
Design Challenges of Virtual Networks: Fast, 
General-Purpose Communication 
Alan M. Mainwaring 

Computer Science Division 
University of California at Berkeley 

Berkeley, CA 94720-l 776 

Abstract 
Virtual networks provide applications with the illusion of 
having their own dedicated, high-performance networks, al- 
though network interfaces posses limited, shared resources. 
We present the design of a large-scale virtual network system 
and examine the integration of communication programming 
interface, system resource management, and network inter- 
face operation. Our implementation on a cluster of 100 
workstations quantifies the impact of virtualization on small 
message latencies and throughputs, shows full hardware per- 
formance is delivered to dedicated applications and time- 
shared workloads, and shows robust performance under de- 
manding workloads that overcommit interface resources. 
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1. Introduction 
Whereas large-scale parallel machines were once construct- 
ed of highly-specialized nodes and run as single-user or 
space-shared systems, they are now almost universally built 
from general-purpose microprocessors with a complete oper- 
ating system on, or spread across, every node. As their gen- 
erality evolves, they are deployed not only for compute- 
bound physical simulations, but for an increasingly rich set 
of data intensive services and shared environments. Nonethe- 
less, the primary distinguishing characteristic of parallel sys- 
tems, as opposed to other collections of computers on a 
network, is their support for fast user-level communication. 
This capability is what allows intense sharing of resources 
and transfer of information within parallel applications. This 
paper investigates the inherent design challenges in provid- 
ing high-performance communication to a broad range of ap- 
plications in a general-purpose environment. 
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The tension between performance and generality presents an 
especially interesting challenge for high-performance clus- 
ters, since, on the one hand, they offer tremendous generality 
by using complete computers as building blocks and, on the 
other, seek to deliver the performance of fast, scalable sys- 
tem-area networks [ 1, 181. The implementation of the high- 
speed communication substrate should not constrain the 
overall usage model of the parallel system. For several years 
it has been well-demonstrated that communication perfor- 
mance could be delivered by mapping network hardware di- 
rectly into the address space of the user application [4,6, 17, 
25, 27, 29, 30, 32, 331. However, providing this capability to 
only a single or a few prearranged parallel programs at a 
time severely limits how the overall system can be used. 
While there are times when nodes will be devoted to a single 
program, high-speed communication ought to be available to 
all components, including file systems, schedulers, debug- 
gers, performance analyzers, parallel clients and servers, and 
traditional client/server applications. 

Practically, the way to obtain performance and generality is 
virtualization. The operating system can provide the illusion 
of direct access to resources, but actually bind virtual re- 
sources to physical ones on demand. Much as physical mem- 
ory hosts the most active pages of virtual address spaces, the 
physical network resources can be focused on the most ac- 
tive loci of communication. Virtualization facilitates the 
sharing and presentation of physical resources to consumers, 
with the operating .system able to manage protection and 
scheduling while remaining off critical performance paths. 
When done well, it provides the performance of direct appli- 
cation-to-resource bindings when usage approximates the 
stand-alone case, effective sharing of resources when they 
are not overcommitted, and graceful degradation under 
heavy loads. When done poorly, it may either fail to deliver a 
large fraction of the hardware capability to any one applica- 
tion, or may degrade severely under load. Traditional proto- 
col stacks suffer the former, because of the run-time 
intermediate interpretation and management that occur on 
every operation, even when a single user program operates 
well within the capability of the underlying network. 

This work makes three contributions: (1) it describes the de- 
sign, implementation, and evaluation of a complete, large- 
scale virtual network system in daily use for more than a 
year on a cluster 100 workstations serving a diverse user 
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community, (2) it isolates network virtualization techniques 
that deliver full hardware performance to dedicated applica- 
tions and robust performance under workloads that over- 
commit communication resources, and (3) shows how these 
techniques can be integrated within existing programming 
interface, operating system, and network interface (NI) 
frameworks. 

