
Improving Efficacy of Internal Binary
Search Trees using Local Recovery ∗

Arunmoezhi Ramachandran Neeraj Mittal
〈arunmoezhi, neerajm〉@utdallas.edu
Department of Computer Science
The University of Texas at Dallas

Abstract
Binary Search Tree (BST) is an important data structure for man-
aging ordered data. Many algorithms—blocking as well as non-
blocking—have been proposed for concurrent manipulation of a
binary search tree in an asynchronous shared memory system that
supports search, insert and delete operations based on both external
and internal representations of a search tree.

An important step in executing an operation on a tree is to
traverse the tree from top-to-down in order to locate the operation’s
window. A process may need to perform this traversal several times
to handle any failures occurring due to other processes performing
conflicting actions on the tree. Most concurrent algorithms that
have proposed so far use a naı̈ve approach and simply restart the
traversal from the root of the tree.

In this work, we present a new approach to recover from such
failures more efficiently in a concurrent binary search tree based on
internal representation using local recovery by restarting the traver-
sal from the “middle” of the tree in order to locate an operation’s
window. Our approach is sufficiently general in the sense that it can
be applied to a variety of concurrent binary search trees based on
both blocking and non-blocking approaches.

Using experimental evaluation, we demonstrate that our local
recovery approach can yield significant speed-ups of up to 69% for
many concurrent algorithms.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming-Parallel Programming; E.1
[Data Structures]: Trees; D.3.3 [Language Constructs and Fea-
tures]: Concurrent Programming Structures

Keywords Concurrent Data Structure, Binary Search Tree, Inter-
nal Representation, Local Recovery

1. Introduction
With the growing prevalence of multi-core, multi-processor sys-
tems, concurrent data structures are becoming increasingly impor-

∗This work was supported, in part, by the National Science Foundation
(NSF) under grant number CNS-1115733.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PPoPP ’16,, March 12-16, 2016, Barcelona, Spain.
Copyright c© 2016 ACM 978-1-4503-4092-2/16/03. . . $15.00.
http://dx.doi.org/10.1145/2851141.2851173

tant. In such a data structure, multiple processes may need to op-
erate on the data structure at the same time. Contention between
different processes must be managed in such a way that all opera-
tions complete correctly and leave the data structure in a valid state.

Binary search tree (BST) is one of the fundamental data struc-
tures for organizing ordered data that supports search, insert and
delete operations. Concurrent algorithms for (unbalanced) internal
binary search trees have been proposed in [1, 3, 4].

An important step in executing an operation on a tree is to tra-
verse the tree from top-to-down in order to locate the operation’s
window, which is basically a subset of nodes in the tree relevant to
the operation. A process may need to perform this traversal several
times to handle failures caused by other processes performing con-
flicting updates on the tree which can cause for example, the target
key to move from its original location. Most of the concurrent al-
gorithms (for BSTs) that have proposed so far use a naı̈ve approach
and simply restart the traversal from the root of the tree [1–3]. This
is especially undesirable if the tree has large height, and the over-
head of repeatedly traversing the tree may dominate all other over-
heads of performing an operation.

In this work, we present a general approach to recover locally
in a concurrent binary search tree based on internal representation.
Our algorithm enables a process to quickly recover from a fail-
ure while performing an operation by restarting the traversal from
a point “close” to the operation’s window rather than the root of
the tree. Our approach can be applied to many existing concur-
rent algorithms for maintaining binary search trees using internal
representation—blocking as well as non-blocking—such as those
in [1, 3, 4]. Using experimental evaluation, we demonstrate that our
local recovery approach can yield significant speed-ups for many
concurrent algorithms.

2. The Local Recovery Algorithm
Note that every operation on a BST involves first traversing the
tree from top to down starting from the root node. Depending on
the outcome of the traversal and the type of the operation, the tree
may then need to be modified to actually realize the operation. We
refer to the period during which the tree is being traversed as seek
phase. Further, we refer to the period during which the tree is being
modified as update phase.

During the seek phase, the target key may move from its current
location to a new location up the tree. As a result, the traversal may
miss the key both at its old location as well as its new location. A re-
traversal of the tree may also be required if the operation encounters
any failure during the update phase.

In most concurrent BST algorithms, (a single instance of) the
update phase of an operation typically tends to have constant time
complexity. The seek phase is where an operation may end up

spending most of its time especially if the tree is large. Hence, it
is desirable to make the seek phase of an operation more efficient
by: (i) reducing the number of restarts due to “suspected” key
movement, and (ii) restarting the traversal from a point “close”
to the operation’s window. This leads to two separate but related
questions that any local recovery algorithm needs to address. First,
“If a key is not found, then does the traversal need to restart?”.
Second, “If the traversal needs to be restarted, then from which
node should the traversal restart?”

We assume that, when the key stored in a binary node is deleted,
it is replaced with its successor key. Thus, the value of key stored
in a node can only increase. Further, in most concurrent BST
algorithms, a node is marked before being removed from the tree.
Thus, an unmarked node is guaranteed to be a part of the tree.

To achieve local recovery, we maintain a log of all the nodes
visited on the traversal path. Note that, at each non-terminal node
in the path, an operation either follows the left or the right child
pointer. As a process is traversing the tree, other operations may
be making changes to the tree concurrently due to which a turn
taken by the process earlier may no longer be valid. Specifically, a
right-turn node may no longer be right-turn node (a left-turn node
however remains a left-turn node).

