
Design and Distributed Implementation

of the Parallel Logic Language Shared Prolog

VAmbriola*+, P.Ciancarini*, MDanelutto*

* Dipartimento di Informatica - Universith di Pisa

+ Dipartimento di Matematica e Informatica - Universitci di Udine

Italy

ABSTRACT

The parallel logic language Shared Prolog embeds Prolog
as its sequential component. A program in Shared Prolog
is composed of a set of logic agents, i.e. Prolog
programs, that communicate associatively via a shared
workspace called blackboard.

The distinct features that characterize Shared Prolog with
respect to other parallel (logic) languages are: scheduling
of agents and granularity of parallelism explicitly
controlled; Prolog embedded in the language; intrinsic
modularity; associative send/receive of messages among
agents with a simple operational semantics in terms of
assert/retract of clauses. The model of communication
puts Shared Prolog in the Linda family of parallel
languages.

The current prototype implementation is exposed. The
architecture of the system is a distributed network of
extended Prolog interpreters running under Unix and
communicating via Internet sockets, and was obtained
refining a specification written in SP itself.

1. INTRODUCTION

Stream-based parallel logic languages like Flat
Concurrent Prolog (FCP), Flat Guarded Horn Clauses
(FGHC), and Parlog are not extensions of Prolog. These
languages do not support programming in Prolog, apart
from deterministic programs, that are immediately
translated. In order to exploit the intrinsic parallelism, in
general a Prolog program must be rewritten from scratch
[Tick 891.
Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy othetise, or to republish, requires a fee
and/or specific permission.
0 1990 ACM 089791-350-7/90/0003/0040 $1.50

This paper describes the parallel logic language Shared
Prolog (SP) that embeds Prolog as its sequential
component, extending it with concurrency and associative
communication. SP is based on the blackboard procedural
interpretation of logic programming [Ciancarini 891, an
interpretation different from the process procedural
interpretation of logic programming, which is the basis
of FCP, FGHC, and Parlog [Shapiro 871.

The distinct features that characterize SP with respect to
other parallel logic languages are: unconstrained
unification; scheduling of agents and granularity of
parallelism esplicitly controlled; Prolog embedded in the
language; intrinsic modularity; associative send/receive of
messages with a simple operational semantics in terms of
assert/retract of clauses [Brogi 893; no streams; a simple
interface to other linguistic paradigms.

The model of communication supported by SP is close to
the Linda model of coordination [Gelemter 851. Actually,
SP could be considered a logic instance of the Linda
family of languages [Ciancarini 901.

The intended use of SP is in applications in which it is
natural and/or necessary to deal with “distributed
intelligence”. Two fields of application that have been
developed with SP are distributed programming
environments [Ciancarini 88, Ambriola 891, and expert
systems based on a blackboard architecture managing
multiple data streams [Brogi 891.

The paper has the following structure:

Section 2 contains a description of the language and a
simple program; Section 3 shows how the language has
been used in the design of its own programming
environment; Section 4 describes the current
implementation; Section 5 contains a comparison of SP
with other parallel languages.

40

2. sf’ = LOGIC + LINDA’S IN/OUT

Given a database of clauses, the computation of a logic
goal can be seen abstractly as a tree, where each node is
labelled by a set of goals. The root is the starting goal,
other nodes are labelled by derived tasks, and resolution is
the inference rule.

A procedural interpretation is a specification of the goal
evaluation. For instance, the procedural interpretation
assumed in Prolog is sequential leftmost depth-first.
Conversely, a parallel procedural interpretation specifies
several evaluation threads. This general framework can be
refined by introducing a set of control operators and
extending or constraining unification. Different classes of
logic languages exist, depending upon the choices about
control and unification constraints.

Stream based parallel logic languages (FCP, FGHC,
Parlog) rely upon the process interpretation of logic
programming: a goal specifies a set of logic processes
communicating by means of messages written in logic
variables denoting partially defined shared dam structures
called .streams [Shapiro 87, Ueda 87, Clark 861.

