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Abstract

The ability to represent , manipulate and optimize

data movement between devices such as processors in

a distributed memory machine, or between global mem-

ory and processors in a shared memory machine, is cru-

cial in generating efficient code for such machines. In

this paper we describe a methodology far representing

and manipulating data movement explicitly in a com-

piler. Our methodology, called Explicit Data Placement

(XDP), consists of extensions to the compiler’s interme-

diate program language, as well as run-time structures

that allow certain operations to be performed efficiently.

We also illustrate one of the unique features of the XDP

methodology: the ability to manipulate the run-time

transfer of data ownership between processors.

I Introduction

Many program representations used in compilers rep-

resent data movement and partitioning only partially,

and in an implicit manner. Explicit Data Placement

(XDP) is a methodology for the explicit representation

and treatment of data movement and placement in a

compiler. The key ideas behind the XDP methodology

are:

1.

2.

Separation of data transfer from local computation,

enabling the compiler to control their overlap.

Language- and machine-independent representa-

tion of data transfer operations, allowing their in-

corporation into existing optimizations such as code

motion and redundant code elimination.
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3.

4.

5.

Unified and explicit treatment of data and own-

ership transfer enabling optimizations specific to

these operations.

Generalized compute rules which allow the compiler

freedom to go beyond the “owner-computes” rule.

Delayed binding of communication primitives to the

transfer operations.

The XDP methodology can be incorporated into com-

pilers that use a high-level compiler intermediate lan-

guage in the SPMD (Single Program Multiple Data) ex-

ecution model; the program will be loaded onto every

processor of the target machine that is assigned to the

program. While SPMD programs are commonly used

in a distributed memory setting, the XDP methodol-

ogy can also be used for compiling shared memory (se-

quential or parallel) programs to a distributed memory

SPMD node program. The original shared memory pro-

gram can be considered to be an SPMD node program

that is replicated along with all its data, on every node.

The compiler can then use data partitioning to trans-

form the intermediate representation into the eventual

distributed memory SPMD node program desired. At

present, the XDP methodology does not apply to lan-

guages with pointer variables; the addition of pointers

is the subject of future work.

The rules governing execution allow non-determinism

and do not guarantee coherence or freedom from dead-

lock. The XDP approach is to expose the power of ma-

nipulating data ownership and transfer to a compiler

allowing the loosest possible semantics for a variety of

implementations. While XDP could be used as a p~o-

gramming language, it has been designed for use by the

compiler, which can use XDP’S unsafe operations with

care.

Our thesis is that if a compiler is to optimize data

movement, it needs a methodology with the key ideas

1-5 noted above. The XDP operations and structures

provide a convenient platform for this optimization. In

this paper, we give a syntax and an operational seman-

tics for the XDP language constructs, outline an imple-
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mentation of the data structures and routines to support

the constructs at run-time, briefly discuss optimization

and code generation, and give examples that illustrate

one of XDP’S unique features: the ability to specify dy-

namic transfer of data ownership.

2 XDP Language Constructs

The Explicit Data Placement (XDP) methodology can

be used to extend an existing compiler Intermediate

Language (IL) to obtain an SPMD program represen-

tation. Henceforth, we will use “IL+XDP” to denote a

compiler intermediate language that has been extended

with the XDP constructs and support structures. Be-

fore giving the formal definition of the XDP constructs,

we first give some underlying assumptions and illustrate

some of its features with an example.

2.1 Preliminaries

In this paper, we assume every variable is either a scalar

or an arrayl. Each variable consists of eiements; a scalar

has only a single element.

XDP assumes the distribution of elements of all vari-

ables among processors: every element of a variable is

either exclusively owned by a single processor or univer-

sally owned by all processors. It is possible to transfer

the ownership of exclusively owned elements between

processors. If an element is universally owned, each

processor has a copy, and the values at each processor

can be different.

A section of a variable is either a scalar variable or

some subset of an array’s elements. The form of possible

sections is determined by IL; in this paper, we assume

that sections are defined by Fortran 90 triplet notation.

