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ABSTRACT 
Many visual analytics applications require computationally ex-
pensive high resolution visualizations. Large desktop displays and 
display walls may provide the required resolution, and current 
multi- and many-core processors often have the required computa-
tional resources. However, it is still challenging to write programs 
that can utilize high resolution displays and multi-core processors. 
We describe the bulk synchronous visualization (BSV) model that 
makes it easier to write high resolution parallel visualizations. The 
dataset to be visualized is decomposed into thousands of tasks that 
are assigned to sequential processes. These are then run in parallel 
by the BSV system which provides efficient process and window 
management. BSV takes advantage of the large DRAM size and 
multiple cores of current computers, and the copy-on-write and 
low overhead fork mechanisms provided by current operating 
systems. We have implemented three BSV applications and used 
these to identify advantages and limitations of BSV on Windows, 
Linux and OS X. The results demonstrate that BSV makes it easy 
to implement visualization applications that utilize high resolution 
displays and multi-core processors.  

Categories and Subject Descriptors D.1.3 [Programming 
Techniques]: Concurrent programming, Distributed Program-
ming. D.2.13 [Software Engineering]: Reusable Software—
Reusable libraries 

General Terms  Measurement, Performance, Design 

Keywords Python visualizations; bulk synchronous parallelism; 
display walls; interactive performance; multi-core processors; 
window management. 

1. INTRODUCTION 
Many analytics applications require computationally expensive 
high resolution visualizations. One such example is bioinformat-
ics, where the simultaneous integrated display of many datasets 
can provide novel biological insights that are not apparent when 
displaying only one dataset at a time [1]. Other examples includes 
meteorological simulation [2], plasma physics experiment control 
systems [3], and tools for text analytics [4]. 

High resolution displays are readily available either as large 
format monitors, multiple monitors connected to a computer, or as 
tiled display walls where multiple computers with one or more 

monitors or projectors are coordinated to provide one high resolu-
tion display [5]. In addition, current computers have very power-
ful multi-, or many-core processors. These typically provide the 
required resources for visualization applications. 

However, writing a program that can utilize high resolution 
displays and multi-core processors is challenging. First, to utilize 
multiple CPU cores requires writing either a multi-threaded pro-
gram to be run on a shared memory computer, or a distributed 
program to be run on a distributed memory computer cluster. 
Multi-threaded programming is especially challenging when 
combined with GUI libraries that often assume an event based 
programming model with a single thread doing all updates to the 
visualization.  Second, to write a visualization program that per-
forms well on a high resolution screen it may be necessary to use 
low-level graphics libraries such as Direct X [6], Open GL [7], or 
VTK [8] to achieve required performance, or to do manual win-
dow management if there are multiple sub-visualizations. All of 
the above requires either advanced programming knowledge or 
many days of developer time, which often leads to underutiliza-
tion of the available resolution and computational resources. 

The developer time is justified for visualization tools with 
many users such as business intelligence tools [9], genomics 
visualization tools [1][10], or scientific parallel visualization tools 
[11][12]. But there are many cases where a single user needs to 
quickly visualize some data using an easy to use visualization 
environment such as MATLAB or pylab [13]. But these visualiza-
tions often do not scale to high resolution displays. 

It is also possible to reduce the amount of data to be visualized 
by using techniques such as clustering or other statistical analysis 
techniques. However, many users do not have the knowledge 
required to use these techniques or they may want to do some 
simple visualizations to quickly get an overview of the data [14]. 

We propose the bulk synchronous visualization (BSV) model 
for interactive parallel computation and visualizations. BSV is 
designed for MATLAB-type visualizations on high resolution 
displays including display walls. The most important requirements 
are therefore ease of use, short developer time, scalability and 
distributed execution. The BSV system provides efficient process 
and window management by taking advantage of the large DRAM 
size and multiple CPU cores of current computers, and the copy-
on-write and low overhead fork mechanisms provided by modern 
operating systems. 

The dataset to be visualized by BSV program is first decom-
posed into thousands of tasks that are assigned to plotter process-
es. Each plotter process has a separate address space and a sepa-
rate window. The plotter processes are run in parallel by the BSV 
system. The program can be scaled with respect to processor cores 
and screen resolution by respectively adjusting the number of 
running and visible plotters. Window management is provided by 
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interactive functions that filter visible plotters, or functions that 
show a set of plotters.  

We have implemented three BSV applications and used these 
to evaluate the interactive performance of BSV on Windows, 
Linux and OS X. The results demonstrate that BSV makes it easy 
to program visualization applications that utilize high resolution 
displays and multi-core processors. We also identify advantages 
and limitations of the BSV model. Our conclusion is that BSV 
makes it easy to implement visualization applications that utilize 
high resolution displays and multi-core processors. 

2. ARCHITECTURE 
A BSV program is expressed as a series of visualization functions 
executed by many plotter processes. The data to be visualized is 
decomposed and assigned to plotter processes. Each plotter has a 
separate address space and a window.  The visualization is orches-
trated by a coordinator process that synchronizes the visualization 
shown on each plotter, and maps plotter processes to processors 
and plotter windows to screen space. Plotters may be mapped to 
CPU cores distributed on multiple computers (figure 1).  

The coordinator is typically loaded into an interactive shell 
where the user can write visualization code to be executed on the 
plotters. In addition to visualization code execution, the API also 
provides a simple interface for window management. The coordi-
nator communicates with either a BSV local coordinator in case 
of distributed execution, or directly with a BSV plotter if run on a 
single computer.  

The plotters receive commands to be executed from a coordi-
nator. A plotter process is started by cloning (forking) the coordi-
nator process so each plotter has a replica of all the coordinator’s 
data structures that can be read and modified without any commu-
nication or synchronization. A plotter visualizes or plots data by 
calling functions from visualization libraries. BSV wraps a few 
window management functions of the visualization library, but the 
plotter can also call all library functions directly. The high-level 
visualization library typically runs on top of the operating sys-
tem’s window manager.  