SP is a parallel logic language without shared logic
variables for communication. Implicit global
backtracking is not allowed, while associative
communication is based on the blackboard interpretation.
The key idea of the blackboard interpretation of logic
programming is to interpret a goal as a set of logic
agents exchanging messages in an associative way, via a
common workspace close to Linda’s Tuple Space.
Associative send/receive of messages between agents have
a simple and intuitive operational semantics in terms of
Linda’s associative in/out. They remind the metalogic
assert/retract operations of standard sequential Prolog.

2.1 Syntax

A Shared Prolog program specifies a blackboard agent (a
database of facts) and a set of parallel agents ruled by
theories (i.e. Prolog programs activated if some
conditions are satisfied within the blackboard).

A blackboard rule has a head without variables. The body
is a bracketed set of atoms fi that specifies the initial

state of the blackboard.

blackboard :- Ifl,...,fn).

Atoms can contain variables (non-ground terms). The
scope of a variable is limited to the atom in which the
variable is introduced.

The head of a theory rule may contain variables. The
body of a theory is a set of activation patterns separated
by “+“, plus an optional Prolog program (following the
keyword with) consisting of a set of clauses. Patterns
and clauses of a theory are not visible from other
theories.

theory(Vl,...,Vj):-
pattern1 + . ..+ patternk
with Prolog-program.

The variables introduced in the theory head are local to
the theory, but global to all its patterns. These variables
are useful to parametrize the theory, as shown in Section
2.3(theory tty (xl).

The patterns specify the messages that activate the
theory. Apattern has the following structure:

Read-Guard {In-Guard} 1 Body {Out)

where Read-Guard, In-Guard, Body, and Out-Set are set
of atomic goals. The vertical bar is a symbol of
commitment.

2.2 Semantics

An initial goal rule contains the name of a blackboard and
a (possibly empty) set of theory invocations separated by
“II”. No variables can be shared between different theory
invocations.

blackboard 11 theory1 11 . . II theorym

The initial goal evaluation corresponds to an infinite
computation of the specified set of processes. A final
condition (a bracketed set of atoms) can be expressed
using another form of initial goal rule.

blackboard II theory1 ll .., ll theorym :-
(final-condition). -k

When a final condition is specified, the initial goal
evaluation corresponds to an attempt of proving the final
condition by forward chaining.

The evaluation of the initial goal creates and activates as
many parallel processes as are the theories. No
backtracking takes place in the initial goal. The
evaluation of a theory corresponds to the evaluation of its
patterns, and it is totally independent from the evaluation
of other theories.

The structure of a pattern is:

Preactivation 1 Postactivation

A preactivation is a guard (in the sense of Hoare’s CSP)
that must be satisfied before the theory commits. It
includes two components:

41

l Read-guard: A set of conditions concerning the facts
to be found on the blackboard before the theory
activation. Positive conditions, negative conditions,
or built-in predicates can be used in a Read-guard.

l In guard: A set of facts to be found in the blackboard
and consumed before the theory activation.

Readguard and Inguard are evaluated by unification. If
the preactivation of a pattern is satisfied, the theory
commits to that pattern and the postactivation is
executed. The postactivation is composed of two parts:

l Body: The initial goal of the Prolog program of the
theory.

9 Out-set: A set of facts that will be written on the
blackboard at the end of the computation of the body.

The evaluation of the preactivation is an atomic action.
As soon as a pattern is satisfied, the evaluation of the
other patterns of the same theory is halted, and the theory
commits to the body of the satisfied pattern. This starts a
local Prolog computation whose final effect is to write
the Out-set on the blackboard, and to restart the
competition among patterns.

A running SP program consists of a set of independent
processes which cooperate via the blackboard. The initial
goal activates as many parallel processes as theories.
There is no internal parallelism in a theory.

Another form of parallelism in Shared Prolog is OR-
parallelism. The step of theory activation can be
partitioned into two sub-steps: first the satisfaction of a
pattern is checked and then, if it is satisfiable, the pattern
succeeds. This way, a number of inactive theories may
simultaneously try to satisfy their guards.

