean-Marc Frailong. Formal
specification of memory models. Technical Report CSL-91-11, Xerox,
1991.

[36] SPARC International, Inc. The SPARC Architecture Manual: Ver-
sion 8. Upper Saddle River, NJ, USA, 1992.

[37] Rob J. van Glabbeek and Frits W. Vaandrager. Bundle event struc-
tures and CCSP. In International Conference on Concurrency Theory
(CONCUR), 2003.

[38] Glynn Winskel. Event structure semantics for CCS and related lan-
guages. In International Colloquium on Automata, Languages and
Programming (ICALP), 1982.

[39] Glynn Winskel. Event structures. In Advances in Petri Nets, 1986.

[40] Richard N. Zucker and Jean loup Baer. A performance study of mem-
ory consistency models. In International Symposium on Computer
Architecture, 1992.

	Introduction
	Problem Description
	Example
	Our Approach
	Contributions

	Background
	Weak Memory Models
	Bounded Model Checking
	Program Representation

	True Concurrency
	Semantics for weak memory
	Reachability in Weak Memory Programs

	Encoding
	Soundness and Completeness: P

	Evaluation
	Related Work
	Conclusion