We say that a section of a variable is ezclusive if every

element of the section is exclusively owned; a section

is universai if every element is universally owned. It is

possible for one section of an array to be universal and

another section of the same array to be exclusive.

We say that a section of a variable is owned by a

processor if the processor exclusively or universally owns

every element of the section. We distinguish between

references to the value and the name of a section of a

variable. A value cannot be used unless it is owned by

the processor, names in XDP statements can be any

section of any variable.

In XDP an exclusive section can be in one of three

states with respect to a given processor p: unowned by

p; accessible, meaning owned by p, and p has not

initiated a receive that hasn’t completed for that sec-

tion; and transit ional, meaning owned by p and p has

initiated an uncompleted receive for that section. The

1Adding structures is an easy extension, pointers would be

harder.

value of a transitional section is unpredictable, and yet

XDP does not automatically check the state of a vari-

able at run-time (except by use of the accessible ( )

and await ( ) predicates described later). This allows

optimization to remove run-time checks when it can be

determined they are unnecessary.

2.2 A Simple Example

Consider the program fragment:

doi=l, n

A[i] = A[i] + B[il

enddo

It can be straightforwardly translated into the

IL+XDP SPMD program:

doi=l, n

iown(B[i.]) : { B[i.] -> ~

iown(A[i]) : {

T[mypi.d] <- B[i]

await (T [mypid] )

A[i] = A[i.] + T[mypid]

}

enddo

This translation follows the “owner-computes” rule.

The variable mypid is an intrinsic which evaluates on

each processor to a unique integer. Here, we assume

that the elements of arrays A, B and T are all exclusively

owned and processor mypid owns the mypid-th element

of T. The variable i is universally owned, so each proces-

sor has its own copy of i.

In the example, each iteration of the loop is executed

on every processor. On a given iteration of the loop, the

execution of the first statement of the loop will be exe-

cuted only by the exclusive owner of B [i]; this is insured

by guarding the statement with the intrinsic predicate

iown(B [i] ). The use of iown is an example of a compute

rule, which can be used to guard any XDP statement.

Similary, only the exclusive owner of A [i] will execute

the second statement on any iteration of the loop.

Following “iown(B[i] ) :“ is a data transfer state-

ment, where the exclusive owner of B [i] sends its value

to another, unspecified processor. The notation “->”

denotes the initiation of a data transfer operation in

which the executing processor sends both the name and

the value of a section of a variable to an unspecified

processor. The statement “T [mypid] <- B [i]” is a

data receive statement, where the executing processor

receives the message with name B [i], putting the value

into T [mypid]. It is the responsibility of the compiler to

only generate programs in which all sends have match-

ing receives. The await ( ) intrinsic ensures the sum is

not computed until the received value is available.
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Optimization can be applied by the compiler to this

straightforward translation, based on its knowledge of

ownership. For instance, if the same processor that ex-

clusively owns A [i] also owns B [i], then the data trans-

fer statments can be eliminated. Even if they cannot be

eliminated, the compiler may be able to move them out

of the computation loop and combine or vectmize [8]

the messages. In either case, if the loop bounds can be

adjusted so that each reference to A [i] is local, then

the ownership test on the remaining body of the loop

can also be eliminated, yielding a much more efficient

SPMD program.

An important feature of XDP is that other strategies

than “owner-compute” can be expressed. For instance,

the compiler might determine that it would save future

communication if ownership of each element of the A

array were moved to the same processor as the corre-

sponding element of the B array. The following IL+XDP

program fragment shows the result of this optimization:

doi=l, n

iown(A[il ) : { A[i] -=> }

iown(B [i] ) : { A [i] <=- ]

await (A[i]): { A[i] = A[i] + B[il }

enddo

Here, the “-= >“ and “<=-” notation indicates that

both the ownership and value of A [i] is moved to the

processor that owns B [i]. Only the processor that is

the new owner of A [i] will perform the addition.

We next discuss the XDP language constructs and

their semantics, which are also summarized in Figure 1.

