
A Work-Stealing Scheduler for X10’s
Task Parallelism with Suspension

Olivier Tardieu

IBM T.J. Watson Research Center,
Yorktown Heights, NY, USA

tardieu@us.ibm.com

Haichuan Wang

University of Illinois at
Urbana-Champaign, Urbana, IL, USA

hwang154@illinois.edu

Haibo Lin

IBM Research - China, Beijing, China

linhb@cn.ibm.com

Abstract

The X10 programming language is intended to ease the program-
ming of scalable concurrent and distributed applications. X10 aug-
ments a familiar imperative object-oriented programming model
with constructs to support light-weight asynchronous tasks as well
as execution across multiple address spaces. A crucial aspect of
X10’s runtime system is the scheduling of concurrent tasks. Work-
stealing schedulers have been shown to efficiently load balance
fine-grain divide-and-conquer task-parallel program on SMPs and
multicores. But X10 is not limited to shared-memory fork-join par-
allelism. X10 permits tasks to suspend and synchronize by means
of conditional atomic blocks and remote task invocations.

In this paper, we demonstrate that work-stealing scheduling
principles are applicable to a rich programming language such
as X10, achieving performance at scale without compromising
expressivity, ease of use, or portability. We design and implement a
portable work-stealing execution engine for X10. While this engine
is biased toward the efficient execution of fork-join parallelism
in shared memory, it handles the full X10 language, especially
conditional atomic blocks and distribution.

We show that this engine improves the run time of a series of
benchmark programs by several orders of magnitude when used in
combination with the C++ backend compiler and runtime for X10.
It achieves scaling comparable to state-of-the art work-stealing
scheduler implementations—the Cilk++ compiler and the Java
fork/join framework—despite the dramatic increase in generality.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]: Parallel programming; D.3.3 [Language Constructs
and Features]: Concurrent programming structures; D.3.4 [Pro-
cessors]: Code generation, Run-time environments

General Terms Languages, Performance

Keywords Scheduling, Task Parallelism, Work-Stealing, X10

1. Introduction

The X10 programming language [5, 6, 22] is intended to ease the
programming of scalable concurrent and distributed applications,
targeting modern multicore and clustered architectures. X10 aug-
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ments a familiar imperative object-oriented programming model
with constructs to support light-weight asynchronous tasks as well
as execution across multiple address spaces. It is a strongly-typed
and class-based language much like Java or Scala [19]. It sup-
ports two levels of concurrency. The first level corresponds to con-
currency within a single shared-memory process, which is repre-
sented by an X10 place. The second level supports parallelism
across places, i.e., across processes that do not share memory. In
each place, X10 encourages programmers to decompose computa-
tions into loosely-synchronized light-weight asynchronous tasks—
asyncs—with the promise that theses tasks will run in parallel on
parallel hardware. Fulfilling this promise however is hard. How can
the runtime system efficiently allocate tasks to parallel execution
units? What if the tasks are too small or too many? What about
ordering dependencies?

Work-stealing schedulers [4] have emerged as the approach of
choice to tackle these issues. A work-stealing scheduler uses a
pool of worker threads to run a task-parallel program. Each worker
maintains a queue of pending jobs1 and pushes new jobs to its own
queue. When a worker completes a job, it pops a pending job from
its own queue, or, if empty, attempts to steal a job from another
worker’s queue. Work-stealing queues are double-ended: workers
push and pop from the bottom of the queue, but steal from the
top. Work-stealing schedulers typically perform well because they
minimize contention among workers.

Work-stealing schedulers have acquired their reputation in the
context of several programming models (Cilk [9], Java fork/join
[16], Habanero [20], PFunc [14], Intel Threading Building Blocks
[21], Microsoft Task Parallel Library [17]). In order to make work-
stealing effective, these models are very constrained, and program-
mers have to renounce a lot of the power and flexibility of modern
programming languages. For instance, parallel scopes in Cilk do
not extend beyond procedure boundaries: a procedure cannot re-
turn if it has outstanding children. Cilk also adopts a weak excep-
tion semantics. Habanero’s work-stealing scheduler only handles
async-finish task graphs. Library-based frameworks offer less flex-
ible scheduling policies and lack compiler support to statically rule
out unsupported task dependencies. Java fork/join tasks may only
use synchronization classes that are advertised to cooperate with
fork-join scheduling. These restrictions are deemed necessary to
make work-stealing effective and its implementation tractable.

In contrast, X10 permits arbitrary task synchronizations, adopts
a determinate exception semantics, and makes no connection be-
tween task and method boundaries. While it is unrealistic to expect
work-stealing to be as effective on arbitrary programs, we would
like Cilk-like performance for Cilk-like codes and, at the same
time, full language support with limited and predictable overhead.

1 The scheduler may divide each source-level task into multiple jobs.

267



This work tackles these challenges. We design and implement
an efficient portable work-stealing execution engine for the full
X10 language. Its contributions are:

• Dynamic load balancing at each place. The engine supports
multi-place programs and balances the computation in each
place, automatically mapping tasks to worker threads. We do
not consider load balancing across places, that is, task migration
from place to place.

• Full language support. The engine is designed to handle task
suspension by means of compiler-generated continuations, ex-
ceptions, asynchronous initialization, etc.

• Portability. Because X10 is intended to be available on a wide
variety of platforms ranging from Systems-on-a-Chip to super-
computers, portability is a prime concern. The engine combines
a compiler plugin and a runtime library. The compiler plugin
implements an X10-source-to-X10-source program transforma-
tion that generates code artifacts (frame classes and continua-
tion methods) required by the runtime scheduler. The runtime
library written in X10 implements the work-stealing scheduler.
Thanks to this X10-centric approach, we can plug this engine
into both the C++ and Java backend compilers and runtimes for
X10 and use any C++ compiler or JDK supported by X10.

• Performance (C++ backend). We develop a series of optimiza-
tions to obtain a scalable scheduler with low overhead. Some of
these optimizations—lazy frame initialization and migration—
require extending the backend compilers for X10. We extend
the C++ backend compiler accordingly.

