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ABSTRACT 

The parallel logic language Shared Prolog embeds Prolog 
as its sequential component. A program in Shared Prolog 
is composed of a set of logic agents, i.e. Prolog 
programs, that communicate associatively via a shared 
workspace called blackboard. 

The distinct features that characterize Shared Prolog with 
respect to other parallel (logic) languages are: scheduling 
of agents and granularity of parallelism explicitly 
controlled; Prolog embedded in the language; intrinsic 
modularity; associative send/receive of messages among 
agents with a simple operational semantics in terms of 
assert/retract of clauses. The model of communication 
puts Shared Prolog in the Linda family of parallel 
languages. 

The current prototype implementation is exposed. The 
architecture of the system is a distributed network of 
extended Prolog interpreters running under Unix and 
communicating via Internet sockets, and was obtained 
refining a specification written in SP itself. 

1. INTRODUCTION 

Stream-based parallel logic languages like Flat 
Concurrent Prolog (FCP), Flat Guarded Horn Clauses 
(FGHC), and Parlog are not extensions of Prolog. These 
languages do not support programming in Prolog, apart 
from deterministic programs, that are immediately 
translated. In order to exploit the intrinsic parallelism, in 
general a Prolog program must be rewritten from scratch 
[Tick 891. 
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This paper describes the parallel logic language Shared 
Prolog (SP) that embeds Prolog as its sequential 
component, extending it with concurrency and associative 
communication. SP is based on the blackboard procedural 
interpretation of logic programming [Ciancarini 891, an 
interpretation different from the process procedural 
interpretation of logic programming, which is the basis 
of FCP, FGHC, and Parlog [Shapiro 871. 

The distinct features that characterize SP with respect to 
other parallel logic languages are: unconstrained 
unification; scheduling of agents and granularity of 
parallelism esplicitly controlled; Prolog embedded in the 
language; intrinsic modularity; associative send/receive of 
messages with a simple operational semantics in terms of 
assert/retract of clauses [Brogi 893; no streams; a simple 
interface to other linguistic paradigms. 

The model of communication supported by SP is close to 
the Linda model of coordination [Gelemter 851. Actually, 
SP could be considered a logic instance of the Linda 
family of languages [Ciancarini 901. 

The intended use of SP is in applications in which it is 
natural and/or necessary to deal with “distributed 
intelligence”. Two fields of application that have been 
developed with SP are distributed programming 
environments [Ciancarini 88, Ambriola 891, and expert 
systems based on a blackboard architecture managing 
multiple data streams [Brogi 891. 

The paper has the following structure: 

Section 2 contains a description of the language and a 
simple program; Section 3 shows how the language has 
been used in the design of its own programming 
environment; Section 4 describes the current 
implementation; Section 5 contains a comparison of SP 
with other parallel languages. 
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2. sf’ = LOGIC + LINDA’S IN/OUT 

Given a database of clauses, the computation of a logic 
goal can be seen abstractly as a tree, where each node is 
labelled by a set of goals. The root is the starting goal, 
other nodes are labelled by derived tasks, and resolution is 
the inference rule. 

A procedural interpretation is a specification of the goal 
evaluation. For instance, the procedural interpretation 
assumed in Prolog is sequential leftmost depth-first. 
Conversely, a parallel procedural interpretation specifies 
several evaluation threads. This general framework can be 
refined by introducing a set of control operators and 
extending or constraining unification. Different classes of 
logic languages exist, depending upon the choices about 
control and unification constraints. 

Stream based parallel logic languages (FCP, FGHC, 
Parlog) rely upon the process interpretation of logic 
programming: a goal specifies a set of logic processes 
communicating by means of messages written in logic 
variables denoting partially defined shared dam structures 
called .streams [Shapiro 87, Ueda 87, Clark 861. 

SP is a parallel logic language without shared logic 
variables for communication. Implicit global 
backtracking is not allowed, while associative 
communication is based on the blackboard interpretation. 
The key idea of the blackboard interpretation of logic 
programming is to interpret a goal as a set of logic 
agents exchanging messages in an associative way, via a 
common workspace close to Linda’s Tuple Space. 
Associative send/receive of messages between agents have 
a simple and intuitive operational semantics in terms of 
Linda’s associative in/out. They remind the metalogic 
assert/retract operations of standard sequential Prolog. 