2.3 Intrinsic

The first argument of an intrinsic is a name of an ex-

clusive section, but it need not be owned by the execut-

ing processor. Thus, intrinsic can be evaluated on any

processor.

XDP assumes each processor has a unique p?’ocesso?’

id denoted mypid.

The routine mylb (X, d) returns the smallest index in

the dth dimension of any element of the exclusive sec-

tion X owned by the invoking processor. If no element

is owned, MAXI NT, the largest representable integer, is

returned. A similar routine myub (X, d) can be used to

get the upper bound.

The iown( ) predicate returns true iff the processor

executing it is the owner of all elements of the named

section.

The accessible ) predicate returns true iff the sec-

tion is accessible on the calling processor. It can be used

to allow a processor to perform a background computa-

tion while awaiting data from another processor.

The await ( ) intrinsic returns false if the section is

unowned, otherwise it blocks until the section becomes

NOTATION

x Any exclusive Section.

E Exclusive section owned by p.

u Exclusive section, all elements un-

owned by p.

INTRINSIC

mypid Returns the unique identifier of p.

mylb(X,d) If any element of X is owned by p,

returns the smallest index in dimen-

sion d, MAXINT otherwise.

myub(X,d) If any element of X is owned by p, re-

turns the largest index in dimension

d, MININT otherwise.

iown(X) Returns true if X is owned by p,

false otherwise.

accessible(X) Returns true if X is owned by p

and its data is accessible, false

otherwise.

await (’X) Returns false if X is unowned by p,

otherwise blocks until X is accessible,

then returns true.

SEND STATEMENTS

E -> Initiate send of the name and value

of E,

E->S Initiate sends of the name and value

of E to processors specified by set S.

E => Blocks until E is accessible, then ini-

tiate send of the ownership of E.

E -=> Blocks until E is accessible, then ini-

tiate send of ownership and value of

E.

RECEIVE STATEMENTS

E<-X Blocks until E is accessible, then ini-

tiate receive of the value named X

into E.

u <= Initiate receive of the ownership of

u.
(J <=.. Initiate receive of ownership and

value of U.

STATES OF A SECTION

accessible Entire section is owned by p and p

has no uncompleted receives involv-

ing any element of the section.

transitional Entire section is owned by p and an

uncompleted receive involving any

element of the section has been initi-

ated by p.

unowned Some element of section is not owned

by p, If a section is not unowned, we

say it is owned.

Figure 1: Rules governing execution on processor p
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accessible, at which time it returns true. Thus, await

is a synchronization primitive.

All of the intrinsic can be implemented as a lookup

into the processor’s local run-time symbol table, dis-

cussed in section 3.1.

2.4 Compute Rules

A compute rule is any expression, including uses of in-

trinsic, that evaluates to true or false. However, com-

pute rules may not have side effects, so in particular they

may not include send or receive statements. Compute

rules are used to govern execution of XDP statements.

Only if the compute rule evaluates to true will the state-

ment it guards be executed [3].

In a compute rule, any reference to a section (other

than as the first argument of an intrinsic) which is not

owned by the processor causes the entire compute rule

to evaluate to false. Thus, a compute rule can always

be executed on any processor without error.

Compute rules are syntactically distinct from the

other IL+XDP statements so they can be treated sep-

arately, allowing the compiler to optimize them more

easily. A typical optimization is compute rule elimi-

nation — the removaI of a compute rule that always

evaluates to true. Compute rule elimination can often

be performed after the loop bounds are adjusted so that

the computation within the loop only references owned

sections [21, 4, 17].

XDP generalizes the notion of compute rule used in

previous work by allowing general Boolean valued ex-

pressions to be used by the compiler.

2.5 Statements

Statements are executed only if the compute rule guard-

ing them evaluates to true; in the absence of a com-

pute rule, statements are executed by each processor

that reaches the statement.

XDP augments IL with data and ownership transfer

statements. These are either send or ~eceive statements,

and have an initiation and a subsequent completion.

XDP does not check whether a section used by a

statement is transitional. Thus, the compiler must

guard statements with appropriate synchronizing com-

pute rules to ensure the program’s correctness. This

choice has been made to allow the compiler to remove

run-time checks when it determines they are unneces-

sary.