2.3 An Example

This section describes how to write in SP a system that
manages a bank database containing customer accounts.
Customers can connect to one of N tty’s either to read
their own balance, or to withdraw/deposit some amount
of money.

The design of a corresponding SP program starts with the
definition of the initial goal. This goal specifies one
blackboard (an account database called safe), and a set of
theories (two bank servers, and N tty’s for the customers).

safe II
bank-server(l) II bank-server(2) ll
tty (1) ll . . II tty(n).

The account database initially contains two accounts
only. This is stated by the following rule that defines the
initial state of the blackboard.

safe:-
(account (pad, 1000) ,
account(mark,1200)).

The bank-server theory is shown in Figure 1.

bank-server(-) :-
AmountSBalance
{query (Tty,Name,withdraw(Amount)),
account(Name,Balance) 1
I % pattern 1
NewBalance is Balance-Amount
{account(Name,NewBalance)).

l
(query(Tty,Name,deposit(AmOUnt)),
account(Name,Balance))
I % pattern 2
NewBalance is Balance+Amount
{account(Name,NewBalance)).

+
{query(Tty,Name,new(Amount)) 1
I % pattern 3
{account(Name,Amount) I.

% no with part in this theory

Figure 1 Bank-server Theory

A ban k-server theory can accept three different
messages (corresponding to three theory patterns):

l withdraw(Name,Amount)
.new(Name,Amount)
l deposit(Name,Amount)

where Name identifies a customer, and Amount is a
positive integer. To process a query, the bank-server
needs to know the current balance. Since the balance will
change after the query evaluation, the account tuple is
consumed from the blackboard, together with the query
message.

Let us see a pattern more closely:

AmountSBalance
% Read-guard
t
query(Tty,Name,withdraw(Amount)),
account(Name,Balance)
1
% In guard -

NewBalance is Balance-Amount
% Body
{account(Name,NewBalance) 1.
% Out Set -

If the blackboard contains, among the others, the facts

42

query(l,mark,withdraw(lOO)),
aCcount(mark,1200)

the Readxuard is satisfied, the fact are consumed, and the
pattern fires. The result of the evaluation of
Postactivation is that the Out-set

account(mark,llOO)

is written on the blackboard.

The program for the tty theory is shown in Figure 2.

tty(Tty):-
not ready(tty(Tty) 1,
not query(Tty,-,)
I % (re)iZitialization
Iready(tty(Tty) I.

+
{ready(tty(Tty) 1
I % query to the system
read(Name),read(Query),
check(Query)
(query(Tty, Name, Query) 1.

l

account(Name ,Balance)
{query(Tty, Name, ask-balance)]
I % answer from the system
write(Balance)
Il.

with % Prolog program

check(withdraw(Amount)) .
check (deposit (Amount)).
check (new(Amount)).
checktask-balance).

Figure 2 Tiy Theory

A t t y theory has an identification number (a local
variable whose scope comprises all the patterns), and
three patterns. The first pattern is for initialization, the
second one for querying the system after receiving a
command, and the third one for printing the balance after
a user made the corresponding request.

This agent is a typical example of SP shell interacting
with a user. The first pattern can fire only if the
blackboard contains neither the atom
ready(tty(Tty)) nor the atom

query lTtyr-,- 1 , i.e. it is used to enable the theory.
The second pattern fires if the theory is enabled: input is
asked to the user (a valid command). The third pattern
firesifthereisapending “ask-balance"request.Note
that the first pattern is mutually exclusive with the other
two. Negative ReadAuards (pattern 1) are evaluated on
the blackboard under the Closed World Assumption.

3. DESIGNING THE SP MACHINE

SP has been used to specify and prototype some
distributed Al applications [Ciancarini 881. However, an
interesting test for Shared Prolog was the specification of
its own metainterpreter. Meta(circular) interpreters are
good tests for programming languages, since they allow
both to refine the language design and to compare the
merits of different implementations.