2.1 Syntax 

A Shared Prolog program specifies a blackboard agent (a 
database of facts) and a set of parallel agents ruled by 
theories (i.e. Prolog programs activated if some 
conditions are satisfied within the blackboard). 

A blackboard rule has a head without variables. The body 
is a bracketed set of atoms fi that specifies the initial 

state of the blackboard. 

blackboard :- Ifl,...,fn). 

Atoms can contain variables (non-ground terms). The 
scope of a variable is limited to the atom in which the 
variable is introduced. 

The head of a theory rule may contain variables. The 
body of a theory is a set of activation patterns separated 
by “+“, plus an optional Prolog program (following the 
keyword with) consisting of a set of clauses. Patterns 
and clauses of a theory are not visible from other 
theories. 

theory(Vl,...,Vj):- 
pattern1 + . ..+ patternk 
with Prolog-program. 

The variables introduced in the theory head are local to 
the theory, but global to all its patterns. These variables 
are useful to parametrize the theory, as shown in Section 
2.3(theory tty (xl). 

The patterns specify the messages that activate the 
theory. Apattern has the following structure: 

Read-Guard {In-Guard} 1 Body {Out) 

where Read-Guard, In-Guard, Body, and Out-Set are set 
of atomic goals. The vertical bar is a symbol of 
commitment. 

2.2 Semantics 

An initial goal rule contains the name of a blackboard and 
a (possibly empty) set of theory invocations separated by 
“II”. No variables can be shared between different theory 
invocations. 

blackboard 11 theory1 11 . . II theorym 

The initial goal evaluation corresponds to an infinite 
computation of the specified set of processes. A final 
condition (a bracketed set of atoms) can be expressed 
using another form of initial goal rule. 

blackboard II theory1 ll .., ll theorym :- 
(final-condition). -k 

When a final condition is specified, the initial goal 
evaluation corresponds to an attempt of proving the final 
condition by forward chaining. 

The evaluation of the initial goal creates and activates as 
many parallel processes as are the theories. No 
backtracking takes place in the initial goal. The 
evaluation of a theory corresponds to the evaluation of its 
patterns, and it is totally independent from the evaluation 
of other theories. 

The structure of a pattern is: 

Preactivation 1 Postactivation 

A preactivation is a guard (in the sense of Hoare’s CSP) 
that must be satisfied before the theory commits. It 
includes two components: 
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l Read-guard: A set of conditions concerning the facts 
to be found on the blackboard before the theory 
activation. Positive conditions, negative conditions, 
or built-in predicates can be used in a Read-guard. 

l In guard: A set of facts to be found in the blackboard 
and consumed before the theory activation. 

Readguard and Inguard are evaluated by unification. If 
the preactivation of a pattern is satisfied, the theory 
commits to that pattern and the postactivation is 
executed. The postactivation is composed of two parts: 

l Body: The initial goal of the Prolog program of the 
theory. 

9 Out-set: A set of facts that will be written on the 
blackboard at the end of the computation of the body. 

The evaluation of the preactivation is an atomic action. 
As soon as a pattern is satisfied, the evaluation of the 
other patterns of the same theory is halted, and the theory 
commits to the body of the satisfied pattern. This starts a 
local Prolog computation whose final effect is to write 
the Out-set on the blackboard, and to restart the 
competition among patterns. 

A running SP program consists of a set of independent 
processes which cooperate via the blackboard. The initial 
goal activates as many parallel processes as theories. 
There is no internal parallelism in a theory. 

Another form of parallelism in Shared Prolog is OR- 
parallelism. The step of theory activation can be 
partitioned into two sub-steps: first the satisfaction of a 
pattern is checked and then, if it is satisfiable, the pattern 
succeeds. This way, a number of inactive theories may 
simultaneously try to satisfy their guards. 

2.3 An Example 

This section describes how to write in SP a system that 
manages a bank database containing customer accounts. 
Customers can connect to one of N tty’s either to read 
their own balance, or to withdraw/deposit some amount 
of money. 

The design of a corresponding SP program starts with the 
definition of the initial goal. This goal specifies one 
blackboard (an account database called safe), and a set of 
theories (two bank servers, and N tty’s for the customers). 

safe II 
bank-server(l) II bank-server(2) ll 
tty (1) ll . . II tty(n). 

The account database initially contains two accounts 
only. This is stated by the following rule that defines the 
initial state of the blackboard. 

safe:- 
(account (pad, 1000) , 
account(mark,1200)). 