We now discuss the send and receive statements in

turn. Since these operations are distinct from the other

operations in XDP+IL, they can be separately opti-

mized.

2.6 Send Statements

Here, E always denotes an exclusively owned section of

a variable by the executing processor.

Send statments come in several flavors. The state-

ment “E ->” denotes the initiation of a data transfer

operation in which the executing processor sends the

name2 and the value of E itexclusively owns to another

unspecified processor. The restriction of data sends to

exclusively owned sections of variables can always be

overcome by copying the value of a universally owned

section to an exclusive section. We impose the restric-

tion here to simplify the semantics of our data transfer

operations.

We also allow statements of the form E -> S, where S

is some set of processor id’s. This statement denotes the

initiation of a set of data transfer operations in which

the executing processor sends the value and name of E

itexclusively owns to the specified locations. This state-

ment can be used with S containing only one processor

id as a way for the compiler to annotate which processor

will be the recipient of the section. It can also be used

for a broadcast or multicast operation.

A novel feature of XDP is its treatment of data owner-

ship. Ownership in XDP is a transferable object, just as

a data value can be transferred from one processor to an-

other through communication. The statement “E -=>”

denotes the initiation of an ownership send in which the

executing processor relinquishes the exclusive ownership

of E as well as its value to an unspecified processor. The

statement “E =>” indicates the transfer of only the own-

ership of E, and not the value. The compiler may be

able to determine that only the ownership, and not the

value, needs to be transferred, and use the latter oper-

ation. Owner send operations block until the section is

accessible.

There are various uses that can be made of XDP’S

ability to transfer ownership. First, when ownership of

a section is transferred out of a processor, the storage

it had occupied can be reused for a newly acquired sec-

tion. This conserves address space and reduces paging.

Second, it provides a wealth of possibilities for redis-

tributing computation among the processors. Normally,

one implements load balancing by migrating processes

between processors. However, in XDP, load balancing

can be implemented by migrating ownership of data

while still running the same SPMD program on each

processor. Since ownership dictates which SPMD pro-

gram statements are executed by each processor, the

ability to transfer data ownership allows the computa-

tion done on each processor to be altered dynamically

2The name is used as a tag to associate a send with a corre-
sponding receive. It will be unnecessary to actually send the name

if either the association between sender and receiver can be made

at compile time, or if the hardware can make the association as

on a shared address space machke.
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without migrating any code. Thirdly, it opens up the

possibility of new uses. For instance, a debugger could

allow the user to input an ownership transfer command

that moves exclusive ownership of a variable (and hence

the permission to execute certain SPMD code segments,

such as a print command that outputs the value of local

data structures to the user’s screen) from one processor

to another. Thus, processors can be selectively moni-

tored by simply transferring ownership of this variable.

2.7 Receive Statements

Here, X always denotes an exclusive section (but not

necessarily one owned by the executing processor p), E

always denotes a section exclusively owned by p, and

U denotes an exclusive section, no element of which is

owned by p.

The statement “E <- X“ denotes the initiation of a

data receive operation, in which the executing proces-

sor assigns to the variable E the received value of X.

If the section is transitional, the statement blocks until

it becomes accessible. ‘U <=-” denotes the initiation

of an ownership and value receive from an unspecified

processor, in which the executing processor accepts the

exclusive ownership and value of U. The statement “U
<=” indicates the initiation of only the transfer of own-

ership of U, and not the value of U. Ownership of a

section can only be received if the section was unowned.

Upon initiation of a receive of a section on a processor,

the section must be put in state transitional; upon

completion of the receive, the section is returned to state

access ible. This can be implemented by an update to

the processor’s run-time symbol table, as discussed in

section 3.1.

It is incorrect usage of XDP if the sections transferred

in send and receive operations do not match. The re-

sults of such a communication are unpredictable. XDP

restricts the left hand side of a receive statement to an

exclusive section so that the run-time symbol table need

not contain entries for universally owned variables.