For a parallel language, it is obviously interesting to
explore parallel metainterpreters, both to test the
language expressiveness and to exploit parallelism for
building an efficient implementation on a multiprocessor
architecture. In fact, the specification of one
metainterpreter was used as guideline for a real distributed
implementation. The actual prototype implementation of
the distributed interpreter is described in Section 4.

3.1 Theory-grained Metainterpreter

There are many possible parallel metainterpreters for SP.
Let us start showing the metinterpreter in which theories
compute in parallel.

We must define a data structure to represent programs. A
pattern is a tuple:

pattern(Read,In,Body,Out,T)

where T is the name of the theory the pattern belongs to.
Each theory is represented by a set of pat t e rn
predicates.

To write a parallel meta-interpreter for SP, we need to
specify the blackboard and the theories that execute the

object program. The theory-grained parallel meta-
interpreter keeps in the initial blackboard the facts of the
object blackboard and all the patterns of the theories.

par-metaBB:-
{PI,... f Pnr % object bb facts

pattern(Readl~,Inll,Body~l,Outll,T1),
. . . ,
pattern(Readl,,Inl,,BodylmrOUtlmrTl),
. . . .
pattern(Readkl,Inkl,Bodykl,Outkl,Tk),
. . . .
Pattern (=a&,, Inhr BOdykn, Outkn, Tk) ,
1.

Object theories are handled by the following SP (meta)
theory, whose parameters are the theory name T and the
knowledge base KEk

par-Control-Theory(theory(T,KB)):-
pattern(Read,In,Body,Out,T), Read

43

I J-11,
I
Body
{Outf.

with KB.

If the starting goal specifies a final condition, a special
theory is devoted to check the related event on the
blackboard, and to force termination for all the agents,
including itself.

This metainterpreter suggests a specific architecture for
the SP programming environment. We need as many
processors as theories in the initial goal. The
par-Control-Theory is replicated on each
processor. Read-guards are interpreted as read-only
accesses to the blackboard; Inguards are interpreted as
messages from the blackboard to the theory; Out-sets are
interpreted as messages from a theory to the blackboard.
If there are as many processors as theories in the object
system, the behavior is perfectly emulated. Notably, if
the evaluation of a body does not terminate, the processor
in charge of such a body loops. The blackboard can be
either centralized or distributed: this metainterpreter does
not make any such assumption.

3.2 Pattern-grained Metainterpreter

A more fine-grained parallel metainterpreter is obtained if
there are as many processors as patterns. In this case the
metablackboard is slightly different from the preceding
one:

par-metaBB:-
{Plr... , p,, % object bb facts
pattern(Readll,Inll,BodYllrOutllrTl)r
. . . ,
pattern(Readlm, Inlmr Bodylmr Outlmr T1) I
th (Tl,KB) , % theory semaphore
. . . ,
Pattern(Readkl,Inkl,Bodykl,Outkl,Tk),
. . . ,
pattern(Readkn, Inknr BOdyknr Outknr Tk) r
th (Tk, KB) , % theory semaphore
I.

The control theory replicated on each processor (one for
each pattern) is the following:

par-Control-Pattern
(pattern(Read,In,Body,Out,TI):-
Read
{In, th(T,KB) 1
I
Body
{Out, th(T,KB) 1.

with KB.

When the evaluation of a pattern succeeds, the theory
semaphore t h (T) is retracted from the blackboard to
prevent the activation of multiple instances of the same
theory.

4. IMPLEMENTATION OF S P

The metaintetpreters shown above specify a different
granularity of parallelism for theories, without specifying
blackboard control. This is a common situation for
metainterpreters: some features are reified, i.e. completely
specified and programmed, while other features are
absorbed, i.e. directly assumed from the underlying
machine, leaving room to many possible refinements for
a given metainterpreter. Blackboard control, for instance,
could be centralized or distributed.

We implemented the first prototype interpreter for SP as

a Prolog (sequential) simulator following the guideline of
a sequential metainterpreter [Brogi 891. Afterwards we
have implemented a parallel interpreter based on the
theory-grained metainterpreter shown above. The
architecture of the current system is a distributed network
of extended Prolog interpreters running under Unix and
communicating via Internet sockets,

The user view of the SP system is a Prolog shell that
accepts a number of commands. Blackboard control is
centralized. We were able to perform some compile-time
optimizations. We are currently studying a distributed
implementation for the blackboard.