The bank-server theory is shown in Figure 1. 

bank-server(-) :- 
AmountSBalance 
{query (Tty,Name,withdraw(Amount)), 
account(Name,Balance) 1 
I % pattern 1 
NewBalance is Balance-Amount 
{account(Name,NewBalance) ). 

l 
(query(Tty,Name,deposit(AmOUnt) ), 
account(Name,Balance) ) 
I % pattern 2 
NewBalance is Balance+Amount 
{account(Name,NewBalance) ). 

+ 
{query(Tty,Name,new(Amount)) 1 
I % pattern 3 
{account(Name,Amount) I. 

% no with part in this theory 

Figure 1 Bank-server Theory 

A ban k-server theory can accept three different 
messages (corresponding to three theory patterns): 

l withdraw(Name,Amount) 
.new(Name,Amount) 
l deposit(Name,Amount) 

where Name identifies a customer, and Amount is a 
positive integer. To process a query, the bank-server 
needs to know the current balance. Since the balance will 
change after the query evaluation, the account tuple is 
consumed from the blackboard, together with the query 
message. 

Let us see a pattern more closely: 

AmountSBalance 
% Read-guard 
t 
query(Tty,Name,withdraw(Amount)), 
account(Name,Balance) 
1 
% In guard - 

NewBalance is Balance-Amount 
% Body 
{account(Name,NewBalance) 1. 
% Out Set - 

If the blackboard contains, among the others, the facts 
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query(l,mark,withdraw(lOO)), 
aCcount(mark,1200) 

the Readxuard is satisfied, the fact are consumed, and the 
pattern fires. The result of the evaluation of 
Postactivation is that the Out-set 

account(mark,llOO) 

is written on the blackboard. 

The program for the tty theory is shown in Figure 2. 

tty(Tty):- 
not ready(tty(Tty) 1, 
not query(Tty,-, ) 
I % (re)iZitialization 
Iready(tty(Tty) I. 

+ 
{ready(tty(Tty) 1 
I % query to the system 
read(Name),read(Query), 
check(Query) 
(query(Tty, Name, Query) 1. 

l 

account(Name ,Balance) 
{query(Tty, Name, ask-balance)] 
I % answer from the system 
write(Balance) 
Il. 

with % Prolog program 

check(withdraw(Amount)) . 
check (deposit (Amount)). 
check (new(Amount)). 
checktask-balance). 

Figure 2 Tiy Theory 

A t t y theory has an identification number (a local 
variable whose scope comprises all the patterns), and 
three patterns. The first pattern is for initialization, the 
second one for querying the system after receiving a 
command, and the third one for printing the balance after 
a user made the corresponding request. 

This agent is a typical example of SP shell interacting 
with a user. The first pattern can fire only if the 
blackboard contains neither the atom 
ready(tty(Tty)) nor the atom 

query lTtyr-,- 1 , i.e. it is used to enable the theory. 
The second pattern fires if the theory is enabled: input is 
asked to the user (a valid command). The third pattern 
firesifthereisapending “ask-balance"request.Note 
that the first pattern is mutually exclusive with the other 
two. Negative ReadAuards (pattern 1) are evaluated on 
the blackboard under the Closed World Assumption. 

3. DESIGNING THE SP MACHINE 

SP has been used to specify and prototype some 
distributed Al applications [Ciancarini 881. However, an 
interesting test for Shared Prolog was the specification of 
its own metainterpreter. Meta(circular) interpreters are 
good tests for programming languages, since they allow 
both to refine the language design and to compare the 
merits of different implementations. 

For a parallel language, it is obviously interesting to 
explore parallel metainterpreters, both to test the 
language expressiveness and to exploit parallelism for 
building an efficient implementation on a multiprocessor 
architecture. In fact, the specification of one 
metainterpreter was used as guideline for a real distributed 
implementation. The actual prototype implementation of 
the distributed interpreter is described in Section 4. 

3.1 Theory-grained Metainterpreter 

There are many possible parallel metainterpreters for SP. 
Let us start showing the metinterpreter in which theories 
compute in parallel. 

We must define a data structure to represent programs. A 
pattern is a tuple: 

pattern(Read,In,Body,Out,T) 

where T is the name of the theory the pattern belongs to. 
Each theory is represented by a set of pat t e rn 
predicates. 