We evaluate performance on a series of shared-memory fork-
join benchmarks translated from Cilk (Problem-Based Benchmark
Suite [2]) and Java fork/join.

We discuss related work in Section 2. We give a brief introduc-
tion to X10 in Section 3. Sections 4 to 6 describe the architecture of
our work-stealing scheduler and its implementation. We report on
our experimental evaluation in Section 7 and conclude in Section 8.

2. Related Work

Work-stealing runtimes are increasingly popular to handle the
scheduling of dynamic task parallelism.

Languages and libraries. These runtimes are often directly ex-
posed to the programmer as libraries. Java’s fork/join framework
[16], Intel’s Threading Building Blocks [21], and Microsoft’s Task
Parallel Library [17] follow this approach. The XWS library for
X10 [7] implements a work-stealing scheduler dedicated to graph
algorithms. Tasks correspond to vertices; programs submit vertices
to the scheduler; the scheduler dynamically partition vertices across
processing units to balance the load using a work-stealing policy.

Other work-stealing runtimes hide inside implementations of
new language constructs and require matching compiler support
to transparently map constructs to runtime routines. The Cilk-5
runtime [9] and the Habanero runtime [11] belong this category.
Thanks to its built-in constructs for fine-grain concurrency, X10 is
an ideal candidate for the latter approach, which we adopt here.

Shared beliefs. These many runtimes share common principles.
A work-stealing scheduler uses a pool of threads (OS threads or
VM threads) called workers. Each worker maintains a double-
ended queue—a deque—of pending things to do. A worker primar-
ily operates on its own deque, pushing content to the deque when
a task is spawned and going back to the deque every time it fin-
ishes its current task. The deque is also the mechanism by which
work is made available to other workers: if a worker empties its
own deque, it then attempts to steal work from the deque of an-

other worker. Usually, workers push and pop work from the bottom
of their deque, but steal from the top, further reducing contention.

Work-stealing deques. X10’s standard library provides a Deque
class that is essentially a replica of the deque of Java’s fork/join
framework [15, 16]. Our engine is implemented using this deque.

Scheduling policies. Work-stealing algorithms first differ in what
they push to the deque when a task is spawned. Under the work-
first policy promoted by Cilk, the worker pushes the continuation
of the parent task to the deque, executing the spawned task first.
Under the help-first policy typical of library-based schedulers, the
worker pushes the spawned task to its deque, while continuing the
execution of the parent task. Previous research has looked into the
pros and cons of these scheduling policies and how to combine
them [4, 7, 11, 12, 18]. In this work, we implement a pure work-
first scheduling policy. Our goal is to enlarge the class of languages
and programs amenable to work-stealing rather than improving
performance for a specific subclass. With work, our scheduler could
be made more flexible using the recipes developed for Habanero.

Fork-join schedulers. Library-based schedulers are primarily tar-
geted at fork-join parallelism. Fork-join tasks may only suspend to
wait for subtasks to complete. As a consequence, when a task sus-
pends, a fork-join scheduler can safely assign to the same worker
a subtask of the suspended task, without bothering with context
switches or continuations. The state of the suspended parent task
simply remains on the thread stack underneath the state of the sub-
task. Obviously the parent task cannot be returned to until after the
subtasks have completed. But this is just fine for fork-join tasks.

The standard X10 runtime, a.k.a XRX, has to support arbitrary
suspension. It therefore adopts an hybrid approach: when a task
suspends on a finish construct (waiting for subtasks) the worker
starts running subtasks, but if a task suspends on a when con-
struct (conditional atomic block) the scheduler suspends the worker
thread and allocates or wakes another thread in its pool to compen-
sate for the decrease in parallelism.

Among others, Java’s fork/join framework goes beyond pure
fork-join tasks. It ships with a few compatible synchronization
classes. PFunc permits synchronization barriers as long as the num-
ber of tasks involved is less than the number of workers. By nature,
these frameworks cannot handle arbitrary synchronization patterns
without reverting to a one-to-one mapping from tasks to threads.

Scheduling with continuations. In contrast, compilers such as
the Cilk compiler, the Habanero compiler, and our augmented X10
compiler can synthesize code artifacts that makes it possible for a
runtime to queue a continuation for later execution without sacri-
ficing a thread. As a consequence, our runtime uses a fixed number
of threads (intended to match the number of available cores) and a
unified approach, where continuations are used to implement both
finish and when. Incidentally, this means our runtime makes it pos-
sible to run X10 programs on computer systems without support
for dynamic thread creation, such as IBM’s BlueGene/P, whereas
XRX can only run async-finish programs on such architectures.

The drawback of this approach is known: compiler-generated
continuations have overheads (code size, run time). Carefully engi-
neered fork-join schedulers are capable of lower overhead. But Cilk
has already established that aggressive compiler and runtime opti-
mizations can make the approach successful. In this work, we can-
not be as aggressive in our optimizations as the Cilk++ compiler as
we intend to interface with a wide variety of backend compilers and
runtimes for X10. We do however take advantage of C++-backend-
only features and we suspect that a deeper integration with the C++
compiler itself would enable further reduction of our overhead.

Beyond shared-memory fork-join parallelism. Our compiler
plugin is inspired by the work on compiler support for work-first
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work-stealing in the Habanero project [20]. Habanero handles a
larger class of task graphs than Cilk—async-finish graphs—by per-
mitting arbitrary nesting of finish and async constructs. Various
scheduling policies have been proposed to handle several classes
of task graphs with more flexible synchronization constructs, e.g.,
synchronization variables [3] or futures [24]. Our work takes com-
piler support much further by also permitting conditional atomic
blocks and distributed code. Thanks to the former, we can handle
any kind of synchronization: cyclic barriers, futures, FIFOs, etc.