In the following subsections we describe the system view
and (shortly) the user view of the current implementation.

4.1 Operating Environment: System View

Standard Prolog implementations do not allow to start
multiple, concurrent threads of execution within a given
knowledge base. Therefore, we need the ability to activate
concurrent threads of execution and, furthermore, a
mechanism to exchange information between concurrent
threads. These features are achieved as follows:

The standard set of Prolog primitives was extended
with new predicates supplying interprocess message
passing primitives. True Prolog terms (including
variables) can be exchanged as messages.

A Prolog process was allowed, by an ad hoc
mechanism, to activate a process corresponding to a
Prolog interpreter executing a different program.

44

We have adopted sockets as the low level interprocess
communication mechanism. We have built a mailbox
server for interprocess and interprocessor communication.

An “open” version of the Prolog interpreter was used as
implementation kernel. With “open” we mean a Prolog
interpreter with a procedural attachment to a standard
system language (e.g. the C programming language), and
to the underlying operating system (e.g. Unix), This
feature is now common in commercial Prolog systems.

4.1.1 SP Runtime System

The blackboard and each theory are separately evaluated
by a group of Prolog language processors running control
programs (the resulting processes are called agents). The
agents of a SP system communicate via a kernel server,
using asynchronous send/3 and receive/3 primitives,
andasynchronous sync_receive/3.

An initial goal starts a “compilation phase” that creates
the control programs for both the blackboard process and
the theory processes.

Blackboard control is centralized in the blackboard agent.
Its knowledge base consists of:

l The blackboard name, represented by the fact
bb(Name).

l The blackboard initial content, directly represented as a
set of facts.

l The list of the names of all the theories:
theories(List).

l The set of patterns of the theories, represented as
follows:

pattern
(Theory,Nofpattern,Read,In,Body,Out).

l The state of a theory: the fact that a theory is active
on a pattern as:

active(Theory,Nofpattern,Body,Out).

l Control program: the clauses that define the behavior
of the blackboard agent.

control-bb:-
% final condition (if any)
eval(Fina1 condition),
terminate(Theories),
halt.

control-bb:-
% evaluation loop
schedule(Activablegatterns),
% choose patterns
send-all(Activable_patterns),
% send messages

all-receive (Answers),
% wait at least 1 answer
assert-all(Answers),
% update object bb
control bb. -

The scheduling of activable patterns (given the actual
blackboard) is a possible bottleneck. Currently, we are
developing partial evaluation techniques that should speed
up this activity.

A theory agent has an independent knowledge base. The
theory agent knows its name and the name of the
blackboard to which it is connected, and executes a
control program. The following clauses define the control
behavior of a single theory agent

controlJh(Theory,BBname):-
sync-receive(Theory, BBname, Body),
eval(Theory, Body, BBname),
control_th(Theory,BBname).

eval(T, Body, BB):-
call(Body), !, send(T,BB,Body) .

eval(T, Body, BB):-
send(T,BB,failure) .

A theory agent receives a body, i.e. a Prolog goal to
evaluate. If the goal evaluation terminates, it answers

l The goal modified with the resulting variable
substitutions, in case of success.

l The atom failure, in case of failure.

4.1.2 The Kernel Architecture

In this section we present the kernel mechanisms
implemented to run Shared Prolog programs on a
network of Unix machines.

The implementation suggested by the theory-grained
me&interpreter shown in Section 3 is based on a network
of Prolog processes: each process is a Prolog program
running either a blackboard manager or a theory manager
program. This implementation relies upon an extended
Prolog kernel able to perform the following tasks:

l To “fork” a number of different threads from within a
single Prolog program.

. To make available some communication mechanisms
for the communication of full Prolog terms among
Prolog processes (running on the same machine or on
a network of machines).