2.1 BSV vs. BSP 
BSV is inspired by the bulk synchronous programming (BSP) 
model [15] where a program is expressed as supersteps that typi-
cally comprise computation, point-to-point communication, and a 
globally synchronizing barrier. BSP programs are also typically 
overdecomposed such that many processes are mapped to one 
processor core. 

In the initial design, BSV was intended to provide window 
management for visualizations implemented as BSP programs. 
But there are three main differences between a parallel computa-
tion and the parallel visualizations indented for BSV. First, the 
BSV plotter processes typically do not require point-to-point 

communication with other plotters. Second, the result of a BSV 
plotter is typically a visualization of which only a subset are 
viewed by the user. Third, a BSV program is often an order of 
magnitude more overdecomposed than a BSP program.  

Based on these observations, the BSV design assumes that 
plotter processes do not have point-to-point communication and 
that the barrier is implicit. BSV therefore has virtual supersteps 
that only guarantee that all plotter processes will eventually exe-
cute all supersteps (typically during user think time). It is there-
fore not necessary to start all plotters for each superstep. Howev-
er, BSV provides a barrier in the form of a gather-all operation 
which can be used to implement real supersteps that may include 
point-to-point communication. 

2.2 BSV Programming Model 
The coordinator first runs application specific code to initialize 
the data structures to be visualized. This is typically done by 
reading and parsing data from input files. It then runs application 
specific code to decompose the data and assign the parts to plotter 
processes. After starting plotter processes, it is assumed that the 
coordinator will not modify the application data structures; such 
that additional plotter processes started at a later time have identi-
cal state. A plotter process first initializes a window and then 
executes visualization functions received from the coordinator (a 
visualization function corresponds to a superstep in BSP). These 
functions read and write the data structures and draw in the win-
dow. To visualize different parts, the user provides a list with 
arguments to be sent to each plotter. A plotter may also receive a 
show or hide window command, a command to move or resize the 
window, or a kill command. The hide and kill commands may be 
sent in the form of a filter function that is evaluated to determine 
whether to hide the window of a plotter.  

The coordinator keeps a list of all executed visualization func-
tions, so it can kill a plotter process and later re-create it by send-
ing it the list of functions to be executed in order to synchronize 
the visualization with the other currently visible visualizations. 

In the program in figure 2, a matrix is read from a file and 
parsed in (1) using application specific code. The matrix is then 
split into multiple blocks that are visualized independently. We 
assume the application specific split function returns a start and 
end row of each block that is saved in the blocks variable (2). A 
visualization function is in (3). This function receives the start and 
end row index of its block by the system and executes the code to 
visualize the data. The BSV coordinator is started in (4), and the 
coordinator receives a visualization function to be executed on 
each visible visualization processes (5). There will be one visuali-
zation process for each block, but only 60 blocks are visible at a 
time as specified by the argument in (4). 30 random windows are 
shown (6), and then a filter function hides all windows in which 
the first column has a negative value (7 and 8). Finally the first 30 
of the non-filtered windows are shown (9). 

 
[1]: matrix = readAndParseData() 
[2]: blocks = split(matrix) # (start, end) 
[3]: def viz1(startRow, endRow): 
...:   plot(matrix[startRow:endRow]) 
[4]: coordinator = bsv.Coordinator(60) 
[5]: coordinator.visualize(viz1, blocks) 
[6]: coordinator.showRandom(30) 
[7]: def filter1(startRow, endRow): 
...:   for i in range(startRow, EndRow): 
...:     if matrix[i][0] < 0:  
...:       return False # hide window 
[8]: coordinator.filter(filter1, blocks) 
[9]: coordinator.showFirst(30) 

Figure 2. A simplified BSV program. 

Figure 1. BSV architecture. A BSV coordinator orchestrates the 
visualizations of multiple BSV plotters. 
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2.3 Local and Distributed Execution 
BSV can either be run on a single computer or distributed on a 
display wall cluster. On a single computer BSV visualizations are 
executed using multi-processing. There is one plotter process per 
task, and a single coordinator process. However, at a given time 
only a subset of the plotter processes are runnable, since the coor-
dinator implements scheduling by killing and creating plotter 
processes. In addition the coordinator determines which windows 
are shown and hidden (figure 3). The user can close a plotter 
permanently using the application specific GUI (if any). The 
operating system scheduler decides which runnable plotters to run 
on the different CPU cores (or GPUs). 

BSV can be run distributed on multiple computers, for exam-
ple in order to use a display wall cluster. First, a local coordinator 
process is started on each node. The user then controls the visuali-
zation using a master coordinator that distributes visualization 
commands to local coordinator and implements global scheduling 
of visible windows. The local coordinators distribute the received 
commands to their plotters and implements scheduling of running 
plotter processes.  

Distributed execution requires coordinating data management. 
For small datasets all local coordinators can maintain a replicated 
dataset. For large datasets, it may be necessary to partition the 
data. In BSV the master coordinator does the partitioning. The 
application can use libraries or infrastructure services for distrib-
uted data access or data streaming.  BSV does not provide security 
features such as user authorization and auditing of code to be 
executed. 

BSV programs can be run on a GPU if the visualization func-
tions use a visualization library with for example openGL or 
openCL mappings. But the BSV coordinator will schedule these 
plotters similarly to plotters that only use CPU cores.  

3. DESIGN AND IMPLEMENTATION 
The BSV system is designed to provide efficient interactive ex-
ploration of large visualizations decomposed into hundreds of 
windows. The system design is motivated and based on four 
assumptions about current computers and operating systems. First, 
there is enough DRAM to keep many visualization processes in 
memory at once. Second, if the operating system implements fork 
using copy-on-write, the resident set size of the child processes 
will be small even for processes with large data structures if these 
are mostly read only.  Third, there are compute resources availa-
ble for running computation on hidden windows. Fourth, the 
create process (fork) system call has low overhead. 