In what follows we present the design of our virtual network 
system in a layered fashion and examine how the integration 
of network virtualization impacts each of the core architec- 
tural components. Each section outlines the general princi- 
ples and the critical issues in practice. After background is 
established in Section 2, Section 3 addresses the program- 
ming interface provisions to support general purpose use: 
naming, protection, delivery models, and thread-based 
events. Section 4 examines the key operating system support 
in the context of Solaris, including integration with the vir- 
tual memory system and the driver/NI protocols. Section 5 
examines network interface support, including the service 
and queuing disciplines, and the transport protocols. Section 
6 discusses system performance in three regimes using mi- 
crobenchmarks, parallel applications, and macrobench- 
marks that examine robustness. Finally, Section 7 discusses 
lessons learned and related work. 

2. Background 
Approaches to network virtualization have been proposed in 
the form of Abstract Device Channels [ 151, Remote Memo- 
ry Mapped Regions and reflective memory channels [5, 171, 
Remote Queues [2], and Active Messages [26], and several 
prototype cluster systems have been developed [4, 6, 271. 
Indeed, the results have been promising enough that a major 
industrial consortium recently released the Virtual Interface 
Architecture [8] to serve as a point of consolidation for this 
work. The evidence to date has focused primarily on small 
prototypes, point-to-point benchmarks and single applica- 
tion studies that demonstrate the benefit of mapping net- 
work hardware into an application’s address space. 
However, these tests may stress little of the network virtual- 
ization, such as the mechanisms for the virtual-to-physical 
binding, policies for placement; replacement and schedul- 
ing, and the coordination across nodes. Thus, effectiveness 
of network virtualization at scale remains a largely open 
question. 

The cluster used in this study consists of 100 167-Mhz Sun 
UltraSPARC-1 workstations running Solaris 2.6 with 128 
MB of memory. The machines are connected by a Myrinet 
[l] network with 25 switches and 185 links in a fat-tree like 
topology. The switches have an average cut-through latency 
of -300 ns and have 1.2 Gb/s bi-directional ports. Network 
paths are shallow, with -7 bytes of buffering per-hop, and 
while link-by-link flow control and back pressure contribute 
to low overall transmission error rates, network congestion 

rapidly spreads through the network. Hosts have a single 
LAW 4.3 network interfaces that contains a 37.5-Mhz gen- 
eral-purpose embedded processor with 1MB of on-board 
memory, independent network send/receive DMA engines, 
and a single DMA engine for SBUS transfers. Although it 
contains a general-purpose microprocessor, the NI imple- 
ments a controller amenable to implementation in hardware. 
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Figure 1. (a) user-level software and (b) system software oper- 
ational with Virtual Networks and Active Messages. 

Figure 1 shows the system architecture that we have con- 
structed on top of virtual networks and Active Messages. 
This system is general-purpose, and has been operational 
for more than one year, supporting a diverse user communi- 
ty. The system provides the active subset of applications 
with direct, high-performance network access. At user-level, 
the communication programming interface supports tradi- 
tional parallel libraries, such as a port of the public-domain 
MPICH message passing library and the Split-C language 
originally developed for the CM-5. It also supports high- 
performance parallel I/O subsystems 1121, and Java-based 
remote-method invocations. By supporting a subset of the 
interface within Solaris, standard sockets, network files sys- 
tems, and remote-procedure calls packages, can leverage the 
performance of the network. 

The virtualization that delivers performance and generality 
in this setting raises questions at all layers of the system, 
e.g., the nature of programming interface abstractions and 
operations that support both parallel and distributed applica- 
tions, the realization of operating system mechanisms and 
policies that manage application bindings to the network 
hardware, and the network interface protocols and schedul- 
ing disciplines that support efficient protected network 
multi-programming. In developing this system, we found 
that many of the critical design issues arose from dealing 
with the requirements of full-scale use and were not re- 
vealed by simple benchmarks. Novel uses of the program- 
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ming interface and their compositions revealed unforeseen 
behaviors and interactions between layers of software with- 
in and across the nodes. 

3. Programming Interface Concepts 
In order to investigate techniques for supporting fast and 
general-purpose communication, it was necessary to define 
a communications programming interface that would enable 
a wide-range of applications. 