To write a parallel meta-interpreter for SP, we need to 
specify the blackboard and the theories that execute the 

object program. The theory-grained parallel meta- 
interpreter keeps in the initial blackboard the facts of the 
object blackboard and all the patterns of the theories. 

par-metaBB:- 
{PI,... f Pnr % object bb facts 

pattern(Readl~,Inll,Body~l,Outll,T1), 
. . . , 
pattern(Readl,,Inl,,BodylmrOUtlmrTl), 
. . . . 
pattern(Readkl,Inkl,Bodykl,Outkl,Tk), 
. . . . 
Pattern (=a&,, Inhr BOdykn, Outkn, Tk) , 
1. 

Object theories are handled by the following SP (meta) 
theory, whose parameters are the theory name T and the 
knowledge base KEk 

par-Control-Theory(theory(T,KB)):- 
pattern(Read,In,Body,Out,T), Read 
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I J-11, 
I 
Body 
{Outf. 

with KB. 

If the starting goal specifies a final condition, a special 
theory is devoted to check the related event on the 
blackboard, and to force termination for all the agents, 
including itself. 

This metainterpreter suggests a specific architecture for 
the SP programming environment. We need as many 
processors as theories in the initial goal. The 
par-Control-Theory is replicated on each 
processor. Read-guards are interpreted as read-only 
accesses to the blackboard; Inguards are interpreted as 
messages from the blackboard to the theory; Out-sets are 
interpreted as messages from a theory to the blackboard. 
If there are as many processors as theories in the object 
system, the behavior is perfectly emulated. Notably, if 
the evaluation of a body does not terminate, the processor 
in charge of such a body loops. The blackboard can be 
either centralized or distributed: this metainterpreter does 
not make any such assumption. 

3.2 Pattern-grained Metainterpreter 

A more fine-grained parallel metainterpreter is obtained if 
there are as many processors as patterns. In this case the 
metablackboard is slightly different from the preceding 
one: 

par-metaBB:- 
{Plr... , p,, % object bb facts 
pattern(Readll,Inll,BodYllrOutllrTl)r 
. . . , 
pattern(Readlm, Inlmr Bodylmr Outlmr T1) I 
th (Tl,KB) , % theory semaphore 
. . . , 
Pattern(Readkl,Inkl,Bodykl,Outkl,Tk), 
. . . , 
pattern(Readkn, Inknr BOdyknr Outknr Tk) r 
th (Tk, KB) , % theory semaphore 
I. 

The control theory replicated on each processor (one for 
each pattern) is the following: 

par-Control-Pattern 
(pattern(Read,In,Body,Out,TI):- 
Read 
{In, th(T,KB) 1 
I 
Body 
{Out, th(T,KB) 1. 

with KB. 

When the evaluation of a pattern succeeds, the theory 
semaphore t h (T) is retracted from the blackboard to 
prevent the activation of multiple instances of the same 
theory. 

4. IMPLEMENTATION OF S P 

The metaintetpreters shown above specify a different 
granularity of parallelism for theories, without specifying 
blackboard control. This is a common situation for 
metainterpreters: some features are reified, i.e. completely 
specified and programmed, while other features are 
absorbed, i.e. directly assumed from the underlying 
machine, leaving room to many possible refinements for 
a given metainterpreter. Blackboard control, for instance, 
could be centralized or distributed. 

We implemented the first prototype interpreter for SP as 

a Prolog (sequential) simulator following the guideline of 
a sequential metainterpreter [Brogi 891. Afterwards we 
have implemented a parallel interpreter based on the 
theory-grained metainterpreter shown above. The 
architecture of the current system is a distributed network 
of extended Prolog interpreters running under Unix and 
communicating via Internet sockets, 

The user view of the SP system is a Prolog shell that 
accepts a number of commands. Blackboard control is 
centralized. We were able to perform some compile-time 
optimizations. We are currently studying a distributed 
implementation for the blackboard. 

In the following subsections we describe the system view 
and (shortly) the user view of the current implementation. 

4.1 Operating Environment: System View 

Standard Prolog implementations do not allow to start 
multiple, concurrent threads of execution within a given 
knowledge base. Therefore, we need the ability to activate 
concurrent threads of execution and, furthermore, a 
mechanism to exchange information between concurrent 
threads. These features are achieved as follows: 

The standard set of Prolog primitives was extended 
with new predicates supplying interprocess message 
passing primitives. True Prolog terms (including 
variables) can be exchanged as messages. 