The BSV system therefore runs many visualization processes 
simultaneously, but only a few of these are visible at a given time. 
In addition the system predicts which visualizations are likely to 
be shown in the near future, and if needed starts these process in 
the background such that the visualizations are ready when re-
quested by the user. Such prediction is easy to implement if the 
user views the visualizations in a predetermined order. The order 
can be based on for example indexes in a matrix, dataset names, 
or task properties such as size. Since BSV uses multi-processing it 
supports visualization libraries that are not thread-safe.  

We have implemented the BSV system in Python. We use the 
multiprocessing module to fork plotter processes and use pipes for 
inter process communication. In Python, functions can be saved as 

objects and sent over a pipe or socket to another process. Visuali-
zation and filter functions can therefore be written by the user in 
and interactive shell such as iPython [16]. We use the marshal 
module to dump the functions func_code on the coordinator and 
to load the function into the global namespace of the plotter (or 
local coordinator). 

We use pylab [13] for numerical computation and graph plot-
ting, and for parallel computing on a display wall cluster. BSV 
implements wrappers for matplotlib [17] run on top of the wxPy-
thon [18] and TkAgg [19] GUI backends. We also implements 
wrappers for pyglet [20] and TkInter [19]. 

3.1 Fork and Copy-on-write 
Copy-on-write is an optimization technique that is used by operat-
ing systems to implement address space cloning. For example in 
Linux the fork system call will create page tables that point to the 
same pages as the parent. These are both fast to create and have 
low memory overhead. The pages are shared until the child writes 
to a page. We assume most data structures used by BSV applica-
tions are read-only such that many pages can be shared.  

The multi-processing module in Python 2.7.2 uses the fork 
system call that creates a new address space for the child using 
copy-on-write in Linux and OS X. In Windows 7, it uses the 
CreateProcess function in the Win32 API that does not implement 
copy-on-write. A plotter process will therefore create a new ad-
dress space, start a new Python interpreter, and run the main 
module of the interpreter. The implications for interactive perfor-
mance are evaluated in Section 6. 

3.2 Show Prediction 
The BSV system runs many visualization processes simultaneous-
ly, but only a few of these are visible at a given time. The coordi-
nator predicts which visualizations are likely to be shown, and 
attempts to keep these plotters running in the background. The 
scheduler implementation assumes that the tasks are organized in 
a 1-dimensional array using an application specific order (figure 
4), and that the user traverses the tasks in the order of the array. It 
therefore attempts to keep tasks adjacent to visible tasks running. 
The scheduler is run each time a window is hidden, and it replaces 
one plotter process per hidden window in each turn. The least 
recently visible plotters are selected for replacement. 

3.3 Coordinator and Plotter Implementation 
The coordinator is implemented as a Python class that exports an 
interface to be used from an interactive shell. For distributed 
execution the coordinator functionality is split between the master 
coordinator and the local coordinator. The master is then typically 

Figure 4. Of the 18 plotters, 4 are visible and mapped to an area 
on the screen (black), 8 are hidden and mapped to three processor 

cores (gray) and 6 are not running (white). To next function in 
BSV will switch visible plotters to 0, 8, 9, and 14. The index(3) 

function will show plotters 3—6.

Figure 3.  BSV plotter states. 
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run as an interactive shell, and the local coordinator as a Python 
program. Both have in addition to the shell thread, a network layer 
thread as described below. 

The plotter is a Python program with an IPC thread and one or 
two visualization threads. For visualization libraries that support 
multi-threading one thread runs the GUI loop, while another 
receives and executes window management commands and visu-
alization functions. Otherwise, a single thread must run both the 
GUI loop and execute received commands. It can therefore block 
while waiting for a new GUI event, or a command from the coor-
dinator. Blocking in the GUI event loop will add additional laten-
cy to the window management and visualization commands re-
ceived from the coordinator. Blocking on the coordinator socket 
will cause the GUI to be unresponsive for the user. Setting a short 
blocking time on both will use more CPU. We assume the user 
mostly controls the visualization through the coordinator, so the 
default blocking time for coordinator commands is 500ms, and 
0ms in the GUI loop. 

3.4 Inter-Process Communication 
Inter-process communication (IPC) is implemented using pipes, 
queues and sockets. Pipes are used for coordinator-plotter com-
munication. The coordinator has one pipe connected to each of the 
running plotters. Inter-node (master to local coordinator) commu-
nication is implemented using sockets. To avoid blocking the 
interactive coordinator, the messages are sent asynchronously by 
using a queue and a separate network thread. The plotter also has 
a dedicated thread for IPC. 

3.5 Limitations 
Ideally, BSV visualization functions would be similar to visuali-
zation code written without using BSV. However, there are three 
restrictions. First, the functions must take specific arguments such 
that BSV can do an upcall (these are references to a state object, a 
logger, and an arguments data structure). Second, the functions 
should not use global variables since these may not be supported 
by the underlying Python mechanisms (in particular multi-
processing on Windows 7). Instead the functions should store all 
global references in a state object that is passed as argument to all 
visualization functions. Third, all functions are in the global 
namespace with names assigned by BSV. It is therefore hard to 
split the visualization code over several functions. 

Some visualization libraries do not work well with BSV. For 
example, the popular pygame library [21] does not provide pro-
grammatic control over window management. Another important 

limitation is that all of the coordinators data structures should fit 
in memory such that plotter process startup is fast. 

