

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
PMAM'2013, February 23, 2013, Shenzhen [Guangdong, China]
Copyright © 2013 ACM 978-1-4503-1908-9/13/02... $15.00

Bulk Synchronous Visualization

Lars Ailo Bongo
Department of Computer Science,

University of Tromsø,
N-9037 Tromsø, Norway

larsab@cs.uit.no

ABSTRACT
Many visual analytics applications require computationally ex-
pensive high resolution visualizations. Large desktop displays and
display walls may provide the required resolution, and current
multi- and many-core processors often have the required computa-
tional resources. However, it is still challenging to write programs
that can utilize high resolution displays and multi-core processors.
We describe the bulk synchronous visualization (BSV) model that
makes it easier to write high resolution parallel visualizations. The
dataset to be visualized is decomposed into thousands of tasks that
are assigned to sequential processes. These are then run in parallel
by the BSV system which provides efficient process and window
management. BSV takes advantage of the large DRAM size and
multiple cores of current computers, and the copy-on-write and
low overhead fork mechanisms provided by current operating
systems. We have implemented three BSV applications and used
these to identify advantages and limitations of BSV on Windows,
Linux and OS X. The results demonstrate that BSV makes it easy
to implement visualization applications that utilize high resolution
displays and multi-core processors.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent programming, Distributed Program-
ming. D.2.13 [Software Engineering]: Reusable Software—
Reusable libraries

General Terms Measurement, Performance, Design

Keywords Python visualizations; bulk synchronous parallelism;
display walls; interactive performance; multi-core processors;
window management.

1. INTRODUCTION
Many analytics applications require computationally expensive
high resolution visualizations. One such example is bioinformat-
ics, where the simultaneous integrated display of many datasets
can provide novel biological insights that are not apparent when
displaying only one dataset at a time [1]. Other examples includes
meteorological simulation [2], plasma physics experiment control
systems [3], and tools for text analytics [4].

High resolution displays are readily available either as large
format monitors, multiple monitors connected to a computer, or as
tiled display walls where multiple computers with one or more

monitors or projectors are coordinated to provide one high resolu-
tion display [5]. In addition, current computers have very power-
ful multi-, or many-core processors. These typically provide the
required resources for visualization applications.

However, writing a program that can utilize high resolution
displays and multi-core processors is challenging. First, to utilize
multiple CPU cores requires writing either a multi-threaded pro-
gram to be run on a shared memory computer, or a distributed
program to be run on a distributed memory computer cluster.
Multi-threaded programming is especially challenging when
combined with GUI libraries that often assume an event based
programming model with a single thread doing all updates to the
visualization. Second, to write a visualization program that per-
forms well on a high resolution screen it may be necessary to use
low-level graphics libraries such as Direct X [6], Open GL [7], or
VTK [8] to achieve required performance, or to do manual win-
dow management if there are multiple sub-visualizations. All of
the above requires either advanced programming knowledge or
many days of developer time, which often leads to underutiliza-
tion of the available resolution and computational resources.

The developer time is justified for visualization tools with
many users such as business intelligence tools [9], genomics
visualization tools [1][10], or scientific parallel visualization tools
[11][12]. But there are many cases where a single user needs to
quickly visualize some data using an easy to use visualization
environment such as MATLAB or pylab [13]. But these visualiza-
tions often do not scale to high resolution displays.

It is also possible to reduce the amount of data to be visualized
by using techniques such as clustering or other statistical analysis
techniques. However, many users do not have the knowledge
required to use these techniques or they may want to do some
simple visualizations to quickly get an overview of the data [14].

We propose the bulk synchronous visualization (BSV) model
for interactive parallel computation and visualizations. BSV is
designed for MATLAB-type visualizations on high resolution
displays including display walls. The most important requirements
are therefore ease of use, short developer time, scalability and
distributed execution. The BSV system provides efficient process
and window management by taking advantage of the large DRAM
size and multiple CPU cores of current computers, and the copy-
on-write and low overhead fork mechanisms provided by modern
operating systems.

The dataset to be visualized by BSV program is first decom-
posed into thousands of tasks that are assigned to plotter process-
es. Each plotter process has a separate address space and a sepa-
rate window. The plotter processes are run in parallel by the BSV
system. The program can be scaled with respect to processor cores
and screen resolution by respectively adjusting the number of
running and visible plotters. Window management is provided by

21

interactive functions that filter visible plotters, or functions that
show a set of plotters.

We have implemented three BSV applications and used these
to evaluate the interactive performance of BSV on Windows,
Linux and OS X. The results demonstrate that BSV makes it easy
to program visualization applications that utilize high resolution
displays and multi-core processors. We also identify advantages
and limitations of the BSV model. Our conclusion is that BSV
makes it easy to implement visualization applications that utilize
high resolution displays and multi-core processors.

2. ARCHITECTURE
A BSV program is expressed as a series of visualization functions
executed by many plotter processes. The data to be visualized is
decomposed and assigned to plotter processes. Each plotter has a
separate address space and a window. The visualization is orches-
trated by a coordinator process that synchronizes the visualization
shown on each plotter, and maps plotter processes to processors
and plotter windows to screen space. Plotters may be mapped to
CPU cores distributed on multiple computers (figure 1).

The coordinator is typically loaded into an interactive shell
where the user can write visualization code to be executed on the
plotters. In addition to visualization code execution, the API also
provides a simple interface for window management. The coordi-
nator communicates with either a BSV local coordinator in case
of distributed execution, or directly with a BSV plotter if run on a
single computer.

The plotters receive commands to be executed from a coordi-
nator. A plotter process is started by cloning (forking) the coordi-
nator process so each plotter has a replica of all the coordinator’s
data structures that can be read and modified without any commu-
nication or synchronization. A plotter visualizes or plots data by
calling functions from visualization libraries. BSV wraps a few
window management functions of the visualization library, but the
plotter can also call all library functions directly. The high-level
visualization library typically runs on top of the operating sys-
tem’s window manager.

2.1 BSV vs. BSP
BSV is inspired by the bulk synchronous programming (BSP)
model [15] where a program is expressed as supersteps that typi-
cally comprise computation, point-to-point communication, and a
globally synchronizing barrier. BSP programs are also typically
overdecomposed such that many processes are mapped to one
processor core.

In the initial design, BSV was intended to provide window
management for visualizations implemented as BSP programs.
But there are three main differences between a parallel computa-
tion and the parallel visualizations indented for BSV. First, the
BSV plotter processes typically do not require point-to-point

communication with other plotters. Second, the result of a BSV
plotter is typically a visualization of which only a subset are
viewed by the user. Third, a BSV program is often an order of
magnitude more overdecomposed than a BSP program.