Message passing with MPI was a standard for parallel pro- 
grams, but it is oriented toward a single program with a 
fixed process count and imposes relatively high overhead. 
Sockets was the standard for client-server applications, but 
point-to-point connections present scalability concerns for 
parallel programs, and also impose large overheads. Shared 
memory was widely used as the mechanism for ad hoc shar- 
ing between multiple threads within a program, but it pre- 
sented many open questions as a communication 
mechanism for a distributed environment. Active Messages 
were well established as a low-level programming interface 
on which these various popular API’s have been built, with 
implementations on several massively parallel processors 
[7, 21, 28, 29, 311 and clusters [22, 231. However, the first 
generation of interfaces were specialized for single parallel 
program and thus were not general-purpose. 

Three fundamental components of the Active Message in- 
terface needed enhancement: the naming and protection 
model, the delivery and error model, and the integration of 
communication events with multi-threaded programming 
environments. Like its predecessors, the interface for virtual 
networks [26] casts communication as split-phase remote 
procedure calls and provides primitives for higher-level pro- 
tocols and applications. However, it introduces a new ab- 
straction, endpoints, which virtualize the connection to the 
physical network, so that many processes on a node can 
each have multiple endpoints. Endpoints are objects that 
hold message queues and associated state that resides be- 
neath the interface. The programming interface is defined in 
terms of endpoints. Addressability and access rights are es- 
tablished among a collection of endpoints, forming a virtual 
network. Programming within a virtual network is then 
nearly identical to traditional Active Message environments. 
This section presents the issues raised by general-purpose 
use and their solutions in terms of the three components. 

3.1 Naming and Protection 
The interface must provide a logical communication 
namespace and a protection model that allows applications 
to control message delivery into their endpoints. We wanted 
the naming and protection model to allow a wide range of 
network technologies, e.g., it should enable either send-side 
or receive-side address translation and protection checks. 
The protection model should be sufficient to catch program- 

ming mistakes, protocols errors, and potential hardware er- 
rors from which applications should be insulated. Whereas 
strong end-to-end security and authentication measures 
should be implemented in the applications where necessary, 
since handlers can decide what to do with the messages that 
are received. 

Endpoint names are opaque, i.e., they have no predefined in- 
ternal structure, so that many of the communication naming 
schemes in current use can be employed, e.g., (IP address: 
port number), and the names can be obtained by any rendez- 
vous mechanism. Applications use endpoint relative naming 
for actual communication operations. An endpoint object 
contains a simple translation table, which allows programs 
to construct a logical communication namespace of small 
integers by associating endpoint names and protection keys. 
A communication operation specifies the source endpoint 
and a translation table index for the destination endpoint. 
(Clearly, traditional virtual node number addressing in par- 
allel programs is easily realized with this approach.) The 
protected portion of the communication subsystem, i.e., the 
NI, stamps each outgoing message with the key and routes it 
to the destination; the receiving interface verifies the key 
and deposits the data. The key must match the destination 
endpoint key for delivery. On a connection oriented net- 
work, such as ATM, routing and verification may be imple- 
mented using virtual circuits. A virtual network consists of a 
collection of endpoints that refer to one another, and is con- 
structed by configuring the individual endpoints, rather than 
through some specific group membership interface. 

3.2 Delivery and Error Model 
The delivery and error model must balance the needs of tra- 
ditional parallel programs, which expect perfectly reliable 
message delivery in an otherwise fail-stop model, with the 
needs of client/server applications and cluster services that 
can tolerate errors and adapt to changes, We cannot assume 
a perfectly reliable interconnect, even though transmission 
errors on emerging networks are rare, because we want the 
communication system to support hot-swap of links and 
switches for incremental scaling and to adapt to changes in 
the physical topology transparently. Thus, the substrate 
should mask transient transport and reconfiguration errors, 
yet provide a clean way for error-aware programs to handle 
serious conditions, such as a remote node crashes. 

The interface specifies exactly once delivery of messages, 
barring unrecoverable transport conditions, and that unde- 
liverable messages are returned to their sender, where they 
invoke an ‘undeliverable message’ handler. This enables ap- 
plications to control how errors are handled, e.g., abort or 
re-issue, without having to take pessimistic actions in the 
common case, such as setting time-outs and logging mes- 
sage contents. This “return to sender” model allows the un- 
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derlying, machine-specific detection and retry mechanisms 
to be projected upward essentially for free. 