BSV does not currently provide fault-tolerance. If a plotter 
process crashes the coordinator assumes that the plotter was 
closed by the user and hence the plotter is not later restarted (we 
have experienced a couple of crashes during testing and evalua-
tion). However, it is straightforward to modify BSV such that 
crashed plotters can be restarted by the coordinator. 

4. INTERFACES 
BSV exports an API to the analyst that is used to control the 
visualization. The analyst can also interact with the visualization 
windows using regular GUI operations. There is also an interface 
for wrapping visualization libraries. Communication between the 
central coordinator and local coordinators, and local coordinator 
and plotters is over custom protocols.  

4.1 Coordinator API 
The API exported by the coordinator to the user (Table 1) consists 
of eight groups of functions. The first consists of functions to start 
and stop plotters. For each task there is an entry in a list sent as 
argument to the startPlotter, visualize, filter, and gather functions. 
Each per task entry in the list may for example contain the plot-
ter’s index in a replicated dataset. In addition, there is a 
stateObject that is used to store global variables. The reference to 
the state object is set in startPlotter, and then passed as argument 
in all plotter upcalls. 

The filter, layout, and show function groups provide program-
matic control over window management. But it is also possible to 
manually move and resize the windows. 

BSV provides a function to gather values from all plotter by 
writing a gather-all function that is executed on all plotters, and a 
function to gather the log file content of all plotters. 

For distributed execution executeLocally can be used to send 
functions to be executed only by local coordinators. 

4.2 Library Wrappers 
There are many GUI backend, plotting, and visualization libraries 
for Python each with its own API. BSV uses a wrapper approach 
to support each library. The wrapper interface consists of six 
window management functions that must be implemented for each 
new library (Table 2). For most libraries each function will only 
require a few lines of code and is straightforward to implement. 
The visualization functions that implement the application specif-
ic visualization are not covered by this interface. 

4.3 User Interfaces 
The user interacts with the BSV system either through a Python 
shell or by running a non-interactive Python script. In addition 
each plotter has a window that may contain a user interface that 
can be used to for example move or resize the window, interact 
with visualization, or save it to a file. Such interaction is done 
independently of BSV. 

 

Table 1. BSV coordinator API. 
Functions Arguments 
[start, stop]Plotters  
 

Number of plotters to start, list of plotter 
arguments, state object 

visualize 
 

Visualization function, list of plotter 
arguments 

layoutGrid, layout  
   

Grid layout, or list of window sizes and 
positions 

show[Next, Previ-
ous, Random, First, 
Index, Indexes] 

(function dependent) 

filterVisible, pend-
ingFilterVisible, 
filterOff  

Filter function, list of plotter arguments

gather, readLogFiles Gather function, list of plotter arguments
executeLocally Function 

Table 2. Skeletons for visualization library wrapper functions.
Functions Description 
createWindow Initialize window resources. Non-

blocking. 
guiLoop
 

Setup timer to call plotter run function. 
Enter GUI loop. Blocking. 

closeWindow Free window resources.
setWindowVisible Show or hide a window.
getWindowSize Get window size and position.
setWindowSize Set window size and position.
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5. APPLICATIONS 
We have implemented three BSV applications that represent what 
we believe are typical explorative interactive visualization appli-
cations. These also demonstrate how BSV can be used with dif-
ferent visualization libraries. Since we expect BSV to be used 
mostly for prototyping the main goal is fast development time 
which evaluate by counting lines of code. Application perfor-
mance is evaluated in section 6. 

5.1 GeoOverlap 
BSV was motivated by the need to understand the behaviour of an 
algorithm we developed for removing overlapping samples from 
series downloaded from NCBI GEO [22]. Overlap is removed by 
creating graphs with edges between all series that have one or 
more overlapping samples and then iteratively removing samples 
until the overlap between two series is less than a maximum spec-
ified as a parameter. The program outputs a log file with the 
graphs and lists of removed series and samples. 

The BSV coordinator reads in the log file and decomposes the 
data in our sample log file to 1636 tasks. Each task has one graph 
that is visualized using the NetworkX [23] Python package for 
drawing dot [24] graphs in pylab [13]. In the resulting visualiza-
tions, removed series are marked using different colours and 
styles, and the overlap is shown using edge labels (figure 6). The 
graphs are sorted descending based on the number of nodes in the 
graph. 

We started by viewing the first tens of graphs, and then a few 
tens of randomly selected graphs to get a rough idea about how 
the algorithm removes overlap. We then studied significant details 
by writing filter functions to only show graphs with certain prop-
erties such as graphs that contains superset or duplicate series, 
graphs with at least N overlapping samples between a pair of 
series, or graphs that contains a series X or a sample Y.  

To parse the log file and create the graph data structures we 
wrote about 200 lines of code (LOC). The final visualization 
function was about 60 LOC, mostly for specifying the node and 
edge styles to use in the graph. The filter functions were less than 
10 LOC. 

5.2 PyHidra 
PyHidra is a simplified Python implementation of HIDRA [1] 
(figure 5).  A large collection of DNA microarray data are visual-
ized as heatmaps. The advantage of HIDRA compared to other 
similar tools is that it shows multiple integrated datasets at once. 
For example, if a user highlights a gene in one dataset, the same 
gene will be highlighted in all other datasets. PyHidra demonstrate 
the flexibility and power of BSV for displaying visualizations 
with a large number of pixels. 

Our Python implementation implements the heatmaps, and 
supports gene highlighting from the command line. The heatmap 
is drawn in a canvas from the Tkinter GUI toolkit. PyHidra is 
about 240 LOC of which about 100 LOC is for drawing the 
heatmap. Most of the visualization code was based on code from 
the SPELL tool [25]. 

To select a gene the analyst runs a visualization function on all 
plotters that draw a rectangle surrounding the highlighted gene’s 
row. PyHidra has a filter function for displaying only the dataset 
with at least N highlighted genes, and a visualization function for 
only showing the highlighted genes in a dataset. It is easy to write 
additional visualization functions to reorder the genes, or do other 
kinds of filtering. 