Based on these observations, the BSV design assumes that
plotter processes do not have point-to-point communication and
that the barrier is implicit. BSV therefore has virtual supersteps
that only guarantee that all plotter processes will eventually exe-
cute all supersteps (typically during user think time). It is there-
fore not necessary to start all plotters for each superstep. Howev-
er, BSV provides a barrier in the form of a gather-all operation
which can be used to implement real supersteps that may include
point-to-point communication.

2.2 BSV Programming Model
The coordinator first runs application specific code to initialize
the data structures to be visualized. This is typically done by
reading and parsing data from input files. It then runs application
specific code to decompose the data and assign the parts to plotter
processes. After starting plotter processes, it is assumed that the
coordinator will not modify the application data structures; such
that additional plotter processes started at a later time have identi-
cal state. A plotter process first initializes a window and then
executes visualization functions received from the coordinator (a
visualization function corresponds to a superstep in BSP). These
functions read and write the data structures and draw in the win-
dow. To visualize different parts, the user provides a list with
arguments to be sent to each plotter. A plotter may also receive a
show or hide window command, a command to move or resize the
window, or a kill command. The hide and kill commands may be
sent in the form of a filter function that is evaluated to determine
whether to hide the window of a plotter.

The coordinator keeps a list of all executed visualization func-
tions, so it can kill a plotter process and later re-create it by send-
ing it the list of functions to be executed in order to synchronize
the visualization with the other currently visible visualizations.

In the program in figure 2, a matrix is read from a file and
parsed in (1) using application specific code. The matrix is then
split into multiple blocks that are visualized independently. We
assume the application specific split function returns a start and
end row of each block that is saved in the blocks variable (2). A
visualization function is in (3). This function receives the start and
end row index of its block by the system and executes the code to
visualize the data. The BSV coordinator is started in (4), and the
coordinator receives a visualization function to be executed on
each visible visualization processes (5). There will be one visuali-
zation process for each block, but only 60 blocks are visible at a
time as specified by the argument in (4). 30 random windows are
shown (6), and then a filter function hides all windows in which
the first column has a negative value (7 and 8). Finally the first 30
of the non-filtered windows are shown (9).

[1]: matrix = readAndParseData()
[2]: blocks = split(matrix) # (start, end)
[3]: def viz1(startRow, endRow):
...: plot(matrix[startRow:endRow])
[4]: coordinator = bsv.Coordinator(60)
[5]: coordinator.visualize(viz1, blocks)
[6]: coordinator.showRandom(30)
[7]: def filter1(startRow, endRow):
...: for i in range(startRow, EndRow):
...: if matrix[i][0] < 0:
...: return False # hide window
[8]: coordinator.filter(filter1, blocks)
[9]: coordinator.showFirst(30)

Figure 2. A simplified BSV program.

Figure 1. BSV architecture. A BSV coordinator orchestrates the
visualizations of multiple BSV plotters.

22

2.3 Local and Distributed Execution
BSV can either be run on a single computer or distributed on a
display wall cluster. On a single computer BSV visualizations are
executed using multi-processing. There is one plotter process per
task, and a single coordinator process. However, at a given time
only a subset of the plotter processes are runnable, since the coor-
dinator implements scheduling by killing and creating plotter
processes. In addition the coordinator determines which windows
are shown and hidden (figure 3). The user can close a plotter
permanently using the application specific GUI (if any). The
operating system scheduler decides which runnable plotters to run
on the different CPU cores (or GPUs).

BSV can be run distributed on multiple computers, for exam-
ple in order to use a display wall cluster. First, a local coordinator
process is started on each node. The user then controls the visuali-
zation using a master coordinator that distributes visualization
commands to local coordinator and implements global scheduling
of visible windows. The local coordinators distribute the received
commands to their plotters and implements scheduling of running
plotter processes.

Distributed execution requires coordinating data management.
For small datasets all local coordinators can maintain a replicated
dataset. For large datasets, it may be necessary to partition the
data. In BSV the master coordinator does the partitioning. The
application can use libraries or infrastructure services for distrib-
uted data access or data streaming. BSV does not provide security
features such as user authorization and auditing of code to be
executed.

BSV programs can be run on a GPU if the visualization func-
tions use a visualization library with for example openGL or
openCL mappings. But the BSV coordinator will schedule these
plotters similarly to plotters that only use CPU cores.

3. DESIGN AND IMPLEMENTATION
The BSV system is designed to provide efficient interactive ex-
ploration of large visualizations decomposed into hundreds of
windows. The system design is motivated and based on four
assumptions about current computers and operating systems. First,
there is enough DRAM to keep many visualization processes in
memory at once. Second, if the operating system implements fork
using copy-on-write, the resident set size of the child processes
will be small even for processes with large data structures if these
are mostly read only. Third, there are compute resources availa-
ble for running computation on hidden windows. Fourth, the
create process (fork) system call has low overhead.

The BSV system therefore runs many visualization processes
simultaneously, but only a few of these are visible at a given time.
In addition the system predicts which visualizations are likely to
be shown in the near future, and if needed starts these process in
the background such that the visualizations are ready when re-
quested by the user. Such prediction is easy to implement if the
user views the visualizations in a predetermined order. The order
can be based on for example indexes in a matrix, dataset names,
or task properties such as size. Since BSV uses multi-processing it
supports visualization libraries that are not thread-safe.

We have implemented the BSV system in Python. We use the
multiprocessing module to fork plotter processes and use pipes for
inter process communication. In Python, functions can be saved as

objects and sent over a pipe or socket to another process. Visuali-
zation and filter functions can therefore be written by the user in
and interactive shell such as iPython [16]. We use the marshal
module to dump the functions func_code on the coordinator and
to load the function into the global namespace of the plotter (or
local coordinator).

We use pylab [13] for numerical computation and graph plot-
ting, and for parallel computing on a display wall cluster. BSV
implements wrappers for matplotlib [17] run on top of the wxPy-
thon [18] and TkAgg [19] GUI backends. We also implements
wrappers for pyglet [20] and TkInter [19].

3.1 Fork and Copy-on-write
Copy-on-write is an optimization technique that is used by operat-
ing systems to implement address space cloning. For example in
Linux the fork system call will create page tables that point to the
same pages as the parent. These are both fast to create and have
low memory overhead. The pages are shared until the child writes
to a page. We assume most data structures used by BSV applica-
tions are read-only such that many pages can be shared.

The multi-processing module in Python 2.7.2 uses the fork
system call that creates a new address space for the child using
copy-on-write in Linux and OS X. In Windows 7, it uses the
CreateProcess function in the Win32 API that does not implement
copy-on-write. A plotter process will therefore create a new ad-
dress space, start a new Python interpreter, and run the main
module of the interpreter. The implications for interactive perfor-
mance are evaluated in Section 6.