We handle distributed programs but only provide dynamic map-
ping from tasks to workers in each place. X10 requires programs to
specify the place of each task. The X10 runtime is not permitted
to migrate tasks across places. It is however possible for an ap-
plication or library to interface with the runtime so as to dynam-
ically choose where to spawn tasks in an attempt to balance the
load across places [23]. These two levels of load balancing could
be combined.

3. The X10 Language

This section briefly describes the context for the X10 project and
introduces the key programming language concepts that will be
discussed in later sections of the paper. This work is done in the
context of the most recent revision of the X10 language: X10 2.2.

The genesis of the X10 project was the DARPA High Productiv-
ity Computing Systems (HPCS) program. As such, X10 is intended
to be a programming language that achieves “Performance and Pro-
ductivity at Scale.” The primary hardware platforms being targeted
by the language are clusters of multicore processors linked together
into a large scale system via a high-performance network. There-
fore, supporting both concurrency and distribution are first class
concerns of the X10 language design and implementation.

X10 is a familiar strongly-typed, imperative, class-based, object-
oriented programming language much like Java or Scala. Like
functional languages, X10 supports first-class functions and en-
courages using immutable state. X10 emphasizes statically-checked
guarantees by means of a rich type system with generics, con-
straints (i.e., dependent types), structs, and type definitions.

A computation in X10 consists of one or more asynchronous
activities (light-weight tasks). A new activity is created by the
statement async S. To synchronize activities, X10 provides the
statement finish S. An activity that executes a finish statement
will not execute the statement after the finish until all activities
spawned within the finish’s body have terminated.

Every activity executes in a single Place (address space).
While executing in this place, it may freely access any object
that also resides in the place. It may manipulate remote references
(GlobalRefs) to objects that reside in other places, but is not able
to actually access the state of any remote object. Therefore compu-
tations must sometimes “shift” from one place to another to access
the data they need. When this happens, the compiler and runtime
system collaborate to ensure that the necessary data and control
information are communicated from one place to another. The fun-
damental X10 construct for “place-shifting” is at (p) S. An at
statement shifts execution of the current activity from the current
place to place p and executes S at the remote place. For instance,
the program below prints one message from each place.

class HelloWorld {
public static def main(Array[String]) {

finish for(p in Place.places())
async at(p) Console.OUT.println("Hello from place " + p);

}
}

The set of available places (Place.places()) and the mapping
from places to nodes in a cluster is decided by the user at launch
time.

X10 includes an unconditional atomic block construct atomic
S and a conditional atomic block construct when (E) S. An
atomic block is executed by an activity as if in a single step dur-
ing which all other concurrent activities in the same place are sus-
pended. Execution of when (E) S suspends until a state is reached
in which the condition E is true. In this state, the statement S is
executed atomically.

X10 defines a “rooted” exception model in which a finish acts
as a collection point for any exceptions thrown by activities that
are executing under the control of the finish. Only after all such
activities have terminated (normally or abnormally) does the finish
propagate exceptions to its enclosing environment by collecting
them into a single MultipleException object.

A great deal more information on X10 can be found online
at http://x10-lang.org. In particular, the language specifica-
tion [22], programmer’s guide [5], and a collection of tutorials and
sample programs are available.

4. A Scheduler for Single-place Async-Finish X10

We organize the discussion of our work-stealing scheduler into
three sections. We start with an unoptimized scheduler for single-
place async-finish programs in the current section, discuss opti-
mizations in the next, and add full language support in Section 6.
An async-finish program only uses async and finish to spawn and
synchronize tasks (as opposed to at and when).

4.1 Principles

Using a simplified divide-and-conquer Fibonacci example method,
we first explain informally how our scheduler works. In the second
half if this section, we take a closer look at the required compiler
and runtime support and show snippets of the generated code and
runtime code.

static def fib(n:Int):void {

if (n<=1) return;
finish {

async fib(n-2);
fib(n-1);

}

}

For simplicity, this method does not return anything (see Sec-
tion 6.4 for the real thing).

Frames and cactus stacks. We decompose each method into a
series of scopes and associate a frame with each scope. This exam-
ple method has four scopes for (1) the method itself, (2) the finish
construct, (3) the finish body, (4) the async construct. The work-
stealing scheduler builds the cactus stack of the running program
by chaining these frames into trees, such as:

fib(10)

finish

finish body

fib(9)

...

async

fib(8)

...

Observe the finish frame has two children. When the execution en-
ters the method the “fib(n)” frame is pushed to the top of the stack.
Assuming n is greater than 1, it then reaches the finish construct.
The corresponding frame is pushed to the stack shortly followed
by the finish body frame. It now reaches the async construct. An
async frame however is not pushed to the top of the stack but to the
top of the topmost finish on the stack next to any other child frame
the finish frame might already have.
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This cactus stack captures the current state of the execution and
is shared and maintained by all the worker threads collaborating
to execute the program. Each worker owns one top of the stack,
i.e., one leaf of the tree. For instance, the worker running the
finish body frame will eventually push frame “fib(n-1)” on top of
it; the worker handling the async frame will push frame “fib(n-2)”
on top of it. This may be the same worker at a different point in
time or a distinct worker.

The frames are regular X10 objects, that is, instances of X10
classes. They are created by means of constructor invocations. They
are linked together just like object graphs are usually constructed.
Each frame object is an instance of a subclass of the root Frame
class. The Frame class has an up field of type Frame which holds a
reference to the parent frame in the cactus stack. This reference is
null for the root stack frame.

The cactus stack is intended to fully encapsulate the state of
the execution. Each frame class has a field for each local variable
declared in the corresponding scope. In addition, a method frame
has a field for each parameter of the method. Most frames also have
a pc field of integer type, which encodes the next position in the
frame, that is, the index of the instruction in sequence after the one
currently processed.

In summary, the state of the execution is encoded as an explicit
cactus stack. The cactus stack preserves the caller-callee relation-
ship, keeps track of return addresses (saved pc), and store the values
of the variables.

In the remainder of this paper, when ambiguous, we use the term
cactus stack to refer to this data structure and the term thread stack
to refer to the pthread- or VM-level stack of a worker thread.