3.3 Communications Events and Threads 
The interface must integrate communication events with 
multi-threaded applications. Many applications, such as 
servers, require event driven communication which allows 
them to sleep until messages arrive, whereas polling is more 
efficient in parallel applications that communicate intensely. 
Both modes should be supported and applications should 
control the mode and which endpoint state transitions gener- 
ate events. Rather than define a new event model and associ- 
ated concurrency controls, the interface assumes POSIX 
threads with mutex locks and synchronization mechanisms. 

Endpoints have event masks that sensitize a synchronization 
variable to endpoint state transitions, such as message arriv- 
al. Threads can set and wait on these events. Applications 
can mark endpoints as shared or exclusive, so that opera- 
tions on shared endpoints invoke code which performs the 
necessary synchronization while operations on exclusive 
endpoints avoid those overheads. Choosing to project events 
to applications using standard thread synchronization en- 
ables implementations within operating system where per se 
process signals absent. The interface provides applications 
with the flexibility to determine the relationships between 
threads and endpoints. For example, one thread may operate 
upon multiple endpoints and many threads may concurrent- 
ly access a single endpoint. 

4. OS Resource Management 
The operating system challenge in virtual networks is man- 
aging the collection of endpoints so that when processes 
communicate they obtain the full efficiency of the network 
resources, and otherwise these resources are fully available 
to other processes. 

The approach in conventional network stacks is to multi- 
plex/demultiplex all traffic within the kernel. Virtual net- 
works assume a capable network interface that can 
multiplex traffic for a limited set of endpoints, without oper- 
ating system intervention. Several systems have demonstrat- 
ed fixed-degree multiplexing through a NI, e.g., [6, 301. Our 
approach manages the resident set dynamically, with active 
endpoints bound on demand to the NI in response to local or 
to remote references. The solution is compatible with con- 
temporary operating systems, and supported without 
source-level modifications to Solaris. The key is the device 
abstraction between the operating system and the NI. 

4.1 Management Model 
Endpoint management is cast as a virtual memory problem 
and tackled with extensions of standard virtual memory 
mechanisms. Binding endpoints on-demand to hardware re- 
sources is analogous to binding pages to memory frames. 

Non-resident endpoints reside in application memory, but 
are not directly accessible by the NI. When an application 
writes a message into a non-resident endpoint, the system 
traps the reference and makes the endpoint resident, i.e., 
binds it to communication resources. What is unique is that 
the arrival of a message for a non-resident endpoint can also 
cause it to made resident. Making an endpoint resident may 
require evicting an endpoint to make room, and an endpoint 
replacement policy selects which one. 

In general, a NIrequires addressability for message buffers, 
message descriptors, and the like. In our system, the NI con- 
tains a small amount on-board memory, through which all 
transfers are staged; data can be moved between the host 
and NI memory or between NI memory and the network, 
but not directly between host and network. To allow the NI 
to process small packets as quickly as possible, resident 
endpoints reside physically in the NI. The interface reserves 
64KB of its on-board memory for eight endpoint frames. 
(Newer interface hardware supports up to 96 endpoint 
frames). In addition, address translations are established for 
bulk data transfers associated with the endpoint. This orga- 
nization provides the NI with single-cycle random-access to 
all resident endpoints. Because they remain mapped into ap- 
plication address spaces, applications also have fine-grained 
access to them with programmed I/O. Non-resident end- 
points are like any other cacheable memory page in the pro- 
cess address space. The operating system is involved in 
residency transitions, but none of the common-case commu- 
nication operations. 

4.2 Integration with Virtual Memory System 
This management model is realized by extending the Solaris 
virtual memory system with a new endpoint module. Solaris 
is representative of modern operating systems, in which the 
application virtual address spaces consists of a collection of 
segments [16]. Each segment has an associated driver that 
maintains the address translations for virtual memory pages 
and manages their physical backing store. Segments export 
methods for allocating, mapping, duplicating, locking, and 
handling access faults. Integration with the virtual memory 
system at the segment layer provides precise control over all 
facets of memory management and much richer functional- 
ity than what is exposed to device drivers. 

Endpoints are memory mapped objects, represented by ad- 
dress space segments, and managed by the endpoint seg- 
ment driver. The functionality provided by segment drivers 
for managing virtual memory, apply to endpoint manage- 
ment as well. For example, segment creation is equivalent to 
allocating an endpoint and initializing its messages queues. 
Process termination automatically invokes segment driver 
methods to free segments, and with endpoint segments this 
may cause the driver to synchronize de-allocation with the 
network interface before proceeding. Most importantly, the 
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segment driver handles page faults which permits the on-de- 
mand re-binding of endpoints. 