3.2 Show Prediction
The BSV system runs many visualization processes simultaneous-
ly, but only a few of these are visible at a given time. The coordi-
nator predicts which visualizations are likely to be shown, and
attempts to keep these plotters running in the background. The
scheduler implementation assumes that the tasks are organized in
a 1-dimensional array using an application specific order (figure
4), and that the user traverses the tasks in the order of the array. It
therefore attempts to keep tasks adjacent to visible tasks running.
The scheduler is run each time a window is hidden, and it replaces
one plotter process per hidden window in each turn. The least
recently visible plotters are selected for replacement.

3.3 Coordinator and Plotter Implementation
The coordinator is implemented as a Python class that exports an
interface to be used from an interactive shell. For distributed
execution the coordinator functionality is split between the master
coordinator and the local coordinator. The master is then typically

Figure 4. Of the 18 plotters, 4 are visible and mapped to an area
on the screen (black), 8 are hidden and mapped to three processor

cores (gray) and 6 are not running (white). To next function in
BSV will switch visible plotters to 0, 8, 9, and 14. The index(3)

function will show plotters 3—6.

Figure 3. BSV plotter states.

23

run as an interactive shell, and the local coordinator as a Python
program. Both have in addition to the shell thread, a network layer
thread as described below.

The plotter is a Python program with an IPC thread and one or
two visualization threads. For visualization libraries that support
multi-threading one thread runs the GUI loop, while another
receives and executes window management commands and visu-
alization functions. Otherwise, a single thread must run both the
GUI loop and execute received commands. It can therefore block
while waiting for a new GUI event, or a command from the coor-
dinator. Blocking in the GUI event loop will add additional laten-
cy to the window management and visualization commands re-
ceived from the coordinator. Blocking on the coordinator socket
will cause the GUI to be unresponsive for the user. Setting a short
blocking time on both will use more CPU. We assume the user
mostly controls the visualization through the coordinator, so the
default blocking time for coordinator commands is 500ms, and
0ms in the GUI loop.

3.4 Inter-Process Communication
Inter-process communication (IPC) is implemented using pipes,
queues and sockets. Pipes are used for coordinator-plotter com-
munication. The coordinator has one pipe connected to each of the
running plotters. Inter-node (master to local coordinator) commu-
nication is implemented using sockets. To avoid blocking the
interactive coordinator, the messages are sent asynchronously by
using a queue and a separate network thread. The plotter also has
a dedicated thread for IPC.

3.5 Limitations
Ideally, BSV visualization functions would be similar to visuali-
zation code written without using BSV. However, there are three
restrictions. First, the functions must take specific arguments such
that BSV can do an upcall (these are references to a state object, a
logger, and an arguments data structure). Second, the functions
should not use global variables since these may not be supported
by the underlying Python mechanisms (in particular multi-
processing on Windows 7). Instead the functions should store all
global references in a state object that is passed as argument to all
visualization functions. Third, all functions are in the global
namespace with names assigned by BSV. It is therefore hard to
split the visualization code over several functions.

Some visualization libraries do not work well with BSV. For
example, the popular pygame library [21] does not provide pro-
grammatic control over window management. Another important

limitation is that all of the coordinators data structures should fit
in memory such that plotter process startup is fast.

BSV does not currently provide fault-tolerance. If a plotter
process crashes the coordinator assumes that the plotter was
closed by the user and hence the plotter is not later restarted (we
have experienced a couple of crashes during testing and evalua-
tion). However, it is straightforward to modify BSV such that
crashed plotters can be restarted by the coordinator.

4. INTERFACES
BSV exports an API to the analyst that is used to control the
visualization. The analyst can also interact with the visualization
windows using regular GUI operations. There is also an interface
for wrapping visualization libraries. Communication between the
central coordinator and local coordinators, and local coordinator
and plotters is over custom protocols.

4.1 Coordinator API
The API exported by the coordinator to the user (Table 1) consists
of eight groups of functions. The first consists of functions to start
and stop plotters. For each task there is an entry in a list sent as
argument to the startPlotter, visualize, filter, and gather functions.
Each per task entry in the list may for example contain the plot-
ter’s index in a replicated dataset. In addition, there is a
stateObject that is used to store global variables. The reference to
the state object is set in startPlotter, and then passed as argument
in all plotter upcalls.

The filter, layout, and show function groups provide program-
matic control over window management. But it is also possible to
manually move and resize the windows.

BSV provides a function to gather values from all plotter by
writing a gather-all function that is executed on all plotters, and a
function to gather the log file content of all plotters.

For distributed execution executeLocally can be used to send
functions to be executed only by local coordinators.

4.2 Library Wrappers
There are many GUI backend, plotting, and visualization libraries
for Python each with its own API. BSV uses a wrapper approach
to support each library. The wrapper interface consists of six
window management functions that must be implemented for each
new library (Table 2). For most libraries each function will only
require a few lines of code and is straightforward to implement.
The visualization functions that implement the application specif-
ic visualization are not covered by this interface.

4.3 User Interfaces
The user interacts with the BSV system either through a Python
shell or by running a non-interactive Python script. In addition
each plotter has a window that may contain a user interface that
can be used to for example move or resize the window, interact
with visualization, or save it to a file. Such interaction is done
independently of BSV.

Table 1. BSV coordinator API.
Functions Arguments
[start, stop]Plotters

Number of plotters to start, list of plotter
arguments, state object

visualize

Visualization function, list of plotter
arguments

layoutGrid, layout

Grid layout, or list of window sizes and
positions

show[Next, Previ-
ous, Random, First,
Index, Indexes]

(function dependent)

filterVisible, pend-
ingFilterVisible,
filterOff

Filter function, list of plotter arguments

gather, readLogFiles Gather function, list of plotter arguments
executeLocally Function

Table 2. Skeletons for visualization library wrapper functions.
Functions Description
createWindow Initialize window resources. Non-

blocking.
guiLoop

Setup timer to call plotter run function.
Enter GUI loop. Blocking.

closeWindow Free window resources.
setWindowVisible Show or hide a window.
getWindowSize Get window size and position.
setWindowSize Set window size and position.

24

5. APPLICATIONS
We have implemented three BSV applications that represent what
we believe are typical explorative interactive visualization appli-
cations. These also demonstrate how BSV can be used with dif-
ferent visualization libraries. Since we expect BSV to be used
mostly for prototyping the main goal is fast development time
which evaluate by counting lines of code. Application perfor-
mance is evaluated in section 6.

5.1 GeoOverlap
BSV was motivated by the need to understand the behaviour of an
algorithm we developed for removing overlapping samples from
series downloaded from NCBI GEO [22]. Overlap is removed by
creating graphs with edges between all series that have one or
more overlapping samples and then iteratively removing samples
until the overlap between two series is less than a maximum spec-
ified as a parameter. The program outputs a log file with the
graphs and lists of removed series and samples.

The BSV coordinator reads in the log file and decomposes the
data in our sample log file to 1636 tasks. Each task has one graph
that is visualized using the NetworkX [23] Python package for
drawing dot [24] graphs in pylab [13]. In the resulting visualiza-
tions, removed series are marked using different colours and
styles, and the overlap is shown using edge labels (figure 6). The
graphs are sorted descending based on the number of nodes in the
graph.