A Prolog process was allowed, by an ad hoc 
mechanism, to activate a process corresponding to a 
Prolog interpreter executing a different program. 
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We have adopted sockets as the low level interprocess 
communication mechanism. We have built a mailbox 
server for interprocess and interprocessor communication. 

An “open” version of the Prolog interpreter was used as 
implementation kernel. With “open” we mean a Prolog 
interpreter with a procedural attachment to a standard 
system language (e.g. the C programming language), and 
to the underlying operating system (e.g. Unix), This 
feature is now common in commercial Prolog systems. 

4.1.1 SP Runtime System 

The blackboard and each theory are separately evaluated 
by a group of Prolog language processors running control 
programs (the resulting processes are called agents). The 
agents of a SP system communicate via a kernel server, 
using asynchronous send/3 and receive/3 primitives, 
andasynchronous sync_receive/3. 

An initial goal starts a “compilation phase” that creates 
the control programs for both the blackboard process and 
the theory processes. 

Blackboard control is centralized in the blackboard agent. 
Its knowledge base consists of: 

l The blackboard name, represented by the fact 
bb(Name). 

l The blackboard initial content, directly represented as a 
set of facts. 

l The list of the names of all the theories: 
theories(List). 

l The set of patterns of the theories, represented as 
follows: 

pattern 
(Theory,Nofpattern,Read,In,Body,Out). 

l The state of a theory: the fact that a theory is active 
on a pattern as: 

active(Theory,Nofpattern,Body,Out). 

l Control program: the clauses that define the behavior 
of the blackboard agent. 

control-bb:- 
% final condition (if any) 
eval(Fina1 condition), 
terminate(Theories), 
halt. 

control-bb:- 
% evaluation loop 
schedule(Activablegatterns), 
% choose patterns 
send-all(Activable_patterns), 
% send messages 

all-receive (Answers), 
% wait at least 1 answer 
assert-all(Answers), 
% update object bb 
control bb. - 

The scheduling of activable patterns (given the actual 
blackboard) is a possible bottleneck. Currently, we are 
developing partial evaluation techniques that should speed 
up this activity. 

A theory agent has an independent knowledge base. The 
theory agent knows its name and the name of the 
blackboard to which it is connected, and executes a 
control program. The following clauses define the control 
behavior of a single theory agent 

controlJh(Theory,BBname):- 
sync-receive(Theory, BBname, Body), 
eval(Theory, Body, BBname), 
control_th(Theory,BBname). 

eval(T, Body, BB):- 
call(Body), !, send(T,BB,Body) . 

eval(T, Body, BB):- 
send(T,BB,failure) . 

A theory agent receives a body, i.e. a Prolog goal to 
evaluate. If the goal evaluation terminates, it answers 

l The goal modified with the resulting variable 
substitutions, in case of success. 

l The atom failure, in case of failure. 

4.1.2 The Kernel Architecture 

In this section we present the kernel mechanisms 
implemented to run Shared Prolog programs on a 
network of Unix machines. 

The implementation suggested by the theory-grained 
me&interpreter shown in Section 3 is based on a network 
of Prolog processes: each process is a Prolog program 
running either a blackboard manager or a theory manager 
program. This implementation relies upon an extended 
Prolog kernel able to perform the following tasks: 

l To “fork” a number of different threads from within a 
single Prolog program. 

. To make available some communication mechanisms 
for the communication of full Prolog terms among 
Prolog processes (running on the same machine or on 
a network of machines). 

Given such features, a Shared Prolog program is 
implemented according to the following architecture (see 
Figure 3): 
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l A Prolog process for the blackboard control program 
is activated. 

l For each theory, a Prolog process for the theory 
control program is activated. 

l Communications between the theory agents and the 
blackboard agent are handled by the kernel. For 
instance, a theory can issue a request for the 
evaluation of a pattern as a list of Prolog facts that 
must be matched in the blackboard. Afterwards, the 
blackboard answers to the theory once more with a list 
of Prolog facts. 

Blackboard agent 

Agent [extended Prolog process) 

Interprocess communication 

Figure 3 Current implementation of the SP interpreter 

In order to fulfill the requirements imposed by the 
distributed execution of SP programs, an inter-process 
communication mechanism has to be supplied. In the 
current implementation we used the Unix BSD intemet 
socket facility. Sockets allow fast bidirectional 
communications between any pair of Unix processes 
running on the same machine or on different machines in 
an Internet network. 