Figure 2. shows the four-state protocol controlling endpoint 
virtual address translations and backing store. Endpoints re- 
side in uncacheable endpoint frames on the network inter- 
face (on-nit), cacheable main memory (on-host), or in the 
system swap area (on-disk). Endpoints in interface memory 
have read-write (r/w) translations, endpoints in host memo- 
ry can have either read-write or read-only (r/o) translations, 
and endpoints migrated to disk are marked as invalid (n/a). 

An endpoint initially resides in the on-host r/o state. Writes 
by applications (or references by the network interface) gen- 
erate endpoint page faults which transition it to the on-host 
r/w state and schedules its re-mapping to an NI endpoint 
frame. This allows applications to read and to write end- 
points without necessarily consuming NI endpoint frames, 
while providing the system with a triggering event to initiate 
re-mapping. Eventually, the kernel makes the non-empty 
endpoint resident so communication can occur. When all 
frames are occupied, the system replaces a resident endpoint 
at random and returns the endpoint to the on-host r/o state. 
Page reclamation mechanisms may move non-resident end- 
points to secondary storage should they be the least recently 
used pages during periods of acute memory deficits. The 
‘vm pageout’ transitions refers to these reclamations. 

make-resident 

Figure 2. Operating system endpoint segment management 
protocol as implemented in the Solaris VM system. 

The non-resident, read-write state deserves special atten- 
tion. It was not in our original design but it is extremely im- 
portant for robust performance under conditions of high re- 
mapping load. Normally, pagefaults are handled synchro- 
nously, while the faulting thread remains suspended. This 
state de-couples process scheduling from the binding of 
endpoints to the NI, and allows the application thread to 
continue execution immediately after a write fault. The ini- 
tial page fault schedules the re-mapping operation with the 
system and makes the endpoint writable. The segment driver 

uses background kernel thread to activates non-empty end- 
points, asynchronously to their initial fault handling. The 
thread periodically services re-mapping requests in the 
background, and unmaps the endpoint, moves its backing 
store to the NI, and updates its virtual address translations. 

The activation of a non-resident endpoint in response to 
message arrival is also unusual, as there is no user process 
instruction that generates the fault, so the segment driver 
must simulate its effect. Again, multi-threaded operating 
systems provides a simple solution. The endpoint segment 
driver spawns a kernel thread which performs proxy opera- 
tions on behalf of the NI. When requested to make an end- 
point resident, it generates a software-initiate pagefault 
which activates the same underlying driver mechanisms. 

4.3 Driver/NI Protocol 
The segment driver operates concurrently with the network 
interface, and these two agents must coordinate their opera- 
tions on shared endpoints and data structures. Both the oper- 
ating system and NI make asynchronous requests to initiate 
operations in the other, and receive responses in return, This 
raises three fundamental issues: the means through which 
the operating system and NI communicate, the protocol that 
defines the possible operations and synchronizes their inter- 
actions, and how each agent performs operations on behalf 
of the other. Here we address the protocol and driver opera- 
tions; NI operations for the driver are in Section 5.3. 

The segment driver and the NI are peer agents that commu- 
nicate using a simplified Active Messages interface through 
a dedicated system endpoint. Unlike user-level endpoints, 
the system endpoint is permanently resident. A small num- 
ber of message handlers, in the driver and in the NI, define 
the protocol through which they interact. For example, the 
driver may request that the NI allocate an endpoint, load an 
endpoint from the host into an endpoint frame, or unload an 
endpoint to host memory. In each case, it invokes a message 
handler in the NI to perform part of the operation. The inter- 
face may request that the driver, for example, make an end- 
point resident, notify a thread of a communication event, or 
manipulate DMA mappings to application memory regions. 
A variant of logical clocks [20] is used so that each agent 
can resolve the ordering of events initiated by the other, e.g., 
when the driver attempts to free an endpoint as the interface 
concurrently requests that it be made resident. 