We started by viewing the first tens of graphs, and then a few
tens of randomly selected graphs to get a rough idea about how
the algorithm removes overlap. We then studied significant details
by writing filter functions to only show graphs with certain prop-
erties such as graphs that contains superset or duplicate series,
graphs with at least N overlapping samples between a pair of
series, or graphs that contains a series X or a sample Y.

To parse the log file and create the graph data structures we
wrote about 200 lines of code (LOC). The final visualization
function was about 60 LOC, mostly for specifying the node and
edge styles to use in the graph. The filter functions were less than
10 LOC.

5.2 PyHidra
PyHidra is a simplified Python implementation of HIDRA [1]
(figure 5). A large collection of DNA microarray data are visual-
ized as heatmaps. The advantage of HIDRA compared to other
similar tools is that it shows multiple integrated datasets at once.
For example, if a user highlights a gene in one dataset, the same
gene will be highlighted in all other datasets. PyHidra demonstrate
the flexibility and power of BSV for displaying visualizations
with a large number of pixels.

Our Python implementation implements the heatmaps, and
supports gene highlighting from the command line. The heatmap
is drawn in a canvas from the Tkinter GUI toolkit. PyHidra is
about 240 LOC of which about 100 LOC is for drawing the
heatmap. Most of the visualization code was based on code from
the SPELL tool [25].

To select a gene the analyst runs a visualization function on all
plotters that draw a rectangle surrounding the highlighted gene’s
row. PyHidra has a filter function for displaying only the dataset
with at least N highlighted genes, and a visualization function for
only showing the highlighted genes in a dataset. It is easy to write
additional visualization functions to reorder the genes, or do other
kinds of filtering.

5.3 Mandelbrot
Mandelbrot is a widely used embarrassingly parallel benchmark
that calculates and displays the Mandelbrot set in a two-

dimensional fractal shape. Our benchmark animates N zooms into
a region of the image. This application demonstrates that BSV can
be used to run computationally intensive applications.

We have two implementations of Mandelbrot; a version that
uses the CPU for calculation and Tkinter for visualization, and a
version that uses the GPU for calculation and pyglet for visualiza-
tion.

6. EVALUATION
We evaluate the interactive performance of BSV. In particular we
want to answer the following questions: (i) what is the latency of
switching visible windows on a high resolution screen?, (ii) what
is the latency of starting many plotter processes that each opens a
new window?, (iii) how many plotter processes can be run on a
single computer, and what limits the number of processes?, (iv)
how does interactive performance and process parallelism differ
among different operating systems?

In addition, we provided an informal software engineering
evaluation in the previous section by counting lines of code for
each application to estimate the developer effort.

6.1 Hardware and Software Platforms
We use two hardware platforms. The first is a dual-boot Dell
Precision T3500 workstation that has two dual-core Intel Xeon 2.3
GHz processors, 6GB DRAM, and a Nvidia Quadro NVS 295
graphics card. It has two Seagate Barracuda ST31500341AS
7200RPM 1.5TB hard drives. One for Windows 7 (64-bit), and

Figure5. PyHidra heatmaps with some genes highlighted
(1366x768 pixel resolution).

Figure 6. Screenshot of GeoOverlap. Screen resolution has been
reduced to 800x600 for increased readability.

25

one for Lubuntu 12.10 (64-bit). The platform has a HPZR30w
display with a resolution of 2560x1600 pixels, a Dell 2001FP with
1600x1200pixels, and a Dell USB keyboard. Using this machine
we can do direct comparisons between the performance of Linux
and Windows.

We also use a Mac Mini, with a 2.5GHz Intel Corei5, 4GB
DRAM, a ADM Radeon HD 6630M graphics card, and a
5400RPM 500GB hard drive. It is running Mac OS X 10.7.5
(Lion), and has a Dell2001FP 1600x1200 display and a Dell USB
keyboard. We could not use the bigger HPZR30w with the mac
mini due to compatibly issues.

We use the Entought Python distribution version 7.3.2-free on
all platforms. This version has Python 2.7.3, matplotlib 1.1.0,
networkx 1.6, ipython 0.12.1, pyglet 1.1.4, and wxPython
2.8.10.1. However, there is only a 64-bit version for Linux, so we
use the 32-bit version on Windows and OS X.

6.2 Microbenchmarks
For the evaluation we use the applications described in section 5
and four microbenchmarks implemented in Python:

1. startProcs: start N processes using Pythons multi-processing
module. The child processes sleeps 5 seconds before exiting.

2. bigMem: start N processes that each allocate a 100 megabytes
list and then traverse the list.

3. openWin: start N processes that each opens a window and plot
a simple graph using matplotlib.pyplot.

4. switchWin: start 2*N processes where N of these starts with a
visible window, and the remaining have a hidden window. On
a keyboard press all N windows will be hidden and N new
windows will be shown In each window a barchart is plotted
using matplotlib.pyplot. In Windows and OS X the default
matplotlib backend is wxPython. In Linux we had to use
TkAgg due to errors in wxPython when switching between
multiple windows at a time.

In addition we use an image viewer on each platform as a micro-
benchmark for native application window open time. We open a
400x300 PNG image (the image for Figure) in Windows Photo
Viewer, GPicView in Linux, and Preview in OS X.

6.3 Methodology
To evaluate interactive performance we measure the latency
between a user’s input until the system responds by changing the
display content. Frequently used response time limits are: 100ms
for the user to feel that the response is instant, 1 second to avoid
disrupting a user’s flow of thought, and 10 seconds to avoid losing
the users attention [26]. It is also recommended that some form of
user feedback is used for latencies above 1 second to indicate that
the system is working [27].

6.3.1 Resource usage
For the evaluation we need to measure CPU usage, DRAM usage,
virtual memory size, process start latency, time to open new win-
dows, and time to switch between visible windows.

CPU and memory usage is measured using Resource Monitor
in Windows, procutils in Linux, and vm_stat in OS X. We report
the maximum virtual memory size as reported by the above tools.
Time is measured using the time function in the Python time
module. We also use a high speed camera to measure window
open and switch latency (as described below).

To measure DRAM usage we compare the amount of available
(or free) memory when the application is running and the amount
of available memory when all processes have exited. We assume
that most of the memory in use by the processes is made availa-
ble. We must make this assumption since there is no easy, and
portable, way of finding the per process DRAM usage. For exam-
ple in Linux, the reported per process DRAM usage (resident size)
includes shared and copy-on-write memory, and hence the sum of
reported DRAM usage of all processes can be many times higher
than the amount of DRAM on the system.

Each experiment is run five times on an idle system and the
averages are reported.