Thus, we extended a Prolog interpreter with some new 
predicates for interfacing the socket mechanism. We 
wrote a C program performing the required tasks, and 
then we linked the compiled program to the addressing 
space of the Prolog intepreter (a standard feature of many 
Prolog language processors). The new predicates allow to 
associatively send (receive) a message consisting of a 
generic Prolog term to (from) another Prolog interpreter. 

The syntax of the new predicates is the following: 

send(<snd>,<rcv>,<msg>) 

receive(<rcv>,<sndV>,<msgV>) 

where the arguments can be constants, variables, or 
terms. The informal semantics of these predicates is the 
following: 

send(myname,destname,msgvalue) 

dispatches a message (msgvalue) from a Prolog process 
(identified by myname) to a Prolog process identified 
by destname. 

receive(myname,mittname,MsgVar) 

unifies the term MsgVar with a message sent by 
process mittname to process myname if such a send 
has ever been performed or with the term 
“no-msg-f or-you" if such a send has never been 
pXfOllIK=d. 

receive(myname,MittnameVar,MsgVar) 

unifies the term MittnameVar with the name of the 
process that performed a call 

send t-, myname,msgvalue), andtheterm 
MsgVar with msgvalue if such a send has been 
performed or with the term “no-msg-f o r-you" if 
such a send has never been performed. 

Both send and receive primitives are asynchronous. 
This means that they always immediately succeed upon 
call. As standard Prolog system predicates, they are not 
backtrackable, i.e. once they have been executed, they 
cannot be “undone”. 

When a synchronous receive is needed, the following 

(active wait) code may be used: 

sync-receive(Myname,Mittname,Msg) :- 
receive(Myname,Mittname,Msg), 
Msg\=="no-msg-for_you",!. 

sync-receive(Myname,Mittname,Msg) :- 
sync-receive(Myname,Mittname,Msg). 

The implementation of send and receive rely upon a 
global communication server process that accepts and 
dispatches communication requests. The server accepts 
requests issued by the C procedures that implement the 
Prolog predicates send and receive. The server 
manages a mailbox and a waiting list as follows: 

1. If the server receives a communication request 

send(mittname,destname,message) 

it simply puts the communication request in the 
mailbox. 

2. If the server receives a communication request 

receive(destname,Mittvar,MsgVar) 
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it looks up the mailbox data structure for a message sent 
to the destname process and it answers back to the 
requesting process either the first message found in the 
mailbox (deleting the message from the data structure) or 
a “no msg - - for_you" message with MittVurboundto 
“communication server". - 
3. If the server receives a communication request 

receive(destname,mittname,MsgVar) 

it looks up the mailbox data structure for a message sent 
to the destname process from a mittname process and 
then proceeds as in point 2. 

The (informal) server algorithm is depicted in Figure 4. 

ierver() 

initialize server data structures; 
create the global socket server; 
accept requests on this socket; 
termination=FALSE 
while (! (termination)) 

I 
read a request; 
case(request-typejof 

I 
SND: if 

the destination process is 
waiting for a message from 
this sender 
then 
send the incoming message to 
the waiting process as an ACK 
message (this unblocks the 
receiver process) 
else 
put the incoming message in 
the mailbox structure 
endif; 
send the ACK message 
to the sender process; 

RCV: if 
there is a message in the 
mailbox with the requested 
sender for the 
requesting process, 
then 
send it back as ACK message 
else 
put the requesting process 
in the wait list 
endif; 

END: termination=TRUE; 
I 

1 
close open sockets; 
clear dynamic data structures; 

1 Figure 5 The send and receive algorithms 

send0 
1 

get parameters 
(mittname,destname,msg); 
connect a socket to the 
communication server socket: 
create a reply private socket; 
send the SND message with the proper 
parameters on the server socket; 
wait for the ACK message on the 
private reply socket; 

t 

receive0 

get parameters 
(destname,Mittname,Msg); 
connect a socket to the 
communication server socket: 
create a reply private socket; 
send the RCV message with the proper 
parameters on the server socket; 
wait for the ACK message containing 
the message on 
the private reply socket; 
bind the Msg variable; 
possibly bind the Mittname variable; 

The algorithms of the associative send and receive 
predicates are depicted in Figure 5. 