Deques and continuations. Our scheduler implements a work-
first policy. Each worker maintains a deque of pending continua-
tions. A continuation is simply a frame with valid pc, which speci-
fies the point of reentry.

When a worker is about to enter an async it pushes the continua-
tion of the async onto its deque. Concretely, it saves the index of the
statement in sequence after the async in the current frame’s pc field
and pushes a reference to that frame onto its deque. In the previous
example, just before entering the async scope, the worker stores the
index of the “fib(n-1)” method invocation in the finish body frame
and pushes it onto the deque.

The worker then processes the async. When done with the
async, it attempts to pop the continuation from the deque. If suc-
cessful, the continuation has not been stolen and the execution con-
tinues. Another worker however might have stolen the continuation
in the meantime and taken charge of its execution. In that case, the
victim is left with nothing to do and in turn becomes a thief.

In summary, the leaves of the cactus stack are dynamically split
into two sets. Some leaves correspond to frames that workers are
currently processing (one per worker). The other leaves constitute
the elements of the worker deques, that is, the pending continua-
tions (not currently processed by any worker).

Scheduling. The first worker gets to execute the application main
method. Other workers are idle. An idle worker attempts to steal a
continuation from a random worker again and again until it finds
something to run.

When a worker pops a completed frame to find a finish frame
below, it checks how many child frames still point back to this fin-
ish frame. If none, it means all the tasks governed by this finish have
completed, therefore the worker pops the finish frame and contin-
ues with its parent frame. Otherwise, the worker just abandons the
current computation. This worker or another will eventually con-
sider the finish frame again when another branch of the finish sub-
tree gets completed.

4.2 Implementation

We implement this scheduling policy by rewriting an X10 program
with finish and async constructs into a new X10 program that only
uses a few long-lived asyncs. Each one of these asyncs is a worker
of our work-stealing scheduler. They all run the same top-level
loop, alternating between finding a continuation to run, and running
this continuation. As part of their executions, these worker asyncs
build the cactus stack of the program and operate the deques.

We run the transformed program using the standard X10 run-
time. It maps each worker async to its own runtime thread for the
duration of the execution.

Of course there is no point in implementing a standalone pro-
gram rewriting engine from scratch given the existing compiler
infrastructure for X10—parser, type checker, Abstract Syntax Tree
(AST) representation and traversal facilities, pretty-printer, etc.
We implement a typed-AST-to-typed-AST transformation in the
style of many intermediate passes of the X10 compiler and add a
new -WORK STEALING option to the X10 compiler that enables the
transformation.

Moreover, part of the code we need to generate is independent
of the particulars of one specific X10 program. We therefore write
it once and for all as a runtime library.

4.2.1 Runtime Support

We add a package to the X10 runtime named x10.compiler.ws.
This package contains a series of frame classes and a Worker class.

The frame classes all inherit from a root Frame class and are
intended to declare and/or implement the mechanisms by which
frame objects can be managed by the scheduler to compose cactus
stacks and encode continuations. The Frame class declares a field
up of type Frame intended to hold a reference to the frame above
the current frame object in the stack. In addition to the Frame class,
we declare the FinishFrame, AsyncFrame, and RegularFrame
classes. FinishFrames are the only frames with potentially mul-
tiple children in the cactus stack. They maintain a count of these
children. RegularFrames may be pushed to the deques. The par-
ent frames of AsyncFrames are FinishFrames.

The Worker class implements the worker of the work-stealing
scheduler. Each worker alternate between the idle state—looking
for a continuation to steal—and the running state—executing appli-
cation code. Moreover, static methods of the Worker class handle
the creation and destruction of the pool of workers.

Each worker more or less runs this loop:

var k:Frame;

while ((k = findContinuation()) != null) {
try {
while (k != null) {

k._run(k.pc);
k = k.up;

if (k != null && k instanceof FinishFrame) {
val f = k as FinishFrame;
f.decreaseChildrenCount();

if (f.hasOustandingChildren()) break;
}

} catch (Stolen) {}
}

When an idle worker finds a continuation k, it invokes k, that is,
resumes the execution of the stolen frame at the saved pc. If the
frame’s execution completes, the worker pops the frame from the
cactus stack and proceeds with the parent frame. If the parent frame
is a finish frame, the execution continues up the stack only if the
finish frame has no outstanding children.

The findContinuation method implements the usual infinite
loop: pseudo-random selection of a victim, attempt to steal from
the victim’s deque, break if successful, continue if not.
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The pop method invocation in async frames may either succeed
or throw the STOLEN exception (unique instance of the Stolen
exception type). In the latter, the computation of the worker is
cancelled and the worker returns to idle state.

4.2.2 Compiler Support

The compiler generates the representation of the frames of the
cactus stack and instruments the source code to (1) operate on the
cactus stack and (2) push and pop continuations to the deques.

Our compiler pass divides methods into scopes and synthesizes
a frame class for each scope. It identifies the local variables and
method parameters in the program and add fields to frames accord-
ingly. It indexes the statements in each scope. It splits methods by
generating one helper method in each frame, which implements the
code fragment of the corresponding scope. It synthesizes a replace-
ment method for the original method, which constructs an instance
of the method frame class and invokes the generated helper method
of that frame.

The compiler also instruments the code of the helpers methods
as the following:

• It replaces accesses to local variables and method parameters
with field accesses.

• Before each method call, it saves the pc of the next instruction
in the current frame. The method call itself is rewritten into an
invocation of the corresponding replacement method.

• It replaces each nested scope of the method in the same way.
First, the pc of the next instruction is saved in the current frame.
Then, a frame object for the scope is constructed. Finally, the
helper method of the new frame is invoked.

• It inserts push-to-the-deque commands just before entering
async scopes, pop-from-the-deque commands just before leav-
ing async scopes.

• It adds to each helper method a top-level switch statement,
which permits entering the method in the middle so as to resume
its execution at a chosen instruction index.