Given such features, a Shared Prolog program is
implemented according to the following architecture (see
Figure 3):

45

l A Prolog process for the blackboard control program
is activated.

l For each theory, a Prolog process for the theory
control program is activated.

l Communications between the theory agents and the
blackboard agent are handled by the kernel. For
instance, a theory can issue a request for the
evaluation of a pattern as a list of Prolog facts that
must be matched in the blackboard. Afterwards, the
blackboard answers to the theory once more with a list
of Prolog facts.

Blackboard agent

Agent [extended Prolog process)

Interprocess communication

Figure 3 Current implementation of the SP interpreter

In order to fulfill the requirements imposed by the
distributed execution of SP programs, an inter-process
communication mechanism has to be supplied. In the
current implementation we used the Unix BSD intemet
socket facility. Sockets allow fast bidirectional
communications between any pair of Unix processes
running on the same machine or on different machines in
an Internet network.

Thus, we extended a Prolog interpreter with some new
predicates for interfacing the socket mechanism. We
wrote a C program performing the required tasks, and
then we linked the compiled program to the addressing
space of the Prolog intepreter (a standard feature of many
Prolog language processors). The new predicates allow to
associatively send (receive) a message consisting of a
generic Prolog term to (from) another Prolog interpreter.

The syntax of the new predicates is the following:

send(<snd>,<rcv>,<msg>)

receive(<rcv>,<sndV>,<msgV>)

where the arguments can be constants, variables, or
terms. The informal semantics of these predicates is the
following:

send(myname,destname,msgvalue)

dispatches a message (msgvalue) from a Prolog process
(identified by myname) to a Prolog process identified
by destname.

receive(myname,mittname,MsgVar)

unifies the term MsgVar with a message sent by
process mittname to process myname if such a send
has ever been performed or with the term
“no-msg-f or-you" if such a send has never been
pXfOllIK=d.

receive(myname,MittnameVar,MsgVar)

unifies the term MittnameVar with the name of the
process that performed a call

send t-, myname,msgvalue), andtheterm
MsgVar with msgvalue if such a send has been
performed or with the term “no-msg-f o r-you" if
such a send has never been performed.

Both send and receive primitives are asynchronous.
This means that they always immediately succeed upon
call. As standard Prolog system predicates, they are not
backtrackable, i.e. once they have been executed, they
cannot be “undone”.

When a synchronous receive is needed, the following

(active wait) code may be used:

sync-receive(Myname,Mittname,Msg) :-
receive(Myname,Mittname,Msg),
Msg\=="no-msg-for_you",!.

sync-receive(Myname,Mittname,Msg) :-
sync-receive(Myname,Mittname,Msg).

The implementation of send and receive rely upon a
global communication server process that accepts and
dispatches communication requests. The server accepts
requests issued by the C procedures that implement the
Prolog predicates send and receive. The server
manages a mailbox and a waiting list as follows:

1. If the server receives a communication request

send(mittname,destname,message)

it simply puts the communication request in the
mailbox.

2. If the server receives a communication request

receive(destname,Mittvar,MsgVar)

46

it looks up the mailbox data structure for a message sent
to the destname process and it answers back to the
requesting process either the first message found in the
mailbox (deleting the message from the data structure) or
a “no msg - - for_you" message with MittVurboundto
“communication server". -
3. If the server receives a communication request

receive(destname,mittname,MsgVar)

it looks up the mailbox data structure for a message sent
to the destname process from a mittname process and
then proceeds as in point 2.