6.3.2 High speed camera
To measure the latency of window switch and open operations we
use two portable approaches. First we add instrumentation to the
Python code such that we can measure the time from a coordina-
tor sent a command until the last plotter executed the show or
open command. This approach does not include latencies and
overhead of the visualization library, the operating system win-
dow manager, and hardware latencies.

To overcome this limitation we also use a commodity high
speed camera (Casio EX-ZR200) that can film the monitor at
1000 frames per second (224x64 pixels). We watch the video in
QuickTime Player version 7.2.2 frame-by-frame until we detect
the key-press event and later the display-updated event. The main
methodological challenge is to determine when these events oc-
cur.

We simplify the measurement by measuring the time between
the user (i.e. us) believes the key was pressed until the user be-
lieves the display was updated. We can therefore assume the key
pressed event occurs when the key is pressed all the way down.
We have a custom made keyboard pressing device that consists of
a small metal rod attached to a plank. The rod has a small flag,
and the plank has a mark for where the flag position when the key
is pressed all the way down. We can usually detect the frame
where a key is pressed (the key is pressed very fast).

We assume the display update event is when the first part (typ-
ically a shadow) of the window becomes visible on the screen.
The window does not appear immediately on the display, but
starts as a shadow which gradually becomes less transparent.
There may also be animation effects as in the Windows 7 Aero
theme, and up to a hundred millisecond delay before the applica-
tion content becomes visible. We argue that the first appearance is
the most important, since the subsequent events are either not
detectable for the human perception system, or they are designed
to fool the user into believing that the interactive performance is
better. When opening, or switching, between multiple windows
we assume the display update event occurs when the last window
becomes visible. This latency therefore includes user feedback in
the form of windows being shown or updated.

6.4 Window Management Performance
Interactive performance is determined by user perceived latencies.
For BSV window management these are the time to switch visible
windows, and time to open new windows. We measure these
using the startProcs, switchWin, openPNG and openWin micro-
benchmarks. The results provide insight into the advantages of
having many plotters running simultaneously compared to starting
plotters on demand.

26

Our results show as expected that the time to create new pro-
cesses that open windows can be two orders of magnitude slower
than switching between running processes (Tables 3 and 4).

The latency to start a single Python process is within 100ms on
all platforms (Table 3). The Windows latency is an order of mag-
nitude larger than Linux and OS X due to the lack of copy-on-
write when forking a new Python process.

Switching between two windows is also within 100ms on all
platforms (Table 3). Almost all of the time is spent in hardware
and the operating system. The latency measured using the Python
timestamps is less than 1ms.

The high speed camera results show that the latency for start-
ing a new process that shows a pyplot window is twice as fast on
Windows than Linux or OS X, even with the higher process create
overhead of Windows (Table 3). Most of this latency is in the
Python code on all platforms. The remaining 90-135ms are over-
head in the keyboard/USB hardware, operating system, window
manager, and display hardware. Compared to native applications
the Python microbenchmarks are 2-10 times slower (Table 3),
with the difference being time spent in the Python visualization
library. It may be possible to optimize the Python library code, but
it is easier to hide this overhead by starting the processes in the
background such that these can be switched to when needed.

Increasing the number of windows to open and switch to 28,
allows the workload to be run on multiple CPU cores, and hence
the latencies only increase 7-15 times (Table 4). Also, we note
that both microbenchmarks peak at 100% CPU utilization, so
additional cores may have further reduced the added latency. In
addition the user will get some feedback since the windows are
often gradually updated.

These results demonstrate that the cores can be very efficiently
utilized by BSV to improve interactive performance (parallel
efficiency is up to 0.94).

6.5 Memory Usage
An important factor that limits the number of processors that can
be started on each platform is the per-process DRAM usage. If all
processes do not fit in memory, the resulting swapping will se-
verely deprecate interactive performance. In this section we use
the startProcs, bigMem, and openWin microbenchmarks to start
100 processes and then measure the per process memory usage.

The per process memory footprint for startProcs and bigMem
are small for Linux and OS X, but much higher for Windows
(Table 5). Again the problem is caused by the lack of copy-on-
write during process creation. For Windows this will especially
limit the number of processes that can be run if a large data struc-
ture is shared. However, the memory usage is similar for the
openWin benchmark since it does not have many shared data
structures.

The openWin results also show that we can open up to 21 win-
dows per gigabyte of DRAM, excluding application specific data
structures.

6.6 Applications
In this section we use the applications described in section 5 to
measure the window switch latency, memory usage, and identify
the limitations to plotter parallelism.

We set the initial parameters based on how many plotter win-
dows we can have comfortably visible on a 2560x1600 pixel
monitor. For GeoOverlap we can have 20 windows open in a 4x5
grid, without the screen becoming cluttered or loss of information
in a window. PyHidra has very tall visualizations so we can only
fit 5 windows in a 1x5 grid. In Mandelbrot the visualization does
not have any information content, so it is hard to determine a
sufficient size for a window. However, we can assume that for
CPU intensive visualization the number of processor cores will
limit the number of open windows. We therefore only show four
500x500 pixel Mandelbrot windows.

We would like to run 3 background plotters per visible plotter,
so we start 20 plotter for PyHidra, However, the memory usage of
GeoOverlap in Windows 7 limits the number of concurrent pro-
cesses to 40, while the computational time of Mandelbrot limits
the number of concurrent processes to 8. The resulting memory
usage is larger on Windows due to the lack of copy-on-write for
GeoOverlap, and larger on Linux since a 64-bit Python is used
(Table 6).

We measured the time to switch all visible windows for each
application (Table 7) and the time to start a background process
for each hidden window (Table 8). For GeoOverlap all 20 win-
dows can be switched in less than 1.5 seconds on all platforms,
but it can take up to 48 seconds to start all background plotters in
Windows. Again, it is due to the lack of copy-on-write which
causes the started plotter process to re-initialize all off the coordi-
nator’s data structures by reading these from disk. On all plat-

Table 5. Per process memory usage (in MB).
Platform Start-100 BigMem-100 OpenWin-100
Windows 3.05 132.3 47.3
Linux 0.84 11.8 46.6
OS X 0.70 12.7 38.7

Table 7. Response time for switching all visible windows. All are
in ms. Standard deviation is in parenthesis.

Platform GeoOverlap PyHidra Mandelbrot
Windows 1061 (37) 3097 (576) 1886 (1063)
Linux 1381 (67) 3420 (1216) 1887 (516)
OS X 1473 (259) 2371 (610) 1346 (299)

Table 8. Time to start all background process when switching all
visible windows (one process is started per hidden window).

Platform GeoOverlap PyHidra Mandelbrot
Windows 48sec 6.9sec 100ms
Linux 1.8sec 8.3sec 40ms
OS X 13.4sec 6.5sec 810ms

Table 3. Response time for single window experiments. All are
in ms. Standard deviation is in parenthesis.