Finally, the compiler generates the main method of the trans-
formed program. This method initializes the worker pool then in-
vokes the transformed application main method. Once the applica-
tion main method completes, it destructs the worker pool and exits.

To illustrate these tasks, here is a skeleton of the code we
generate for the example fib method. For brevity, we only show
the pc-related code in the fib finish body class.

class _fib extends RegularFrame {
val n:Int;
def this(up:Frame, n:Int) {super(up); this.n=n;}

def _run(pc:Int) {
if (this.n<=1) return;

val _frame1 = new _fib_finish(this);
_frame1._run(0);

}
}
class _fib_finish extends FinishFrame {

def this(up:Frame) {super(up);}
def _run(pc:Int) {

val _frame1 = new _fib_finish_body(this);
_frame1._run(0);

}

}
class _fib_finish_body extends RegularFrame {

def this(up:Frame) {super(up);}
def _run(pc:Int) {

switch(pc) {
case 0:

this.pc = 1;

deque().push(this);
val _frame1 = new _fib_async(this.up);

_frame1._run(0);

case 1:

this.pc = 2;
_fib(this, this.up.up.n-2);

}
}

}
class _fib_async extends AsyncFrame {

def this(up:FinishFrame) {super(up);}

def _run(pc:Int) {
_fib(this, this.up.up.n-1);

deque().pop();
}

}

static def _fib(up:Frame, n:Int):void {
new _fib(up, n)._run(0);

}

There are four generated classes corresponding to the four identi-
fied scopes, four run methods corresponding to the fragment of
code in each scope, plus a fib method to replace the original fib
method.

We now review the main additional tasks undertaken by the
compiler not illustrated by our naive example.

Class hierarchy. A replacement method always takes the callee’s
frame as its first parameter. The rest of its signature is the same as
the original method. Therefore visibility, overriding, and overload-
ing are not affected by the transformation. We rewrite the signatures
of abstract and interface method in the same manner.

Instance methods. The frames classes obtained from a method
of class C are generated inside class C. Occurrences of this inside
instance methods are replaced by qualified C.this expressions.

Control-flow constructs. We handle loops and conditionals by
dividing the code into more scopes. For example, we create a
frame class for each branch of an if statement. When a worker
encounters a return, break, or continue statement, it starts
popping and discarding stack frames until it finds the target frame
for the construct.

Return values. The frame of a non-void method has a field in-
tended to hold the returned value. Upon return, the caller obtains
the value from the callee’s frame just before discarding the refer-
ence to that frame.

5. An Optimized Scheduler

The scheduler of the previous section would not perform very
well. In particular, it would not scale beyond a few workers and
it would have high sequential overhead. In other word, transformed
sequential code would be much slower than the original. While
some of the overhead is unavoidable, many reasons for this poor
performance can be addressed.

In this section, we discuss performance improvements. These
improvements are compatible with the extended language support
we discuss in the next section. More precisely, the extensions of the
next section are engineered to be compatible with these optimiza-
tion and to only marginally affect their effectiveness on single-place
async-finish programs.

The main issues we are trying to address are:

• The scheduler constantly allocates, constructs, and collects
frame objects.

• The generated methods are too many and too tiny. Too much
time is spent transferring from callers to callees and back.

• Large chunks of code are sequential but the compiler transforms
them anyway.

• Steals are infrequent. Most of time a task and all of its subtasks
get processed by the same worker one after the other. We should
be taking advantage of this.
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5.1 Selective Transformation

Before applying our program transformation, we build the call
graph of the target program. A method m is transformed by our
compiler pass iff m or any method reachable from m contains
a concurrency construct (async, at, when). Otherwise, it is left
unchanged.

We say a local variable is ephemeral if no task may be spawned
while it is alive, that is, if there is no async, at, or when construct
between a definition and a use of the variable. There is no need to
store ephemeral variable values in the cactus stack. Our compiler
pass leave them alone. For now, we work around the lack of live
variable analysis in the X10 tool chain by manually annotating
variables @x10.compiler.Ephemeral.

5.2 Lazy Frame Initialization

X10 local variables and fields have different initialization seman-
tics. A local variable can only be read after it has been definitely
initialized. A field on the other hand is initialized to the default
value of its type if not explicitly initialized in a constructor. There-
fore, by substituting fields for local variables, we incur the overhead
of field initialization to no avail since this default value will never
be accessed. To eliminate this overhead, we annotate the fields of
the frame classes @x10.compiler.Uninitialized and teach the
C++ backend compiler not to zero annotated fields.

5.3 Inlining

We systematically inline frame constructors at call sites. In order to
avoid a method call to lookup the current deque for push and pop
operations, we add a worker parameter to every generated method
and use that reference to access the deque. The push and pop codes
themselves are inlined. We also inline helper methods (i.e., run
methods) into transformed methods (e.g., fib method). Moreover,
we eliminate the switch statements from the transformed methods
since the helper methods are always invoked with pc equals 0.

Ultimately, we end up with two copies of each source method
in the transformed program. The first copy, traditionally named
fast clone is the transformed method itself. Thanks to inlining,
each transformed method ends up having the same structure as the
corresponding source method. The second copy of the code—the
slow clone—consists of the collection of helper methods in frame
classes. The slow clone is seldom used, that is, by thieves to resume
the execution of an existing call stack. Workers spend most of their
time running fast clones, so the small size of slow clone methods
does not hurt performance.

5.4 Finish Out-degree

By construction, the worker who creates a finish frame must pro-
cess all of the non-stolen subtasks of this finish before returning
to the finish frame. For simplicity, in the previous section, we sug-
gested keeping track of how many frames are pointing to a finish
frame. But this is an overkill. Instead, we count how many subtasks
of the finish have been stolen so far and not yet completed, adding
one to that count if one or more of the non-stolen subtasks has not
completed yet. In other words, we aggregate all the non-stolen sub-
tasks as one for counting purposes.

While this might seem like a minor change, the performance im-
plications are profound. Indeed, this count is shared across workers.
Therefore, it must be updated atomically. Thanks to this change,
these atomic operations are only required from thieves and victims.
In particular, if a single worker executes a finish body in its entirety,
then no counting ever takes place.