5.3 Mandelbrot 
Mandelbrot is a widely used embarrassingly parallel benchmark 
that calculates and displays the Mandelbrot set in a two-

dimensional fractal shape. Our benchmark animates N zooms into 
a region of the image. This application demonstrates that BSV can 
be used to run computationally intensive applications. 

We have two implementations of Mandelbrot; a version that 
uses the CPU for calculation and Tkinter for visualization, and a 
version that uses the GPU for calculation and pyglet for visualiza-
tion. 

6. EVALUATION 
We evaluate the interactive performance of BSV. In particular we 
want to answer the following questions: (i) what is the latency of 
switching visible windows on a high resolution screen?, (ii) what 
is the latency of starting many plotter processes that each opens a 
new window?, (iii) how many plotter processes can be run on a 
single computer, and what limits the number of processes?, (iv) 
how does interactive performance and process parallelism differ 
among different operating systems? 

In addition, we provided an informal software engineering 
evaluation in the previous section by counting lines of code for 
each application to estimate the developer effort. 

6.1 Hardware and Software Platforms 
We use two hardware platforms. The first is a dual-boot Dell 
Precision T3500 workstation that has two dual-core Intel Xeon 2.3 
GHz processors, 6GB DRAM, and a Nvidia Quadro NVS 295 
graphics card. It has two Seagate Barracuda ST31500341AS 
7200RPM 1.5TB hard drives. One for Windows 7 (64-bit), and 

Figure5. PyHidra heatmaps with some genes highlighted 
(1366x768 pixel resolution). 

Figure 6. Screenshot of GeoOverlap. Screen resolution has been 
reduced to 800x600 for increased readability.
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one for Lubuntu 12.10 (64-bit). The platform has a HPZR30w 
display with a resolution of 2560x1600 pixels, a Dell 2001FP with 
1600x1200pixels, and a Dell USB keyboard. Using this machine 
we can do direct comparisons between the performance of Linux 
and Windows. 

We also use a Mac Mini, with a 2.5GHz Intel Corei5, 4GB 
DRAM, a ADM Radeon HD 6630M graphics card, and a 
5400RPM 500GB hard drive. It is running Mac OS X 10.7.5 
(Lion), and has a Dell2001FP 1600x1200 display and a Dell USB 
keyboard. We could not use the bigger HPZR30w with the mac 
mini due to compatibly issues. 

We use the Entought Python distribution version 7.3.2-free on 
all platforms. This version has Python 2.7.3, matplotlib 1.1.0, 
networkx 1.6, ipython 0.12.1, pyglet 1.1.4, and wxPython 
2.8.10.1. However, there is only a 64-bit version for Linux, so we 
use the 32-bit version on Windows and OS X. 

6.2 Microbenchmarks 
For the evaluation we use the applications described in section 5 
and four microbenchmarks  implemented in Python: 

1. startProcs: start N processes using Pythons multi-processing 
module. The child processes sleeps 5 seconds before exiting. 

2. bigMem: start N processes that each allocate a 100 megabytes 
list and then traverse the list.  

3. openWin: start N processes that each opens a window and plot 
a simple graph using matplotlib.pyplot.  

4. switchWin: start 2*N processes where N of these starts with a 
visible window, and the remaining have a hidden window. On 
a keyboard press all N windows will be hidden and N new 
windows will be shown In each window a barchart is plotted 
using matplotlib.pyplot. In Windows and OS X the default 
matplotlib backend is wxPython. In Linux we had to use 
TkAgg due to errors in wxPython when switching between 
multiple windows at a time. 

In addition we use an image viewer on each platform as a micro-
benchmark for native application window open time. We open a 
400x300 PNG image (the image for Figure) in Windows Photo 
Viewer, GPicView in Linux, and Preview in OS X. 

6.3 Methodology 
To evaluate interactive performance we measure the latency 
between a user’s input until the system responds by changing the 
display content. Frequently used response time limits are: 100ms 
for the user to feel that the response is instant, 1 second to avoid 
disrupting a user’s flow of thought, and 10 seconds to avoid losing 
the users attention [26]. It is also recommended that some form of 
user feedback is used for latencies above 1 second to indicate that 
the system is working [27]. 

6.3.1 Resource usage 
For the evaluation we need to measure CPU usage, DRAM usage, 
virtual memory size, process start latency, time to open new win-
dows, and time to switch between visible windows. 

CPU and memory usage is measured using Resource Monitor 
in Windows, procutils in Linux, and vm_stat in OS X. We report 
the maximum virtual memory size as reported by the above tools. 
Time is measured using the time function in the Python time 
module. We also use a high speed camera to measure window 
open and switch latency (as described below). 

To measure DRAM usage we compare the amount of available 
(or free) memory when the application is running and the amount 
of available memory when all processes have exited. We assume 
that most of the memory in use by the processes is made availa-
ble. We must make this assumption since there is no easy, and 
portable, way of finding the per process DRAM usage. For exam-
ple in Linux, the reported per process DRAM usage (resident size) 
includes shared and copy-on-write memory, and hence the sum of 
reported DRAM usage of all processes can be many times higher 
than the amount of DRAM on the system. 

Each experiment is run five times on an idle system and the 
averages are reported. 

6.3.2 High speed camera 
To measure the latency of window switch and open operations we 
use two portable approaches. First we add instrumentation to the 
Python code such that we can measure the time from a coordina-
tor sent a command until the last plotter executed the show or 
open command. This approach does not include latencies and 
overhead of the visualization library, the operating system win-
dow manager, and hardware latencies. 