The overall resulting structure of the SP distributed run 
time system is depicted in Figure 6. 

Figure 6 SP Distributed Runtime System 

A Prolog interpreter can fork the execution of a number 
of different threads using a s he1 1 system predicate. 
When a thread has to be forked, the following steps are 
p3fOllU& 

9 The Prolog code for the new thread is put in a special 
file prolog.ini. 

l A shell predicate 

shell(Prolog-interpreter) 

is executed,where Prolog interpreter isa - 
string denoting the name of a Prolog interpreter. This Figure 4 The server algorithm 
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forces the activation of a new Prolog process 
executing the code contained in the file 
prolog.ini. 

Using this simple mechanism, multiple threads can be 
forked at any time. For instance, new theories can be 
dynamically activated and connected to a running 
blackboard. 

4.2 Operating Environment: User View 

Currently, the user enters in a Prolog environment and 
activates the SP run time system. The user interacts with 
a shell through which he can do the following actions: 

1) Give an initial goal that activates a blackboard process 
and (possibly)aset ofagents. 

2) Give a connection goal that connects (or disconnects) 
agents to a running blackboard process. The blackboard 
process could belong to another user. The syntax of these 
special goals is: 

TheoryCBlackboard 

To connect a theory to a blackboard. 

{Theory@Blackboard} 

To disconnect a theory from a blackboard. 

For instance, in the bank account example a new tty is 
added with the command 

tty(n+l)@safe. 

3) Trace the messages exchanged between a theory and its 
blackboard. 

There is also a tool for browsing within a running 
blackboard to observe its evolution. 

5. COMPARISON WITH OTHER LANGUAGES 

We know of at least another blackboard logic language: 
Polka [Davison 871. While its field of applications is 
quite similar to the SP one (i.e. distributed AI), its 
implementation and underlying philosophy is quite 
different, since it has been built as an extension of the 
Parlog programming environment. In this way Polka 
inherits all the strong points, but also all the weaknesses 
of the traditional parallel logic approach. 

A more interesting comparison can be attempted with 
respect to Linda [Carrier0 89a]. Linda’s “coordination 
model” has been proposed as a framework for designing 
and programming open parallel systems, i.e. systems 
composed of a dynamic collection of asynchronous 
communicating agents [Carriero 89b]. 

It is interesting to match the Linda model with the 
parallel logic programming paradigm. Admittedly, a logic 
language (e.g. Flat Concurrent Prolog) misses the 
efficiency and the openendness of Linda when specifying 
parallel systems, with a slight gain in expressiveness. 
Moreover, it seems difficult to elegantly integrate 
different languages in FCP or GHC: these languages have 
problems even in accomodating Prolog! 

We consider SP as the missing link between the family 
of Linda languages and the family of parallel logic 
languages. SP is closer to the Linda coordination model, 
while it maintains a strong logic flavour (so it should be 
more suited for specification tasks). In fact, the 
blackboard in Shared Prolog is very similar to Linda’s 
tuple space, and with some approximations SP could be 
defined as a logic programming counterpart of the Linda 
framework. We found (and we are currently studying) that 
the SP approach allows a number of compilation-time 
optimizations, and moreover maintains a great flexibility 
at run-time. 

6. CONCLUSIONS AND FUTURE WORKS 

Current research on concurrent logic programming is 
centered around two very different approaches. 

In the first one, the focus is on parallelizing compilers, 
trying to get advantage from modern multiprocessor 
architectures in a transparent way, from the point view of 
the Prolog user [Hermenegildo 891. 

In the second one, new logic languages are defined, like 
FCP, FGHC or Parlog, that are very different from 
Prolog and are based on fine grained parallel computing 
models. 

Our approach has taken a different route: we have 
embedded standard Prolog in a distributed operating 
environment, aiming at having an open system of large- 
grained, communicating Prolog agents. Not only strings 
can be exchanged as messages, but also true Prolog terms 
(also non ground, i.e. including variables). The 
programmer has full control on the scheduling of 
processes and the granularity of communications. 

An interesting topic that we are going to explore is the 
relationship between SP and the Linda family of 
languages. We think that SP can be considered the logic 
counterpart of the Linda approach. Moreover, we plan to 
develop a new implementation using a Linda based kernel 
for the blackboard control, that in this way will become 
completely distributed. 
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