5.5 Speculative Stack Allocation

Most often, a frame will be constructed and discarded by the same
worker without ever being seen by another worker. Therefore, we

speculatively allocate frames on the thread stack. A thief is respon-
sible for copying the stolen continuation frame as well as all the
frames on top of it from the victim’s stack to the heap (except of
course for those frames that have already been copied to the heap
by a prior thief).2

Thieves and victims must synchronize to ensure the integrity
of the copy. A thief grabs a lock (tryLock) on the victim’s deque
before attempting to steal. If the lock is acquired and the steal
is successful, it keeps the lock while copying the frames. This
prevents another thief from interfering with the copy. The victim
when it fails to pop the stolen continuation acquires and releases
the lock, hence ensuring that the copy is complete before trashing
its stack.

While making the copy, the thief inserts a pointer in each source
finish frame to the destination finish frame. This pointer is used
by the victim to decrement the count of remaining tasks under the
finish after it discovers that the continuation has been stolen.

Heap allocated frames objects are explicitly deallocated when
popped from the cactus stack (using C++ free).

In the end, although we replaced locals by fields the data re-
mains on the thread stack. We incur hardly any memory manage-
ment cost for frames.

5.6 Miscellaneous Field Optimizations

In order to avoid the need for traversing the stack to identify the
finish frame which to attach an async frame, we add a finish frame
field to each RegularFrame. We only add a pc field to frames with
multiple points of reentry.

Discussion. Our choice of creating many small frame objects at
first might seem a fatal mistake. However, thanks to these careful
optimizations, we alleviate most of the overhead while retaining the
benefit of a straightforward code generation. Even path expressions
such as “this.up.up.n” in the Fibonacci example could be eliminated
from the fast clones by a trivial constant propagation.

Several of the optimizations we implement deviate from X10’s
official semantics, thus requiring changes in the C++ backend com-
piler for X10. While uninitialized fields or stack-allocated ob-
jects have no place in the Java specification, such things could
be achieved in Jikes RVM [1] with essentially the same benefits,
thanks to its stack-walking API [8].

6. A Scheduler for the Full X10 Language

In this section, we augment the scheduler of the previous section to
account for the X10’s conditional atomic blocks, remote tasks, ex-
ceptions, and asynchronous variable initialization. We also discuss
the current limitations of our implementation.

6.1 Suspension

The execution of when (E) S suspends until a state is reached
in which the condition E is true. In this state, the statement S is
executed atomically. Moreover, changes to E outside of atomic
sections might not trigger the execution of S.

In order to cope with when constructs, our scheduler maintains
in each place a queue of suspended continuations. Concretely, when
a worker encounters a when statement whose condition evaluates
to false, it saves the index of the when statement in the pc field of
the current frame and pushes this frame to the extra queue. It then
aborts its computation and switches to the idle state in which it will
look for something else to run in the usual way. Dually, when a
worker exits an atomic block, it grabs a lock on the extra queue and

2 To be exact, a thief always copies the stolen frames up to the first finish
frame, then only copies those frame that are not on the heap yet.

272



moves its entire content to its own deque, which will eventually
lead to the re-evaluation of the condition of each suspended task.

Speculative stack allocation. In an async-finish program, a
worker only aborts its computation if it finds the continuation it
is about to execute has been stolen from it. By construction, this
means all the frames on the thread stack have already been copied
to the heap by one or several thieves. It is therefore ok for the victim
to discard the content of its thread stack by means of the STOLEN
exception.

In contrast, when a worker aborts because of a false condition
in a when statement, its deque may be full of pending continuations
and its thread stack filled with frames essential to continued execu-
tion of the program. Hence, we need to take extra care to make the
scheme for when constructs work with speculative stack allocation.

We add an extra deque per worker. Both the old and the new
deques contain continuations. But while the continuations of the
old deque may point to stack-allocated frames, continuations of the
new deque can only refer to heap-allocated frames. Before a worker
aborts because of a false when condition, it “steals” all of the tasks
from its normal deque and pushes them to its extra deque using the
exact same protocol thieves use to steal tasks. Then it can safely
abort since there remain no pointer to its thread stack.

We update the findContinuation algorithm accordingly. When a
worker is idle it first processes the continuations of its extra deque
if any before trying to steal from others. When worker A decides
to steal from worker B it first accesses the extra deque of B then
if empty its normal deque. Of course, if it acquires a continuation
from the extra deque, it does not need to migrate frames to the heap
since the stolen frames are already there.

6.2 Distribution

The execution of at (p) S suspends the execution of the caller
while S is executed at place p.

When a worker encounters at (p) S, it instantiates a special at
frame. Then it migrates the content of its normal deque to its extra
deque in the manner of the previous section and sends the at frame
to place p.3 Finally it aborts. At this point, the parent frame of the
at frame only exists as a remote reference in the up field of the at
frame at place p.

We augment findContinuation so that idle workers not only
try to steal from collocated workers but also listen for incoming
continuations from other places.

When a worker at place p picks up the at frame, it starts execut-
ing S. When done with S, it sends back the reference to the parent
of the at frame to the place of origin. There a worker can pick up
the frame and continue its execution.

Remote finish. One problem with that scheme is that asyncs
spawned by S at place p may need to update finish subtask counts
at the place of origin. In order to avoid a stream of costly increment
and decrement messages between the two places, we create a proxy
finish object in place p in the manner of the standard X10 runtime,
which effectively coalesce these messages into much fewer remote
updates.

Async at. While async at (p) S is truly the combination of
an async and an at construct, the pattern deserves a dedicated
implementation. Our scheduler simply creates a frame for S and
sends it to place p.

We treat this frame S as a stolen continuation. Indeed there
are now two workers at least—one local, one remote—working
concurrently in the finish scope containing this async. Therefore,
the worker who encountered the async statement in the first place

3 For lack of space, we cannot discuss here the detail of the serialization
operations.

aborts and immediately resumes the continuation of the async,
which happens to be the first thing on its deque. In other words
it stops executing the fast clone of the code and starts executing the
slow clone of the same code. This ensures that the actions of the
local and remote workers will be properly synchronized.