Platform Start-1 Switch-1 Open-PNG OpenWin-1
Windows 76 (8) 90 (10) 319 (31) 746 (43)
Linux 2 (0.03) 57 (6) 147 (2) 1427 (9)
OS X 7 (0.09) 97 (6) 520 (5) 1432 (14)

Table 4. Response times for full screen of windows experiments.
All are in ms. Standard deviation is in parenthesis.

Platform Start-28 Switch-28 OpenWin-28
Windows 453 (17) 1509 (53) 5884 (217)
Linux 11 (0.1) 578 (46) 12209 (529)
OS X 25 (0.4) 290 (16) 16420 (240)

Table 6. Total application memory usage (in MB).
Platform GeoOverlap PyHidra Mandelbrot
Windows 3309 417 100
Linux 1121 856 73
OS X 1573 471 130

27

forms the switch is completed before many background processes
are started so there is no competition for CPU.

A cost breakdown shows that the switch time overhead is
mostly due IPC overhead for a message exchange between the
coordinator and the plotter. This message is for the coordinator to
get the size and location of the plotter window (the user may have
moved it). The size and position are then inherited by the next
shown visualization. This call is blocking and is done for one
plotter at a time.

The time to switch 5 PyHidra windows is about three times
longer than the time to switch 20 GeoOverlap windows. We be-
lieve that the higher latency is due to the visualization functions in
PyHidra that update a canvas using thousands of draw operations.
The canvas must be repainted when a window is made visible.
Note that due to the smaller screen in the Mac mini the windows
in OS X have a smaller canvas, which may cause the performance
improvement over Linux and Windows.

PyHidra background process startup time is similar on all plat-
forms since a plotter loads the data after begin created, hence
there is no advantage of cloning the address space.

For Mandelbrot it takes almost the same time to switch among
the four windows on both platforms, but the measured latencies
have very high variation. Starting the four background processes
is very fast, but the CPU utilization is not 100% before the switch
is done. There are therefore no performance benefits by reserving
a core for the switch by only displaying three windows at a time.

The above results demonstrate that BSV achieves our interac-
tive latency goals. However, we also identified factors that limit
the interactive performance and the number of processors that can
be run on a machine. These differ among the applications and also
for platforms. For GeoOverlap in Windows, the main limitation is
the startup time for background plotters, and the large memory
footprint, which limits the number of background processes that
can be run per visible plotter. This will limit the rate at which the
user can browse through the windows. Interactive performance in
PyHidra is limited by the time to switch among windows. We
have identified the problem to be due to IPC overhead causing
serialization in BSV. Also, PyHidra would benefit from a higher
resolution display. Mandelbrot is a benchmark designed to be
CPU intensive and it is therefore limited by the compute resources
in a computer.

We also note that the applications have much more similar
cross-platforms performance than the microbenchmarks.

6.7 Filter and Visualize Function Latency
The time to execute filter and visualization functions is also im-
portant for the interactive performance of BSV. We measure these
latencies using the PyHidra application (Table 9).

First we measured the time to execute a filter function on all of
the 20 running plotter processes. The filter function requires the
coordinator to wait for a response from each plotter, so it takes
between 4-6 seconds to execute. Most of this is due to overhead in
the coordinator-plotter inter process communication (IPC). How-
ever, by ensuring that the filter function is executed on the visible
plotters first most of the latency can be hidden. Also, a plotter for
which the plotter returns a false value can be hidden immediately.

Therefore, the user may see the first window being hidden after a
few tens of milliseconds.

The latency of a visualization function is much smaller since
the coordinator does not need to receive any messages from the
plotters, and hence it takes less than a second. Again most of the
time is spent in IPC.

6.8 Discussion
We found the response time of BSV window management com-
mands, visualization function, and filter functions, to be up to a
few seconds. Although we believe these are low enough to make
BSV useful there is still room for improvement.

Some of the application specific limitation can easily be fixed
by using a bigger computer. For GeoOverlap more memory would
allowed to run more process concurrently in Windows. An addi-
tional high resolution screen would allow more windows to be
shown for PyHidra, and more cores would allow running more
Mandelbrot processes in parallel. BSV system code also introduc-
es serialization that unnecessary limits interactive performance.
However, we also found some limitation with regards to interac-
tive performance mostly in the Python visualization function
code. For example opening a native Linux window was 10x faster
than a Python visualization. In addition, we observed differences
in Window Manager behaviour, where Windows seemed to batch
update events, while Linux and OS X updated the windows con-
tinuously.

Our microbenchmark results showed significant differences
between Linux and Windows. However, for the application
benchmarks the differences were much smaller. We found it in
general hard to reason, and especially predict, the interactive
performance of visual applications run on the different platforms.
Our results also show that although the Python visualization li-
braries we used were restricted to a single threaded event based
programming model, BSV was able to utilize all CPU cores on the
test systems by running each visualization in a separate process.

We have not evaluated switch prediction algorithms since we
do not know what realistic switch patterns will be. We assume
that they will be mostly left-to-right traversal combined with
filtering. An unanswered question is how many background plot-
ter processes are needed for these traversal patterns.

7. RELATED WORK
Related work can be divided into visualization libraries and tools,
parallel programming libraries and languages, and interactive
performance evaluation studies.

We discussed limitations for commercial visualization tools,
parallel visualization tools, and domain specific visualization tools
in the introduction. The BSV system is for the Python scripting
language. There are many alternatives to Python such as Python,
Perl, Ruby, R, MATLAB, PHP, or JavaScript. In addition there
are domain specific programming languages for visualization such
as Processing [28] (including the high resolution tiled-display wall
extension implemented in [29]) . Since BSV is based on multi-
processing, we believe a similar approach can be used to improve
the screen resolution and processor utilization of these languages.

BSV was inspired and has its name from the Bulk Synchro-
nous Programming (BSP) parallel programming model [15]. The
general purpose BSP libraries [30][31][33][34] do not provide
visualization libraries (nor do they seem to be actively main-
tained).

Alternative approaches for parallelization includes multi-
threading, a compiler that supports automatics parallelization,
OpenMP directives in the code, MPI [34], MapReduce [35], or
Pregel [36] (another BSP inspired special purpose systems). Most
of these are intended for long running computationally or data

Table 9. Time to execute a filter and visualize function. All times
are in ms. Standard deviation is in parenthesis.

Platform Filter Visualize
Windows 4108 (708) 694 (302)
Linux 6497 (1059) 907 (142)
OS X 4354 (525) 440 (391)

28

intensive computations, and are therefore not designed to provide
low latency operations required for interactive visualization tools.

BSV show prediction can be considered as a special case of
software based speculative parallelization as done in for example
the BOP system [37]. BOP uses the copy-on-write for data pro-
tection, while BSV use it to reduce DRAM usage. BSV data
sharing conflicts therefore only affect resource usage and not the
correctness of the program.