To overcome this limitation we also use a commodity high 
speed camera (Casio EX-ZR200) that can film the monitor at 
1000 frames per second (224x64 pixels). We watch the video in 
QuickTime Player version 7.2.2 frame-by-frame until we detect 
the key-press event and later the display-updated event. The main 
methodological challenge is to determine when these events oc-
cur.  

We simplify the measurement by measuring the time between 
the user (i.e. us) believes the key was pressed until the user be-
lieves the display was updated. We can therefore assume the key 
pressed event occurs when the key is pressed all the way down. 
We have a custom made keyboard pressing device that consists of 
a small metal rod attached to a plank. The rod has a small flag, 
and the plank has a mark for where the flag position when the key 
is pressed all the way down. We can usually detect the frame 
where a key is pressed (the key is pressed very fast).  

We assume the display update event is when the first part (typ-
ically a shadow) of the window becomes visible on the screen. 
The window does not appear immediately on the display, but 
starts as a shadow which gradually becomes less transparent. 
There may also be animation effects as in the Windows 7 Aero 
theme, and up to a hundred millisecond delay before the applica-
tion content becomes visible. We argue that the first appearance is 
the most important, since the subsequent events are either not 
detectable for the human perception system, or they are designed 
to fool the user into believing that the interactive performance is 
better. When opening, or switching, between multiple windows 
we assume the display update event occurs when the last window 
becomes visible. This latency therefore includes user feedback in 
the form of windows being shown or updated. 

6.4 Window Management Performance 
Interactive performance is determined by user perceived latencies. 
For BSV window management these are the time to switch visible 
windows, and time to open new windows. We measure these 
using the startProcs, switchWin, openPNG and openWin micro-
benchmarks. The results provide insight into the advantages of 
having many plotters running simultaneously compared to starting 
plotters on demand. 
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Our results show as expected that the time to create new pro-
cesses that open windows can be two orders of magnitude slower 
than switching between running processes (Tables 3 and 4).  

The latency to start a single Python process is within 100ms on 
all platforms (Table 3). The Windows latency is an order of mag-
nitude larger than Linux and OS X due to the lack of copy-on-
write when forking a new Python process. 

Switching between two windows is also within 100ms on all 
platforms (Table 3). Almost all of the time is spent in hardware 
and the operating system. The latency measured using the Python 
timestamps is less than 1ms. 

The high speed camera results show that the latency for start-
ing a new process that shows a pyplot window is twice as fast on 
Windows than Linux or OS X, even with the higher process create 
overhead of Windows (Table 3). Most of this latency is in the 
Python code on all platforms. The remaining 90-135ms are over-
head in the keyboard/USB hardware, operating system, window 
manager, and display hardware. Compared to native applications 
the Python microbenchmarks are 2-10 times slower (Table 3), 
with the difference being time spent in the Python visualization 
library. It may be possible to optimize the Python library code, but 
it is easier to hide this overhead by starting the processes in the 
background such that these can be switched to when needed. 

Increasing the number of windows to open and switch to 28, 
allows the workload to be run on multiple CPU cores, and hence 
the latencies only increase 7-15 times (Table 4). Also, we note 
that both microbenchmarks peak at 100% CPU utilization, so 
additional cores may have further reduced the added latency. In 
addition the user will get some feedback since the windows are 
often gradually updated.  

These results demonstrate that the cores can be very efficiently 
utilized by BSV to improve interactive performance (parallel 
efficiency is up to 0.94). 

6.5 Memory Usage 
An important factor that limits the number of processors that can 
be started on each platform is the per-process DRAM usage. If all 
processes do not fit in memory, the resulting swapping will se-
verely deprecate interactive performance. In this section we use 
the startProcs, bigMem, and openWin microbenchmarks to start 
100 processes and then measure the per process memory usage. 

The per process memory footprint for startProcs and bigMem 
are small for Linux and OS X, but much higher for Windows 
(Table 5). Again the problem is caused by the lack of copy-on-
write during process creation. For Windows this will especially 
limit the number of processes that can be run if a large data struc-
ture is shared. However, the memory usage is similar for the 
openWin benchmark since it does not have many shared data 
structures.  

The openWin results also show that we can open up to 21 win-
dows per gigabyte of DRAM, excluding application specific data 
structures. 

6.6 Applications 
In this section we use the applications described in section 5 to 
measure the window switch latency, memory usage, and identify 
the limitations to plotter parallelism. 

We set the initial parameters based on how many plotter win-
dows we can have comfortably visible on a 2560x1600 pixel 
monitor. For GeoOverlap we can have 20 windows open in a 4x5 
grid, without the screen becoming cluttered or loss of information 
in a window. PyHidra has very tall visualizations so we can only 
fit 5 windows in a 1x5 grid. In Mandelbrot the visualization does 
not have any information content, so it is hard to determine a 
sufficient size for a window. However, we can assume that for 
CPU intensive visualization the number of processor cores will 
limit the number of open windows. We therefore only show four 
500x500 pixel Mandelbrot windows. 

We would like to run 3 background plotters per visible plotter, 
so we start 20 plotter for PyHidra, However, the memory usage of 
GeoOverlap in Windows 7 limits the number of concurrent pro-
cesses to 40, while the computational time of Mandelbrot limits 
the number of concurrent processes to 8. The resulting memory 
usage is larger on Windows due to the lack of copy-on-write for 
GeoOverlap, and larger on Linux since a 64-bit Python is used 
(Table 6). 

We measured the time to switch all visible windows for each 
application (Table 7) and the time to start a background process 
for each hidden window (Table 8). For GeoOverlap all 20 win-
dows can be switched in less than 1.5 seconds on all platforms, 
but it can take up to 48 seconds to start all background plotters in 
Windows. Again, it is due to the lack of copy-on-write which 
causes the started plotter process to re-initialize all off the coordi-
nator’s data structures by reading these from disk. On all plat-

Table 5. Per process memory usage (in MB).
Platform Start-100 BigMem-100 OpenWin-100
Windows 3.05 132.3 47.3
Linux 0.84 11.8 46.6
OS X 0.70 12.7 38.7

Table 7. Response time for switching all visible windows. All are 
in ms. Standard deviation is in parenthesis. 