It is legal to have several processors initiate receive

statements for the same section concurrently. For sim-

plicity, a particular compiler may choose not to use this

construct. However, it can be used to advantage, for

instance to facilitate load balancing. This could be ac-

complished by having the owner of a particular variable

initiate a sequence of sends of values of the variable,

each value representing a certain job to be performed.

Meanwhile, any processor that was otherwise idle could

initate a receive of that variable, and then perform the

indicated job. Depending on the load at run-time, there

might be multiple outstanding sends or outstanding re-

ceives.

3 Implementation

While XDP language constructs are designed to be

used by a compiler, it is entirely possible that the

compiler will not be able to remove all ownership

or accessibility tests, and so iown( ), await ( ) and

accessible ( ) predicates may need to be evaluated at

run-time [17]. In addition, ownership transfers result in

run-time changes in ownership and so may need to be

tracked at run-time. To support this, the XDP method-

ology supplies both a compile-time symbol table, and a

run-time, per-processor symbol table for exclusive sec-

tions, discussed in detail in the next section.

The XDP language constructs allow ownership trans-

fers to occur at the granularity of a single element. How-

ever, for efficiency’s sake, a compiler may use a coarser

granularity of ownership transfer. The use of segments

in the implementation given here is an example.

Whether the symbol table is simple or complex de-

pends on such choices as whether the number of proces-

sors is fixed and known at compile-time, and what par-

titioning of arrays into sections are allowed. These

choices also affect what optimizations can be performed.

In our example implementation, we assume a fixed,

known processor grid and and partitioning as allowed

in HPF [5]. ,

3.1 Symbol table

An important structure required for incorporating the

XDP methodology is the symbol table. The XDP sym-

bol table structure is used at compile-time by the com-

piler, as well as at run-time by all the processors that

execute the output SPMD code. Each processor must

maintain and update its own local copy of the XDP

symbol table structure at run-time, unless all uses of

the table have been optimized away. In contrast to a

regular symbol table, the run-time XDP symbol table

only contains information about exclusive sections.

Figure 2 illustrates the XDP symbol table structure

for two array variables A [1:4,1:8] and B[1:16 ,1:16],

partitioned over 4 processors, which are assumed to be

indexed as a 2x2 processor grid. The symtab index,

symbol name, rank, and global shape fields are self-

explanatory. The part it ioning field indicates the par-

titioning scheme of the array, The partitioning scheme,

together with the shape of the processor grid, are used

by the compiler and the XDP run-time system to deter-

mine ownership of array sections.

For efficiency’s sake, the compiler can logically divide

each processor’s local partition of an array into segments

of a size and shape chosen by the compiler. A processor

can transfer the ownership of each segment individually.

The last three fields of the symbol table describe the

partitioning. They specify how many segments com-

prise the processor’s partition, the shape of each seg-
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ptr to

“segdesc

ptr to

segdesc

Figure 2: XDP symbol table structure, showing the entries for two arrays A and B, partitioned over a 2x2 processor

grid. The shaded entries are filled in at run-time by each processor.

ment (which must have the same rank as the array

variable), and finally an array of segment descriptors,

which record, for each segment, the array elements con-

tained in the segment and the current state (unowned,

transitional, or accessible). In our implementation,

the segment descriptor data structure was declared as:

struct SegmentDesc {

int status; I* accessibi,li,ty status *I

int lbound [rank] ; /* lower bound indices */

int ubound [rank] ; /* upper bound indices */

int stride [rank] ; /* strides */

. . . I* other relevant info *I

long segptr; /* pointerto segment */

} segdesc [#segments];

The last two fields of the XDP symbol table are

shaded dark in Figure 2, to indicate that these entries

are filled in only at run-time. When ownership is trans-

ferred or receives are initiated or completed, the symbol

table must be updated.

Either at the start of program execution or dynami-

cally, each processor allocates local storage for its seg-

ments in contiguous chunks whose sizes are determined

by the segment shape field. The number of such seg-

ments allocated depends on the number of array ele-

ments the processor owns. Figure 3 illustrates two dif-

ferent partitioning schemes for a 4x8 array, and for each

partitioning scheme, two possible logical segmentations

are shown.