The (informal) server algorithm is depicted in Figure 4.

ierver()

initialize server data structures;
create the global socket server;
accept requests on this socket;
termination=FALSE
while (! (termination))

I
read a request;
case(request-typejof

I
SND: if

the destination process is
waiting for a message from
this sender
then
send the incoming message to
the waiting process as an ACK
message (this unblocks the
receiver process)
else
put the incoming message in
the mailbox structure
endif;
send the ACK message
to the sender process;

RCV: if
there is a message in the
mailbox with the requested
sender for the
requesting process,
then
send it back as ACK message
else
put the requesting process
in the wait list
endif;

END: termination=TRUE;
I

1
close open sockets;
clear dynamic data structures;

1 Figure 5 The send and receive algorithms

send0
1

get parameters
(mittname,destname,msg);
connect a socket to the
communication server socket:
create a reply private socket;
send the SND message with the proper
parameters on the server socket;
wait for the ACK message on the
private reply socket;

t

receive0

get parameters
(destname,Mittname,Msg);
connect a socket to the
communication server socket:
create a reply private socket;
send the RCV message with the proper
parameters on the server socket;
wait for the ACK message containing
the message on
the private reply socket;
bind the Msg variable;
possibly bind the Mittname variable;

The algorithms of the associative send and receive
predicates are depicted in Figure 5.

The overall resulting structure of the SP distributed run
time system is depicted in Figure 6.

Figure 6 SP Distributed Runtime System

A Prolog interpreter can fork the execution of a number
of different threads using a s he1 1 system predicate.
When a thread has to be forked, the following steps are
p3fOllU&

9 The Prolog code for the new thread is put in a special
file prolog.ini.

l A shell predicate

shell(Prolog-interpreter)

is executed,where Prolog interpreter isa -
string denoting the name of a Prolog interpreter. This Figure 4 The server algorithm

47

forces the activation of a new Prolog process
executing the code contained in the file
prolog.ini.

Using this simple mechanism, multiple threads can be
forked at any time. For instance, new theories can be
dynamically activated and connected to a running
blackboard.

4.2 Operating Environment: User View

Currently, the user enters in a Prolog environment and
activates the SP run time system. The user interacts with
a shell through which he can do the following actions:

1) Give an initial goal that activates a blackboard process
and (possibly)aset ofagents.

2) Give a connection goal that connects (or disconnects)
agents to a running blackboard process. The blackboard
process could belong to another user. The syntax of these
special goals is:

TheoryCBlackboard

To connect a theory to a blackboard.

{Theory@Blackboard}

To disconnect a theory from a blackboard.

For instance, in the bank account example a new tty is
added with the command

tty(n+l)@safe.

3) Trace the messages exchanged between a theory and its
blackboard.

There is also a tool for browsing within a running
blackboard to observe its evolution.

5. COMPARISON WITH OTHER LANGUAGES

We know of at least another blackboard logic language:
Polka [Davison 871. While its field of applications is
quite similar to the SP one (i.e. distributed AI), its
implementation and underlying philosophy is quite
different, since it has been built as an extension of the
Parlog programming environment. In this way Polka
inherits all the strong points, but also all the weaknesses
of the traditional parallel logic approach.

A more interesting comparison can be attempted with
respect to Linda [Carrier0 89a]. Linda’s “coordination
model” has been proposed as a framework for designing
and programming open parallel systems, i.e. systems
composed of a dynamic collection of asynchronous
communicating agents [Carriero 89b].

It is interesting to match the Linda model with the
parallel logic programming paradigm. Admittedly, a logic
language (e.g. Flat Concurrent Prolog) misses the
efficiency and the openendness of Linda when specifying
parallel systems, with a slight gain in expressiveness.
Moreover, it seems difficult to elegantly integrate
different languages in FCP or GHC: these languages have
problems even in accomodating Prolog!

We consider SP as the missing link between the family
of Linda languages and the family of parallel logic
languages. SP is closer to the Linda coordination model,
while it maintains a strong logic flavour (so it should be
more suited for specification tasks). In fact, the
blackboard in Shared Prolog is very similar to Linda’s
tuple space, and with some approximations SP could be
defined as a logic programming counterpart of the Linda
framework. We found (and we are currently studying) that
the SP approach allows a number of compilation-time
optimizations, and moreover maintains a great flexibility
at run-time.

6. CONCLUSIONS AND FUTURE WORKS

Current research on concurrent logic programming is
centered around two very different approaches.

In the first one, the focus is on parallelizing compilers,
trying to get advantage from modern multiprocessor
architectures in a transparent way, from the point view of
the Prolog user [Hermenegildo 891.