Platform GeoOverlap PyHidra Mandelbrot
Windows 1061 (37) 3097 (576) 1886 (1063)
Linux 1381 (67) 3420 (1216) 1887 (516)
OS X 1473 (259) 2371 (610) 1346 (299)

Table 8. Time to start all background process when switching all 
visible windows (one process is started per hidden window). 

Platform GeoOverlap PyHidra Mandelbrot
Windows 48sec 6.9sec 100ms
Linux 1.8sec 8.3sec 40ms
OS X 13.4sec 6.5sec 810ms

Table 3. Response time for single window experiments. All are
in ms. Standard deviation is in parenthesis. 

Platform Start-1 Switch-1 Open-PNG OpenWin-1
Windows 76 (8) 90 (10) 319 (31) 746 (43)
Linux 2 (0.03) 57 (6) 147 (2) 1427 (9)
OS X 7 (0.09) 97 (6) 520 (5) 1432 (14)

Table 4. Response times for full screen of windows experiments. 
All are in ms. Standard deviation is in parenthesis. 

Platform Start-28 Switch-28 OpenWin-28
Windows 453 (17) 1509 (53) 5884 (217)
Linux 11 (0.1) 578 (46) 12209 (529)
OS X 25 (0.4) 290 (16) 16420 (240)

Table 6. Total application memory usage (in MB).
Platform GeoOverlap PyHidra Mandelbrot
Windows 3309 417 100
Linux 1121 856 73
OS X 1573 471 130
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forms the switch is completed before many background processes 
are started so there is no competition for CPU. 

A cost breakdown shows that the switch time overhead is 
mostly due IPC overhead for a message exchange between the 
coordinator and the plotter. This message is for the coordinator to 
get the size and location of the plotter window (the user may have 
moved it). The size and position are then inherited by the next 
shown visualization. This call is blocking and is done for one 
plotter at a time.  

The time to switch 5 PyHidra windows is about three times 
longer than the time to switch 20 GeoOverlap windows. We be-
lieve that the higher latency is due to the visualization functions in 
PyHidra that update a canvas using thousands of draw operations. 
The canvas must be repainted when a window is made visible. 
Note that due to the smaller screen in the Mac mini the windows 
in OS X have a smaller canvas, which may cause the performance 
improvement over Linux and Windows.  

PyHidra background process startup time is similar on all plat-
forms since a plotter loads the data after begin created, hence 
there is no advantage of cloning the address space.  

For Mandelbrot it takes almost the same time to switch among 
the four windows on both platforms, but the measured latencies 
have very high variation. Starting the four background processes 
is very fast, but the CPU utilization is not 100% before the switch 
is done. There are therefore no performance benefits by reserving 
a core for the switch by only displaying three windows at a time. 

The above results demonstrate that BSV achieves our interac-
tive latency goals. However, we also identified factors that limit 
the interactive performance and the number of processors that can 
be run on a machine. These differ among the applications and also 
for platforms. For GeoOverlap in Windows, the main limitation is 
the startup time for background plotters, and the large memory 
footprint, which limits the number of background processes that 
can be run per visible plotter. This will limit the rate at which the 
user can browse through the windows. Interactive performance in 
PyHidra is limited by the time to switch among windows. We 
have identified the problem to be due to IPC overhead causing 
serialization in BSV. Also, PyHidra would benefit from a higher 
resolution display. Mandelbrot is a benchmark designed to be 
CPU intensive and it is therefore limited by the compute resources 
in a computer.  

We also note that the applications have much more similar 
cross-platforms performance than the microbenchmarks. 

6.7 Filter and Visualize Function Latency 
The time to execute filter and visualization functions is also im-
portant for the interactive performance of BSV. We measure these 
latencies using the PyHidra application (Table 9).  

First we measured the time to execute a filter function on all of 
the 20 running plotter processes. The filter function requires the 
coordinator to wait for a response from each plotter, so it takes 
between 4-6 seconds to execute. Most of this is due to overhead in 
the coordinator-plotter inter process communication (IPC). How-
ever, by ensuring that the filter function is executed on the visible 
plotters first most of the latency can be hidden. Also, a plotter for 
which the plotter returns a false value can be hidden immediately. 

Therefore, the user may see the first window being hidden after a 
few tens of milliseconds. 

The latency of a visualization function is much smaller since 
the coordinator does not need to receive any messages from the 
plotters, and hence it takes less than a second. Again most of the 
time is spent in IPC. 

6.8 Discussion 
We found the response time of BSV window management com-
mands, visualization function, and filter functions, to be up to a 
few seconds. Although we believe these are low enough to make 
BSV useful there is still room for improvement. 

Some of the application specific limitation can easily be fixed 
by using a bigger computer. For GeoOverlap more memory would 
allowed to run more process concurrently in Windows. An addi-
tional high resolution screen would allow more windows to be 
shown for PyHidra, and more cores would allow running more 
Mandelbrot processes in parallel. BSV system code also introduc-
es serialization that unnecessary limits interactive performance.  
However, we also found some limitation with regards to interac-
tive performance mostly in the Python visualization function 
code. For example opening a native Linux window was 10x faster 
than a Python visualization. In addition, we observed differences 
in Window Manager behaviour, where Windows seemed to batch 
update events, while Linux and OS X updated the windows con-
tinuously. 