The use of segments allows the pipelining of a trans-

fer of a section, either ownership or data. A processor

can transfer each segment individually, requiring only

enough synchronization to ensure that the transfer is le-

gal in XDP. In many cases, this can effectively reduce

the total time by allowing a processor to overlap one seg-

ment’s transfer with computation on another segment.

This will be illustrated the 3-D FFT example.

If the code running on a processor executes an

i own ( ) intrinsic at run-time, the section described in

the query is intersected with all the segment bounds cor-

responding to the named array variable. If the union of

all the results is equal to the queried section, and no seg-

ment that has a non-null intersection is unowned, then

the i own ( ) query returns true. Otherwise it returns

false. For example, consider an array C [1:4,1: 8], dis-

tributed as (BLOCK, BLOCK) over a 2x2 processor grid,

and 2x1 segmented (as shown in Figure 3 (a)). Suppose

processor P3 executes the operation iown (C [1, 5:71).

Intersecting the bounds of the section (1,5:7) with the

bounds of the four 1x2 segments owned by P3 yields:

{(1,5), (1,6), (1,7), null}. Theunionof these is

(1, 5: 7), which is equal to the section specified in the

iown( ) query. Now, if none of the non-null intersecting

segments are unowned, the operation returns true, and

it returns false otherwise. The other intrinsic are han-

dled similarly. Although the algorithm we described for

evaluating iown ( ) involves examining the entire seg-

ment descriptor array, more efficient algorithms could

be developed.

When any receive is initiated or completed on a seg-

ment, the status field of the segment needs to be up-

dated as well. When any ownership transfer is initiated,

the processor must update the segment descriptor

fields of its symbol tables to reflect the data that is cur-

rently owned. The part it ioning field may need to be

updated as well.

We have chosen not to supply in the XDP methodol-

ogy a mechanism for testing which processor owns an

arbitrary section at run-time. A compiler using the

XDP methodology could itself provide such a mecha-

nism. If such information is unavailable at compile-time

and needs to be repeatedly computed at run-time, the

techniques such as [20] can be used to improve efficiency.

Note, however, that it may be unsafe to compute owner

information on an array that is undergoing incremental

ownership transfer, until the transfer of all segments has

been finished.

3.2 Optimization and Code Generation

Compiler optimization that affect data movement and

storage issues can be represented as transformations to

the IL+XDP code. After the optimization phase is com-

plete, the IL+XDP program is translated to executable

code by the compiler’s back end.

The translation needs to map XDP constructs to oper-

ations provided by the target computer’s hardware and

operating system. For instance, on a shared-address
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Figure 3: Example distributions and local segmentations of a 4x8 array, shown for processor P3.

computer such as the KSR1 [16], receives and sends

might be translated as prefetch and poststore instruc-

tions. On a message-passing machine, they would be-

come calls to the communication primitives. The XDP

data and ownership transfer operations allow the com-

piler to delay until code generation time, the actual

binding of communication primitives to the data trans-

fer operations. The advantage of this delayed binding

for optimization is noted in [7].

Some optimizations, such as compute rule elimina-

tion, are independent of the target computer. Other

optimizations need to be modified depending on various

architectural and system considerations. For instance,

if the communication primitives generated by the com-

piler are non-blocking, then it is generally desirable to

move the XDP receive statements as early in the pro-

gram as possible (consistent with the data dependence

constraints) to give the maximum opportunity of over-

lapping communication with computation. However, if

the communication primitives are blocking, then the op-

timization must be careful not to introduce deadlock.

To perform optimizing transformations and code gen-

eration, the compiler may need information about the

IL+XDP program in addition to the usual data struc-

tures such as a control flow graph and data flow infor-

mation. For instance, it may be useful for optimizations

(and essential for code generation) to annotate an XDP

send statement with the id of the receiving processor.

Other aspects of XDP code can be handled by tradi-

tional techniques. For instance, if no use-clef chains from

a use of X in an accessible (X) intrinsic lead back to a

receive statement, then it may be possible to eliminate

the accessible(X) call.