Previous work on interactive system level performance analy-
sis includes [38–41][42]. These typically focus on the variation of
application response time, and are typically measured using soft-
ware timestamps that miss the hardware and operating system
overhead. Our high speed camera measurements include hardware
and operating system delays. Similar high speed camera meas-
urements are described in a forum post [43]. We are not aware of
other recent performance evaluations of window manager, and
scripting language visualization applications.

An alternative to software and system focused performance
evaluation are user studies [44]. User studies could answer im-
portant questions not investigated in this paper such as the upper
bounds for the number of visualization a human can interpret in a
reasonable amount of time, and the perceived performance of big
changes on high resolution screens such as switching tens of
windows.

It is a commonly accepted that desktop systems have low CPU
utilization. This has been confirmed by studies on thread-level
parallelism in desktop applications [45][46], and there have re-
cently been some suggestion about how to improve parallelism in
interactive applications [47][48]. Although a multi-processing
system can improve interactive performance, the application
structure [47] often limits the number of cores that can be utilized
[45][46]. Our experience implementing the BSV system confirms
this, since we found the multi-threading support of the Python
visualization libraries to be limited, and in addition differed
among the three operating systems we used.

8. CONCLUSION
The contribution of this paper is a model for parallel visualization,
and a description of the models design, implementation, and
interactive performance and parallelism.

We have demonstrated that the model is useful and usable by
implementing three explorative visualization applications that can
be run on the three common workstation platforms Windows,
Linux, and OS X. Based on our experiences developing and using
these applications we have developed an API with the functionali-
ty required to programmatically control an interactive visualiza-
tion with thousands of windows. Our experimental evaluation
demonstrated that the model can utilize both high resolution dis-
plays and multi-core processors. We also identified interactive
performance limitations, and parallelism limitations.

The source code is freely available, is well documented, has
test cases, and example applications. It can therefore be further
developed and extended. All are available at:
www.cs.uit.no/~larsab/bsv/

9. FUTURE WORK
Two main areas for improvements to the BSV system are better
visible window show prediction and easier window management.
The algorithm currently used for show prediction assumes the
user traverser the windows in 1-dimension. This works well if
there is a natural sorting of the tasks. However, there may be cases
when it is more natural to navigate through the windows in two
(or more dimensions). For such navigation the prediction algo-
rithm should take these additional dimensions into account. Im-

plementing a BSV application that uses scatterplots to visualize
multi-dimensional data would be a good case study.

Currently, all interaction with BSV is through function calls.
However, it is easy to write a small GUI for the window manage-
ment functions, or to integrate BSV with for example a touch/
gesture display wall interface [49].

GPU based visualization systems are capable of driving a high
resolution display, and current many-core GPUs have the pro-
cessing power required for many visualization applications. How-
ever, we believe the development time is too high with the current
Python bindings. But it may be possible to implement very effi-
cient sub-figure management using GPUs.

Another area of interesting future work is additional interactive
performance evaluation of visualization applications that run on
multiple platforms. Especially to understand the performance
issues and dependencies of visualization libraries, window man-
agers, and hardware.

We also intend to further investigate how the programmatic
control over visualization can be used in interactive exploration of
large collections of genomics data, and we plan to do a perfor-
mance evaluation of BSV on a high resolution display wall to
measure the overhead added by two levels of coordinators.

10. ACKNOWLEDGMENTS
I would like to thank Lars Tiede, Edvard Pedersen, and the anon-
ymous reviewers for their comments to this paper.

11. REFERENCES
[1] M. Hibbs, G. Wallace, M. Dunham, K. Li, and O.
Troyanskaya, Viewing the Larger Context of Genomic Data
through Horizontal Integration, in 2007 11th International
Conference Information Visualization (IV ’07), 2007, pp. 326–
334.
[2] B. Fjukstad, O. Anshus, and J. M. Bjørndalen, High
resolution numerical models on a Display Wall, in The 7th Annual
Meeting of the European Meteorological Society (EMS) and the
8th European Conference on Applications of Meteorology, 2007.
[3] G. Wallace, O. J. Anshus, D. Clark, P. Cook, A. Finkelstein,
T. Funkhouser, A. Gupta, M. Hibbs, R. Samanta, R. Sukthankar,
and O. Troyanskaya, Tools and Applications for Large-Scale
Display Walls, IEEE Computer Graphics and Applications, vol.
25, no. 4, pp. 24–33, Jul. 2005.
[4] A. Singh, L. Bradel, A. Endert, R. Kincaid, C. Andrews, and
C. North, Supporting the cyber analytic process using visual
history on large displays, in Proceedings of the 8th International
Symposium on Visualization for Cyber Security - VizSec ’11,
2011, pp. 1–8.
[5] K. Li, H. Chen, Y. Chen, D. W. Clark, P. Cook, S.
Damianakis, G. Essl, A. Finkelstein, T. Funkhouser, T. Housel, A.
Klein, Z. Liu, E. Praun, J. P. Singh, B. Shedd, J. Pal, G.
Tzanetakis, and J. Zheng, Building and using a scalable display
wall system, IEEE Computer Graphics and Applications, vol. 20,
no. 4, pp. 29–37, 2000.
[6] DirectX Graphics and Gaming (Windows),
http://msdn.microsoft.com/en-
us/library/windows/desktop/ee663274.
[7] OpenGL, http://www.opengl.org/.
[8] VTK - The Visualization Toolkit, http://www.vtk.org/.
[9] L. Zhang, A. Stoffel, M. Behrisch, and S. Mittelstädt, Visual
Analytics for the Big Data Era–A Comparative Review of State-
of-the-Art Commercial Systems, in Proceedings of IEEE
Symposium on Visual Analytics Science and Technology, 2012,
pp. 173–182.