6.3 Exceptions

Exceptions require ubiquitous changes (Frame classes, Worker
class, codegen). Basically, we add to the state of each worker an
exception field. When an exception is thrown by the user code, it
gets stored in this field. While the field value is not null, the worker
keeps popping frames from the cactus stack until in reaches either a
try-catch frame, an async frame, or a finish frame. If the exception
is caught by the try-catch frame, the field is cleared. Exceptions are
accumulated in a list field of the finish frame. When an exception
reaches a finish frame it is added to the list. If it reaches an async
frame it is added to the list of the parent finish frame of the async
frame. In both cases, the exception field of the worker is cleared.

When a finish frame has no outstanding children, the exceptions
of the list are combined into a MultipleException object which is
loaded in the worker exception field.

Unfortunately, the scheduler itself makes use of the STOLEN
exception. This exception must not be affected by the scheme
we just described. Moreover, the STOLEN exception should not
trigger the execution of finally blocks. After our work-stealing
compiler pass, we schedule an additional compiler pass to rewrite
all try-catch-finally blocks in the generated code to “ignore” this
exception.

6.4 Asynchronous Initialization

The X10 compiler extends a Java-like definite assignment anal-
ysis to permit initializing final variables (X10’s vals) from asyn-
chronous tasks. For instance, here is how to actually compute Fi-
bonacci numbers using this feature:

static def fib(n:Int):Int {
if (n<=1) return 1;

val u1:Int; val u2:Int;
finish {
async u2 = fib(n-2); // async init of u2

u1 = fib(n-1);
}

return u1 + u2;
}

Thanks to this language feature, asynchronous tasks can “return”
values without going through expensive heap-allocated objects.
Moreover, the compiler guarantees race freedom.

Asynchronous initialization makes it possible for a worker to
write into an inner frame of the cactus stack, possibly shared among
multiple workers. This is not a concern per se as the compiler guar-
antees that reads happen after writes and that writes are unique. But
this becomes an issue in the context of speculative stack allocation
of frames. In short, a worker may write to a stale frame that has
been migrated to the heap by a thief. We could of course prevent
this but only by means of costly synchronization that would hinder
performance irrespective of steals.

Instead, we let a worker update stack frames (not knowing
whether these have been stolen or not), but migrate the values to the
replacement frames when the worker finally recognizes it has been
mugged. Because of the definite assignment analysis, the compiler
knows statically which task is initializing which final variables. We
can therefore generate as part of our code transformation a method
in each async frame to propagate the right set of values. If the
continuation of the async frame is stolen, the worker invokes this
method before aborting. For instance, in the Fibonacci example, if
the continuation of the async is stolen we know statically that u2’s
value must be propagated.

273



6.5 Current Limitations

While our scheduler is designed from the ground up to support
the full X10 language, its current implementations is not 100%
complete yet and suffers a few temporary limitations, primarily:

• Closure literals and constructor bodies must be sequential. Con-
current instances may be replaced by anonymous classes and
factory methods.

• X10’s call graph construction is buggy. As a result, our compiler
pass may incorrectly assume a method is sequential and fail to
process it. This can be worked around by annotating missed
methods with @x10.compiler.WS.

• Clocks are a form of distributed cyclic barriers with the con-
venience of a dedicated syntax. Our scheduler supports cyclic
barriers but cannot handle the clock syntax yet.

7. Experimental Results

In this section, we evaluate the performance of our scheduler by
comparing against the Cilk++ runtime and the Java fork/join frame-
work when applied to single-place async-finish programs. While
these runtimes have some support for limited forms of synchro-
nization beyond fork-join, they are incapable of the equivalent of
handling X10’s when and at constructs.

Our compiler and runtime extensions are distributed as part of
the X10 distribution [25] under the Eclipse license. Benchmark
codes are available upon request.

7.1 Benchmarks

We consider two sets of benchmarks. The first one is composed
with three micro benchmarks, including Fibonacci, Integrate, and
QuickSort. These benchmarks have small to absurdly small tasks,
making it possible to measure overheads at their worst. Fibonacci
computes Fibonacci numbers as seen in Section 6.4. Integrate was
suggested by Doug Lea. It computes the numerical integration of a
polynomial function of degree 3 using Gaussian quadrature. Quick-
Sort is a parallel quick sort implementation of a randomly gener-
ated data set. To be fair, we use the same random input generator
across all implementations. We implement these three benchmarks
in X10, Cilk++, and Java using the fork/join framework.

The second set of benchmarks is derived from the Problem-
Based Benchmark Suite [2], which is a collection of 19 fine-grain
task-parallel graph algorithms implemented in Cilk++. We trans-
lated 6 of them (randomly selected) to X10. We have no Java
fork/join implementation of these benchmarks.

7.2 Porting Methodology

Our X10, Cilk++, and Java fork/join micro benchmark implemen-
tations follow the style of the respective programming paradigms.
Neither implementation tries to aggregate tasks either statically or
dynamically. Our goal with these benchmarks is to measure the
overhead of each runtime. If we were to for instance dynamically
bound the number of spawned tasks, then all of the compared run-
times would have close to zero overhead and close to perfect scal-
ing, which is not very interesting.

Our translation of the PBBS benchmarks preserves the original
algorithms as much as possible: we want to spawn the same tasks,
with the same granularity and the same dependencies. Here is a list
of the non-trivial changes to the code:

• PBBS codes make ubiquitous use of type-unsafe idioms:
unchecked arrays, pointer arithmetic, and function pointers.
We replace pointer arithmetics with explicit offsets. We dis-
able array bound checks via the -NO CHECKS option of the X10
compiler. We replace function pointers with closures. We mit-

igate the higher cost of closure invocation in X10 by hoisting
interface lookups out of critical loops.4

• PBBS codes are memory-intensive. We turn off the garbage
collector of the X10 runtime and preserve the free calls of the
original code. Otherwise, execution time would be dominated
by GC pauses.