The set of optimizations on XDP code, as well as de-

tails of XDP itself, are the subject of current research.

For instance, aggregating a set of separate data trans-

fers into a single message can reduce overhead on some

systems. It might be desirable to allow this aggregation

to be expressed in XDP, for instance by allowing the

left-hand side of XDP send and receive statements to

be a set of sections, rather than a single section.

4 An Example: 3-D FFT

We now illustrate a use of XDP, using a 3-dimensional

Fast Fourier Transform (3-D FFT) application as an ex-

ample. The 3-D FFT code considered here operates on

an array A [1 :4, 1:4, 1: 4] which is assumed to be ini-

tially distributed as (*,*, BLOCK) over a linear array of

4 processors PI-P4. Thus, processor i owns the section

A [i: 4, I: 4, i]. We assume that the compiler has chosen

to divide each processor’s local storage into segments

containing 4 consecutive array elements each. The 3-

D algorithm employs a 1-D FFT routine, f f t ID ( ),

that is successively applied along each line of the sec-

ond dimension of the array, then the first and finally

the third dimensions to compute the 3-D FFT. The ini-

tial (*, *, BLOCK) distribution of the array allows the

first two dimensions to be handled with no interproces-

sor communication. The array is then redistributed to

a (*, BLOCK,*) scheme in order that the I-D FFT along

the third dimension can be done independently on each

processor without communication. The two partitioning

schemes, and the actual data layout in each processor’s

local storage is shown in Figure 4.

The following programs illustrate the steps involved

in the optimization of the redistribution operation. In

order to keep the illustration compact, we start with the

IL+XDP code after some compiler optimizations have

been finished. These initial optimizations include the

insertion of i own ( ) guards based on the data distri-

bution of the array A, and generating the appropriate

XDP ownership transfer operations to do the redistrib-

ute operation to change the partitioning scheme of A

from (*, *, BLOC@ tO (*, BLOCK,*).
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// A is cilstrilmted aa (*,*,BLOCK)
// Loopl: 1-D ITT in the j direction

dok=l,4

iown(A[*,*,k]): {

doi=l,4

fftlD (A[i,*,k])
enddo

}

enddo

// Loop2: i-D FFT in the i direction

dok=l,4

iown(A[*,*,k]): {

do j =1,4

fftlD (A[*,j,k])

enddo

}

enddo

// Loop3: Redistribute A as (*,BLOCK,*)

do p = 1,4

iown(A[*,*,p]): {

do n= 1,4

A[*,n,p] -=>

enddo

do n = 1,4

A[*,p,n] <=-

enddo

}

enddo

// Loop4: 1-D FFT in the k direction

do j =1,4

await(A[*,j,*]): {

doi=l,4

fftlD (A[i,j,*])

enddo

1
enddo

Loop3 inthe above code is one possible way ofper-

forming the desired array redistribution using the XDP

ownership transfer operations. Although not shown

here, anauxillary data structureis created bythecom-

pilerthat linksthe-=>and<=- statements. Thisisused

for communication binding at code generation time and

to generate matching message types for these communi-

cations. Another data structure isused to bind the local

segment that willholdthe received ownership (and asso-

ciated values) upon termination of an ownership trans-

fer.

A typical optimization step is compute rule elimi-

nation. This is achieved by adjusting the outer loop

bounds sothat each processor only does those iterations

for which itowns the data. In our example, the resultis

each processor has to execute only one outer loop itera-

tionfor each ofthe loops shown above. By replacing all

references to the loop’s induction variable inthe bodyof

the loop bymypid, these single iteration outer loops can

also be removed as a further optimization. The resulting

code is:

//
//

//

//

//

A is distributed as (*, *, BLOCK)