In the second one, new logic languages are defined, like
FCP, FGHC or Parlog, that are very different from
Prolog and are based on fine grained parallel computing
models.

Our approach has taken a different route: we have
embedded standard Prolog in a distributed operating
environment, aiming at having an open system of large-
grained, communicating Prolog agents. Not only strings
can be exchanged as messages, but also true Prolog terms
(also non ground, i.e. including variables). The
programmer has full control on the scheduling of
processes and the granularity of communications.

An interesting topic that we are going to explore is the
relationship between SP and the Linda family of
languages. We think that SP can be considered the logic
counterpart of the Linda approach. Moreover, we plan to
develop a new implementation using a Linda based kernel
for the blackboard control, that in this way will become
completely distributed.

48

ACKNOWLEDGEMENTS

This work improved after many discussions with
A.Brogi, A.Corradini, TCastagnetti, M.Montanari. The
authors were partially supported by CNR Progetto
Finalizzato Informatica - Calcolo Parallelo.

REFERENCES

[Ambriola 891 V.Ambriola, P.Ciancarini, A.Corradini,
M.Danelutto, "SHELL: a Shell
Hierarchical Environment based on a
Logic Language”, TR.30-89, Dip. di
Informatica, Universita di Pisa, 1989.

[Brogi 891 A.Brogi, P.Ciancarini, “The Concurrent
Language Shared Prolog”, TR. 11-89.
Dip. di Informatica, Universid di Pisa,
1989, pp.24

[Carriero 89a] N.Carriero, D.Gelernter, “Linda in
Context”, CACh4 32:4, 1989,444-458.

[Carriero 89b] N.Carriero, D.Gelernter, “Coordination
Languages and Their Significance”, DCS
TR.RR716, Yale University, 1989.

[Ciancarini 881 P.Ciancarini, Specifying and Prototyping
Software Engineering Environments,
PhD Thesis (in Italian), Universita di
Pisa, 1988.

[Ciancarini 891 P.Ciancarini, “Blackboard Programming
in Shared Prolog”, in D.Gelernter,
A.Nicolau, D.Padua, (eds.), Procs. 2nd
Workshop on Parallel Languages and
Compilers, in the series Research
Monograph in Parallel and Distributed
Computing, Pitman, 1989.

[Ciancarini 903 P.Ciancarini, “Coordination Languages
for Open System Programming”, Proc.
IEEE Int. Conf. on Programming
Languages, New Orleans, 1990.

[Clark 863 KClark, S.Gregory, “Parlog: Parallel
Programming in Logic”, ACM Trans. on
Progr. Lang. and Systems, 8, 1986, l-49

[Gelernter 851 D.Gelemter, “Generative Communication
in Linda”, ACM Trans. on Progr. Lang.
and Systems, 7: 1, 1985.

[Gelemter 891 D.Gelernter, “Multiple Tuple Space in
Linda”, Proc. PARLE, 1989.

[Hermenegildo 891 M.Hermenegildo, “High Performance
Prolog Implementations”, Tutorial, Int.
Conf. on Logic Programming, Lisboa,
1989.

[Shapiro 871 E.Shapiro (ed.), Concurrent Prolog:
Collected Papers, vol. 1 and 2, MIT
Press, 1987.

[Shapiro 891 E.Shapiro, “Embedding Linda and Other
Joys of Concurrent Logic Programming”,
TR.CS89-07, The Weizmann Institute,
1988, pp. 11.

lTakeuchi 861 A.Takeuchi, KFurukawa, ‘Parallel Logic
Programming Languages”, Proc. 3rd Int.
Logic Programming Conf., London,
1986,242-264 (also in [Shapiro 871).

[Tick 891 E.Tick, “Comparing Two Parallel Logic
Programming Architectures”, IEEE
Sofnuare, July 1989,7’1-80.

[ueda w K.Ueda, “Guarded Horn Clauses”, in
Logic Programming ‘85, LNCS 221,
Springer Verlag, 1986, 168-179 (also in
[Shapiro 871).

49