We say that a node in the traversal path is an anchor node if the
operation follows its right child pointer; otherwise we say that it is
a non-anchor node. An anchor node is said to be consistent if its
key is still less than the operation’s key; otherwise it is said to be
inconsistent.

Consider two nodes U and V in the traversal path (log). We say
that V is critical with respect to U if the following conditions hold:
(i) V precedes U in the traversal path, (ii) V is an unmarked anchor
node, and (iii) all anchor nodes between U and V in the traversal
path are marked.

We say that a nodeU is safe if the following holds: (a) its critical
anchor node, say V , is consistent and (b) all anchor nodes between
U and V are also consistent.

We are now ready to answer the two questions posed earlier.
First, the traversal does not need to be restarted if the terminal node
of the access-path is safe. Second, to identify a restart point, the
algorithm examines the traversal log to find the latest node in the
log that is unmarked and safe. For search and delete operations,
further optimizations are possible that avoid the need to restart
traversal during the seek phase [5].

3. Experimental Evaluation
To evaluate our local recovery algorithm, we implemented it for
three different concurrent BSTs based on internal representation,
namely those based on: (i) the lock-free BST by Howley and
Jones [3], denoted by LF-IBST, (ii) the lock-based BST by Ra-
machandran and Mittal [4], denoted by CASTLE and (iii) the
RCU (Read-Copy-Update) framework-based BST by Arbel and
Attiya [1], denoted by CITRUS.

Experiments were performed on an Intel Xeon Phi Coprocessor
having 61 cores with 4 hardware threads per core. We measured
system throughput, which is defined as the total number of opera-
tions (in millions) completed per second. The number of threads
that can concurrently operate on the tree was varied from 1 to
244 in suitable increments. We considered two different key ranges
(2,000 (2k) and 200,000 (200K) keys) and considered two work-
loads: read-dominated: (90% search, 5% insert and 5% delete) and
write-dominated: (0% search, 50% insert and 50% delete).

Usually uniform key distribution have been used to evaluate
concurrent BSTs. But, in many of the real world workloads, keys
have skewed distribution where some keys are more popular than
others. Zipfian distribution, a type of power-law distribution simu-

0

20

40

R
ea

d-
D

om
in

at
ed

2K keys

0

20

40

200K keys

1 61 122 183 244

0

5

10

15

Number of Threads

W
ri

te
-D

om
in

at
ed

1 61 122 183 244

0

5

10

15

20

Number of Threads

sy
st

em
th

ro
ug

hp
ut

LF-IBST CITRUS CASTLE
LF-IBST (LR) CITRUS (LR) CASTLE (LR)

Figure 1: Comparison of throughput of different concurrent BST
implementations with (solid lines) and without (dotted lines) local
recovery for Zipfian distribution with α=1. Higher is better.

lates this behavior. In our experiments, we used both uniform and
Zipfian distributions to evaluate the local recovery algorithm.

For uniform distribution, the performance gain was marginal
and, in many cases, was actually negative due to the overhead of log
maintenance. This is not surprising because, for small trees, even
though contention is higher, seek time is small to begin with and
any benefit of local recovery is nullified by additional overhead of
log maintenance. For larger trees, even though seek time is larger,
contention is low as key accesses are spread evenly.

Figure 1 shows the behavior for Zipfian distribution. In general,
Zipfian distribution causes more contention than uniform distribu-
tion. So, even for smaller trees for which seek times are lower, we
still see performance gains for write-dominated workload. In par-
ticular, we see up to 69%, 28% and 8% improvement in system
throughput for LF-IBST, CASTLE and CITRUS respectively.
In LF-IBST, if a process sees another pending operating while
traversing the tree, it helps the pending operation and then restarts
the traversal. This results in frequent restarts and hence local re-
covery improves performance by a larger margin. We see smaller
improvements for CASTLE and CITRUS as they are lock-based
algorithms with no helping performed during tree traversal. More
details of the experimental evaluation can be found in [5].

References
[1] M. Arbel and H. Attiya. Concurrent Updates with RCU: Search Tree as

an Example. In Proceedings of the 33rd ACM Symposium on Principles
of Distributed Computing (PODC), pages 196–205, July 2014.

[2] D. Drachsler, M. Vechev, and E. Yahav. Practical Concurrent Bi-
nary Search Trees via Logical Ordering. In Proceedings of the 19th
ACM Symposium on Principles and Practice of Parallel Programming
(PPoPP), pages 343–356, Feb. 2014.

[3] S. V. Howley and J. Jones. A Non-Blocking Internal Binary Search
Tree. In Proceedings of the 24th ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 161–171, June 2012.

[4] A. Ramachandran and N. Mittal. CASTLE: Fast Concurrent Internal
Binary Search Tree using Edge-Based Locking. In Proceedings of the
20th ACM Symposium on Principles and Practice of Parallel Program-
ming (PPoPP), pages 281–282, Feb. 2015.

[5] A. Ramachandran and N. Mittal. Improving Efficacy of Internal Binary
Search Trees using Local Recovery. Technical Report UTDCS-13-15,
Department of Computer Science, The University of Texas at Dallas,
Dec. 2015.