Loopl: 1-D FFT in the j

doi=l,4

fftlD (A[i, *,mypid])

enddo

Loop2 : 1-D FFT in the i

do j =1,4

fftlD (A[*, j,mypid])

enddo

Loop3a,3b: Redistribute

do n = 1,4

A[*, n,mypid] -=>

enddo

do n= 1,4

A[*, mypid, n] <=-

enddo

LOOP4: i-D FFT in the k

direction

direction

A as (*,BLocK,*)

direction

aw~it(A[*,mypid,*]): {

doi=l,4

fftlD (A[i,mypid,*])

enddo

}

Dependence analysis ofLoops2and3a indicates that

they can be fused together. Note that the analysis for

validity effusion must also check to make sure that be-

tweenany -=> and its corresponding <=-operation, no

ownership queries areperformed on the associated data,

and that these data are not accessed by computation in

the interim. The potential benefit of the loop fusion is

that it allows the ownership transfer to be “pipelined”

so that the redistribute latency can be partially covered

by the computation.

A second transformation is also illustrated: moving

the await statement into Loop4. Although this might

incur agreater run-time overhead, it can allow the FFT

operations to proceed while other data is still being

transferred. The resulting program is:

// A is distributed as (*, *, BLOCK)

// 1-D FFT in the j direction

doi=l,4

fftiD (A[i, *,mypid])

enddo

// I-D FFT in the i direction
doj=l,4

fftlD (A[*, j,mypid])

A[*, j,mypid] -=>

enddo

// Loop3b

do n = 1,4

A[*, mypid, n] <=-

enddo

// I-D FFT in the k direction
doi=i,4

await (A[i, mypid, *]): {

fftiD (A[i, mypid, *])

3
enddo
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P4

P3 *,1,4 i

P2 ●,1,3 *,2,4

PI *,1,2 *,2,3 *,3,4

S1 -*,1,1 *,2,2 *,3,3 *,4,4

S2 *,2,1 *,3,2 *,4,3
F

~,pd
P3 *,4,1

I
P2 I *,3,1 *,4,2

P1 *,2,1 *,3,2 *,4,3

.91 *,1,1 *,2,2 *,3,3 *,4,4

S2 *,1,2 *,2,3 *,3,4

S3 *,1,3 *,2,4

I *4 *. 1.4 I

contiguous local storage

Layout of array values in local memory

i

i

P4

P

(*, *, BLOCK)

PI P2 P3 P4

(*. BLOa, *)

Array partitioning scheme

(a)

(b)

Figure 4: 3-D FFT example. The column on the left shows how the array data are assigned to logical segments on

each processor. The column on the right illustrates the conceptual partitioning scheme of the 3-D array geometry.

The actual performance improvements of these opti-

mization depend largely on the capabilities of the run-

time communication library of the target machine.

5 Related Work

lladitional optimizing compilers [1] use relatively

language- and machine-independent intermediate pro-

gram representations, but do not represent data move-

ment and placement in an explicit manner, as done

in XDP. Compilers being developed for distributed-

memory multiprocessors [2, 4, 6, 8, 9, 19, 12, 13, 14,

15, 17, 18, 21] represent data movement in terms of

communication primitives available on the target ma-

chine. Lake [11] has cited the importance of annotating

programs with data placement, and suggested its inser-

tion into imperative languages. Ownership transfer at

the operating system level is considered by systems such

as [10].

6 Conclusion

The XDP methodology has been designed to expose the

power of manipulating data transfer and ownership to

the compiler. We have given rules governing the use of

its constructs; the compiler must supply adequate syn-

chronization to satisfy these rules. Coherence and free-

dom from deadlock must also be ensured by the com-

piler.

The key ideas behind the XDP methodology are its

separation of data transfer from local computation, its

non-blocking semantics to allow overlapping of commu-

nication with computation, and its unified treatment

of data and ownership transfer. In addition, XDP of-

fers the compiler a convenient platform for doing opti-

mization involving data movement by providing mech-

anisms for delayed communication binding and gener-

ating generalized compute rules. The run-time symbol

table given here to support XDP is implementable as an

extension to most high-level compiler intermediate lan-

guages. The applicability of XDP is quite general, and

is not restricted to the optimization of communication

for distributed memory machines. For instance, it can

be used to optimize data transfers across different levels

of a memory hierarchy.
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