29

[10] N. Gehlenborg, S. I. O’Donoghue, N. S. Baliga, A.
Goesmann, M. A. Hibbs, H. Kitano, O. Kohlbacher, H.
Neuweger, R. Schneider, D. Tenenbaum, and A.-C. Gavin,
Visualization of omics data for systems biology., Nature methods,
vol. 7, no. 3 Suppl, pp. S56–68, Mar. 2010.
[11] VisIt Visualization Tool. https://wci.llnl.gov/codes/visit/.
[12] ParaView - Open Source Scientific Visualization,
http://www.paraview.org/.
[13] PyLab, http://www.scipy.org/PyLab.
[14] B. Shneiderman, The eyes have it: a task by data type
taxonomy for information visualizations, in Proceedings 1996
IEEE Symposium on Visual Languages, 1996, pp. 336–343.
[15] L. G. Valiant, A bridging model for parallel computation,
Communications of the ACM, vol. 33, no. 8, pp. 103–111, Aug.
1990.
[16] IPython, http://ipython.org/.
[17] pyplot — Matplotlib documentation,
http://matplotlib.org/api/pyplot_api.html..
[18] wxPython, http://www.wxpython.org/.
[19] TkInter, http://wiki.python.org/moin/TkInter.
[20] pyglet, http://www.pyglet.org/.
[21] pygame - python game development, 2012.
http://www.pygame.org/
[22] T. Barrett, D. B. Troup, S. E. Wilhite, P. Ledoux, C.
Evangelista, I. F. Kim, M. Tomashevsky, K. A. Marshall, K. H.
Phillippy, P. M. Sherman, R. N. Muertter, M. Holko, O.
Ayanbule, A. Yefanov, and A. Soboleva, NCBI GEO: archive for
functional genomics data sets--10 years on., Nucleic acids
research, vol. 39, no. Database issue, pp. D1005–10, Nov. 2010.
[23] NetworkX 1.7 documentation, http://networkx.lanl.gov/.
[24] E. R. Gansner and S. C. North, An open graph visualization
system and its applications to software engineering, Software:
Practice and Experience, vol. 30, no. 11, pp. 1203–1233, Sep.
2000.
[25] M. A. Hibbs, D. C. Hess, C. L. Myers, C. Huttenhower, K.
Li, and O. G. Troyanskaya, Exploring the functional landscape of
gene expression: directed search of large microarray compendia.,
Bioinformatics (Oxford, England), vol. 23, no. 20, pp. 2692–9,
Oct. 2007.
[26] R. B. Miller, Response time in man-computer
conversational transactions, in Proceedings of the December 9-11,
1968, fall joint computer conference, part I on - AFIPS ’68 (Fall,
part I), 1968, p. 267.
[27] B. A. Myers, The importance of percent-done progress
indicators for computer-human interfaces, in Proceedings of the
SIGCHI conference on Human factors in computing systems -
CHI ’85, 1985, vol. 16, no. 4, pp. 11–17.
[28] C. Reas and B. Fry, Processing: A Programming Handbook
for Visual Designers and Artists. The MIT Press, 2007, p. 736.
[29] B. Westing, MostPixelsEverCE,
https://github.com/bmwesting/MostPixelsEverCE.
[30] O. Bonorden, B. Juurlink, I. von Otte, and I. Rieping, The
Paderborn University BSP (PUB) library, Parallel Computing,
vol. 29, no. 2, pp. 187–207, Feb. 2003.
[31] J. M. D. Hill, B. McColl, D. C. Stefanescu, M. W.
Goudreau, K. Lang, S. B. Rao, T. Suel, T. Tsantilas, and R. H.
Bisseling, BSPlib: The BSP programming library, Parallel
Computing, vol. 24, no. 14, pp. 1947–1980, Dec. 1998.
[32] M. W. Goudreau, K. Lang, S. B. Rao, T. Suel, and T.
Tsantilas, Portable and efficient parallel computing using the BSP
model, IEEE Transactions on Computers, vol. 48, no. 7, pp. 670–
689, Jul. 1999.

[33] R. Miller, A Library for Bulk-Synchronous Parallel
Programming, in Proc. British Computer Society Parallel
Processing Specialist Group Workshop on General Purpose
Parallel Computing, 1993.
[34] Message Passing Interface Forum, MPI: A Message-
Passing Interface Standard. Version 3.0, 2012.
[35] J. Dean and S. Ghemawat, MapReduce: a flexible data
processing tool, Communications of the ACM, vol. 53, no. 1, p.
72, Jan. 2010.
[36] G. Malewicz, M. H. Austern, A. J. . Bik, J. C. Dehnert, I.
Horn, N. Leiser, and G. Czajkowski, Pregel: a system for large-
scale graph processing, in Proceedings of the 2010 international
conference on Management of data - SIGMOD ’10, 2010, p. 135.
[37] C. Ding, X. Shen, K. Kelsey, C. Tice, R. Huang, and C.
Zhang, Software behavior oriented parallelization, ACM
SIGPLAN Notices, vol. 42, no. 6, p. 223, Jun. 2007.
[38] B. K. Schmidt, M. S. Lam, and J. D. Northcutt, The
interactive performance of SLIM, in Proceedings of the
seventeenth ACM symposium on Operating systems principles -
SOSP ’99, 1999, vol. 33, no. 5, pp. 32–47.
[39] J. Nieh, S. J. Yang, and N. Novik, Measuring thin-client
performance using slow-motion benchmarking, ACM
Transactions on Computer Systems, vol. 21, no. 1, pp. 87–115,
Feb. 2003.
[40] M. Jovic, A. Adamoli, and M. Hauswirth, Catch me if you
can, in Proceedings of the 2011 ACM international conference on
Object oriented programming systems languages and applications
- OOPSLA ’11, 2011, vol. 46, no. 10, p. 155.
[41] N. Zeldovich and R. Chandra, Interactive performance
measurement with VNCplay, in ATEC ’05 Proceedings of the
annual conference on USENIX Annual Technical Conference,
2005, p. 54.
[42] Y. Endo, Z. Wang, J. B. Chen, and M. Seltzer, Using
latency to evaluate interactive system performance, ACM SIGOPS
Operating Systems Review, vol. 30, no. SI, pp. 185–199, Oct.
1996.
[43] J. Carmack, Transatlantic ping faster than sending a pixel to
the screen?, http://superuser.com/questions/419070/transatlantic-
ping-faster-than-sending-a-pixel-to-the-screen.
[44] P. A. Dinda, G. Memik, R. P. Dick, B. Lin, A. Mallik, A.
Gupta, and S. Rossoff, The user in experimental computer
systems research, in Proceedings of the 2007 workshop on
Experimental computer science - ExpCS ’07, 2007, p. 10–es.
[45] K. Flautner, R. Uhlig, S. Reinhardt, and T. Mudge, Thread-
level parallelism and interactive performance of desktop
applications, ACM SIGOPS Operating Systems Review, vol. 34,
no. 5, pp. 129–138, Dec. 2000.
[46] G. Blake, R. G. Dreslinski, T. Mudge, and K. Flautner,
Evolution of thread-level parallelism in desktop applications,
ACM SIGARCH Computer Architecture News, vol. 38, no. 3, p.
302, Jun. 2010.
[47] C. Hauser, C. Jacobi, M. Theimer, B. Welch, and M.
Weiser, Using threads in interactive systems, in Proceedings of
the fourteenth ACM symposium on Operating systems principles -
SOSP ’93, 1993, vol. 27, no. 5, pp. 94–105.
[48] C. G. Jones, R. Liu, L. Meyerovich, K. Asanović, and R.
Bodík, Parallelizing the web browser, p. 7, Mar. 2009.
[49] D. Stødle, T.-M. S. Hagen, J. M. Bjørndalen, and O. J.
Anshus, Gesture Based, Touch Free Multi User Gaming on
WallSized, High Resolution Tiled Displays, Journal of Virtual
Reality and Broadcasting, vol. 5, 2008.

30