• PBBS codes use compare-and-swap instructions on array cells.
We extend the X10 standard library to support these.

• X10 structs are immutable. PBBS codes use mutable C++
structs. We replace them with classes.

• PBBS codes use the cilk for construct. The Cilk runtime con-
verts a cilk for loop into an efficient divide-and-conquer recur-
sive traversal over the loop iterations. We extend our code trans-
formation to generate helper methods to do the same.

7.3 Evaluation Environment and Methodology

We measure performance on a 16-way x86 64 blade with four
AMD Quad-Core Opteron 8347 HE at 1.9GHz, 24GB of RAM,
and running RHELS 5.6.

Cilk++ configuration. We use Intel’s cilk++ SDK preview (build
8503) [13]. We compile with -O2 -finline-functions opti-
mizations, which is what the C++ backend compiler for X10 is
invoked with.

Java fork/join configuration. We use the Java fork/join library
from the Concurrency jsr-166 interest site [15] atop an Oracle(Sun)
Java SE build 1.6.0 22-b04 32bit VM.

X10 configuration. Our experiments are based on the X10
open-source distribution at revision 22646 [25]. Our C++ com-
piler is g++ (GCC) 4.4.4 (Red Hat 4.4.4-13). We compile the
X10 runtime with flags -DOPTIMIZE=true -DNO CHECKS=true
-DDISABLE GC=true. We compile the benchmarks with options
-WORK STEALING -O -NO CHECKS. We link the generated code
with the thread-caching malloc memory allocator of the google
performance tools [10].

Methodology. We measure the run time of the benchmarks using
1 to 16 workers. We also measure the sequential performance of se-
lected benchmarks by removing all concurrency related constructs
in these codes.

All the performance data for X10 and Cilk++ were collected
from the average of 10 runs. We do 5 warm-up iterations for Java
fork/join benchmarks and report the average of the next 10 runs.

7.4 Micro Benchmark

Figure 1 shows the speedups for each micro benchmark when
increasing the number of workers. Execution time is normalized
to 1 for 1 worker. We can see X10’s work-stealing scheduler scales
nearly as well as Cilk++ and better than Java fork/join. Integrate
has the largest spread. Cilk++ speedup is 15.8, X10 is 13.9 and
Java fork/join only 9.0.

Figure 2 shows the run times for all benchmarks and all imple-
mentations with 16 workers. X10 is faster. We also ran the X10
codes using the unmodified X10 tool chain and 16 runtime threads.
Compared to X10 with work-stealing, Fib(40) is 700x slower, Inte-
grate(1536) is 300x slower, and QuickSort(10M) is 60x slower.

In Figure 3 we compare sequential overheads, that is, the execu-
tion time of the sequential version of each program with the execu-
tion time of the parallel version running with a single worker. X10
achieves the best result with overheads ranging from 7x to 28%.

4 Function types in X10 are interface types. Invoking a closure literal re-
quires a lookup of the function type in the interface table of the closure
litteral, which has non-trivial cost.

274



(a) Fib(40) (b) Integrate(1536) (c) QuickSort(10M)

Figure 1. Micro Benchmark Speedups

Figure 4. PBBS Running Time(s) (16 workers)

(a) Sequential X10 Running Time over C++ Running Time (b) Sequential Overhead

Figure 5. PBBS Overhead Analysis

Figure 2. Micro Benchmark Running Time (16 workers)

If we disable exception support in the work-stealing transfor-
mation, we measure performance improvements never exceeding
10%. The cost of correct exception handling is therefore marginal.

7.5 PBBS Benchmark

We translated 6 of the 19 PBBS codes to X10. Most contain a series
of measurements. In short, the Sequence tests (SQ) are unit tests.
They measure the performance of building blocks used to construct
the graph algorithms in the MaxIndSet (MI), MaxMatching (MM),

Figure 3. Micro Benchmark Sequential Overhead

ColorGraph (CG), BreadthFirstSearch (BFS), and RadixSort (RS)
programs.

Figure 4 shows the execution time for every benchmark using
16 workers. Overall, X10 and Cilk++ performance are comparable
and often very close. Neither runtime wins the comparison.

To better understand these results we plot a series of ratio in
Figure 5 for the unit tests:

• The execution time of the sequential X10 code over the execu-
tion time of the sequential C++ code.
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• The execution time of the single-worker Cilk++ test run over
the execution time of the sequential C++ code.

• The execution time of the single-worker X10 test run over the
execution of the sequential X10 code.

These numbers clearly identify two orthogonal contributing factors
to the difference in performance between Cilk++ and our scheduler.

First, Figure 5(a), the raw sequential performance of the C++
code and the X10 code are not always the same due to the different
nature of the languages and compilers. X10 is up to 40% slower
than C++. X10 classes are slower than C++ mutable structs, clo-
sures are slower than function pointers, etc.

Second, in Figure 5(b), the X10 work-stealing code transforma-
tion overhead is often negligible, but in a few cases it slows down
the code by up to 30%. Cilk++ is the same, with an overhead often
but not always negligible. But affected benchmarks are different.

Overall, the relative sequential performance of the two lan-
guages matters more than the work-stealing code transformations.

8. Conclusion

We design and implement a portable work-stealing scheduler for
the full X10 language.

We demonstrate it is possible to dramatically increase the cover-
age of work-stealing policies beyond single-place (shared-memory)
async-finish (fork-join) programs while matching the performance
of dedicated schedulers on this important class of programs. In par-
ticular, our scheduler handles task suspension in its full generality,
hence data-dependent synchronization and remote task invocation.

To achieve performance we implement a series of low-level
optimizations, which require support from the backend compilers.
We implemented such support in the C++ backend compiler for
X10. In the future, we plan to do the same with the Java backend
compiler for X10 by taking advantage of non-standard capabilities
of Jikes RVM.
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