Our microbenchmark results showed significant differences 
between Linux and Windows. However, for the application 
benchmarks the differences were much smaller. We found it in 
general hard to reason, and especially predict, the interactive 
performance of visual applications run on the different platforms.  
Our results also show that although the Python visualization li-
braries we used were restricted to a single threaded event based 
programming model, BSV was able to utilize all CPU cores on the 
test systems by running each visualization in a separate process. 

We have not evaluated switch prediction algorithms since we 
do not know what realistic switch patterns will be. We assume 
that they will be mostly left-to-right traversal combined with 
filtering. An unanswered question is how many background plot-
ter processes are needed for these traversal patterns.  

7. RELATED WORK 
Related work can be divided into visualization libraries and tools, 
parallel programming libraries and languages, and interactive 
performance evaluation studies. 

We discussed limitations for commercial visualization tools, 
parallel visualization tools, and domain specific visualization tools 
in the introduction. The BSV system is for the Python scripting 
language. There are many alternatives to Python such as Python, 
Perl, Ruby, R, MATLAB, PHP, or JavaScript. In addition there 
are domain specific programming languages for visualization such 
as Processing [28] (including the high resolution tiled-display wall 
extension implemented in [29]) . Since BSV is based on multi-
processing, we believe a similar approach can be used to improve 
the screen resolution and processor utilization of these languages.  

BSV was inspired and has its name from the Bulk Synchro-
nous Programming (BSP) parallel programming model [15]. The 
general purpose BSP libraries [30][31][33][34] do not provide 
visualization libraries (nor do they seem to be actively main-
tained). 

Alternative approaches for parallelization includes multi-
threading, a compiler that supports automatics parallelization, 
OpenMP  directives in the code, MPI [34], MapReduce [35], or 
Pregel [36] (another BSP inspired special purpose systems). Most 
of these are intended for long running computationally or data 

Table 9. Time to execute a filter and visualize function. All times 
are in ms. Standard deviation is in parenthesis. 

Platform Filter Visualize
Windows 4108 (708) 694 (302)
Linux 6497 (1059) 907 (142)
OS X 4354 (525) 440 (391)
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intensive computations, and are therefore not designed to provide 
low latency operations required for interactive visualization tools. 

BSV show prediction can be considered as a special case of 
software based speculative parallelization as done in for example 
the BOP system [37].  BOP uses the copy-on-write for data pro-
tection, while BSV use it to reduce DRAM usage. BSV data 
sharing conflicts therefore only affect resource usage and not the 
correctness of the program. 

Previous work on interactive system level performance analy-
sis includes [38–41][42]. These typically focus on the variation of 
application response time, and are typically measured using soft-
ware timestamps that miss the hardware and operating system 
overhead. Our high speed camera measurements include hardware 
and operating system delays. Similar high speed camera meas-
urements are described in a forum post [43]. We are not aware of 
other recent performance evaluations of window manager, and 
scripting language visualization applications.  

An alternative to software and system focused performance 
evaluation are user studies [44]. User studies could answer im-
portant questions not investigated in this paper such as the upper 
bounds for the number of visualization a human can interpret in a 
reasonable amount of time, and the perceived performance of big 
changes on high resolution screens such as switching tens of 
windows. 

It is a commonly accepted that desktop systems have low CPU 
utilization. This has been confirmed by studies on thread-level 
parallelism in desktop applications [45][46], and there have re-
cently been some suggestion about how to improve parallelism in 
interactive applications [47][48]. Although a multi-processing 
system can improve interactive performance, the application 
structure [47] often limits the number of cores that can be utilized 
[45][46]. Our experience implementing the BSV system confirms 
this, since we found the multi-threading support of the Python 
visualization libraries to be limited, and in addition differed 
among the three operating systems we used.   

8. CONCLUSION 
The contribution of this paper is a model for parallel visualization, 
and a description of the models design, implementation, and 
interactive performance and parallelism. 

We have demonstrated that the model is useful and usable by 
implementing three explorative visualization applications that can 
be run on the three common workstation platforms Windows, 
Linux, and OS X. Based on our experiences developing and using 
these applications we have developed an API with the functionali-
ty required to programmatically control an interactive visualiza-
tion with thousands of windows. Our experimental evaluation 
demonstrated that the model can utilize both high resolution dis-
plays and multi-core processors. We also identified interactive 
performance limitations, and parallelism limitations. 

The source code is freely available, is well documented, has 
test cases, and example applications. It can therefore be further 
developed and extended. All are available at: 
www.cs.uit.no/~larsab/bsv/ 

9. FUTURE WORK 
Two main areas for improvements to the BSV system are better 
visible window show prediction and easier window management. 
The algorithm currently used for show prediction assumes the 
user traverser the windows in 1-dimension. This works well if 
there is a natural sorting of the tasks. However, there may be cases 
when it is more natural to navigate through the windows in two 
(or more dimensions). For such navigation the prediction algo-
rithm should take these additional dimensions into account. Im-

plementing a BSV application that uses scatterplots to visualize 
multi-dimensional data would be a good case study. 

Currently, all interaction with BSV is through function calls. 
However, it is easy to write a small GUI for the window manage-
ment functions, or to integrate BSV with for example a touch/ 
gesture display wall interface [49].  

GPU based visualization systems are capable of driving a high 
resolution display, and current many-core GPUs have the pro-
cessing power required for many visualization applications. How-
ever, we believe the development time is too high with the current 
Python bindings. But it may be possible to implement very effi-
cient sub-figure management using GPUs. 

Another area of interesting future work is additional interactive 
performance evaluation of visualization applications that run on 
multiple platforms. Especially to understand the performance 
issues and dependencies of visualization libraries, window man-
agers, and hardware. 

We also intend to further investigate how the programmatic 
control over visualization can be used in interactive exploration of 
large collections of genomics data, and we plan to do a perfor-
mance evaluation of BSV on a high resolution display wall to 
measure the overhead added by two levels of coordinators. 
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