5. Network Interface 
The fundamental challenge in the NI support for virtualiza- 
tion is balancing the demands of individual application per- 
formance with the need for fair sharing of critical hardware 
resources. Multiple independent flows are bound to the net- 
work interface, instead of muxed into a single flow by the 
operating system, and the interface obtains three core re- 
sponsibilities: the efficient implementation of packet trans- 
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mission mechanics and protocols, fairly servicing multiple 
resident endpoints while retaining per-endpoint perfor- 
mance, and integrating driver requests with the device’s on- 
going communication and protocol operations. 

5.1 Primitives and ‘I’ransport Protocols 
The mechanics of packet transmission requires driving the 
packet interface to send data over network links, as well as 
providing end-to-end transmission sequencing, flow control, 
error detection and handling. The interface systematically 
processes queues of message descriptors for resident end- 
points, multiplexes packets onto the link while applying 
simple flow control protocols for reliable delivery, and de- 
multiplexes arriving messages into destination endpoints. 

The details of an earlier version of these protocols were pre- 
viously published [lo] and are only summarized here. User- 
level credits prevent a single endpoint from overrunning the 
receive queues of a dedicated destination endpoint. In addi- 
tion, the network interface uses a lightweight stop-and-wait 
flow control protocol over multiple logical channels with 
positive acknowledgment. A randomized exponential back- 
off algorithm control packet time-outs and retransmissions. 
Flow control channels are self-synchronizing and automati- 
cally re-initialize sequencing state should either end enter a 
designated uninitialized state, e.g., when a node reboots. 
The interface places 32-bit time stamp in the link header of 
each packet and receiving interfaces reflects them in their 
acknowledgments (see Section 5.3). 

Positive acknowledgments indicate messages were written 
into their destination endpoint, while negative acknowledg- 
ments encode why messages could not be delivered. The 
prolonged absence of acknowledgments indicates an unre- 
coverable transport condition, e.g., disconnection or inter- 
face failure, which triggers the return of messages to their 
senders. Other errors, such as sending to a non-existent end- 
point, do so as well. Multiple logical channels between all 
interfaces mask transmission and acknowledgment laten- 
ties, and take advantage of multi-path routing. when avail- 
able. Because flow control channels are shared physical 
resources, no message can occupy one for a prolonged peri- 
od of time. After a bounded number of consecutive retrans- 
missions, the NI carefully unbinds messages from channels 
enabling their re-use; subsequent retransmissions reacquire 
and rebind them. Careful engineering is required to accom- 
plish these functions in a small number of instructions. 

5.2 Service and Queueing Discipline 
Because the NI services multiple resident endpoints, its ser- 
vice and queueing discipline can balance minimizing laten- 
cy and maximizing throughput for individual endpoints 
while maintaining fairness and responsiveness across them. 
The service discipline determines the order in which end- 
points are serviced while the queueing discipline determines 

the order in which descriptors within an endpoint are pro- 
cessed. Traditional protocol stacks, e.g., TCP/IP, present NIs 
with a unified stream of packets from a mix of processes and 
protocols and incoming packets are received into a single 
shared queue that requires further higher level processing 
before delivery to applications. Thus, the service and queue- 
ing discipline is determined primarily by process schedul- 
ing. Architectures that provide direct user-level messaging 
collapse such intermediate layers of interpretation, and the 
NI schedules multiple traffic flows onto the network. 

The NI uses a weighted round-robin scheduler for servicing 
resident endpoints, and processes endpoint descriptors in a 
first-come first-serve manner. The algorithm cycles through 
resident endpoints and loiters on those with packets await- 
ing transmission (or retransmission). While packets remain 
to send, the interface processes at most 64 (the number of 
descriptors for sending messages) messages for at most 4 ms 
(the approximate transmission time for 64 messages of the 
maximum transmission unit size) before servicing other 
endpoints. In effect, the NI maintains a state machine per 
endpoint. The. discipline allows the interface to cache end- 
point-specific state and optimize the latency and throughput 
for an individual endpoint, while, at the same time, prevents 
endpoints sending large messages from receiving unfair pro- 
portion of attention. The in-order transmission of packets, 
and the sometimes out-of-order reception of their acknowl- 
edgments requires departing from the first-in first-out 
queueing policy for retransmission. Retransmission requires 
fine-grain random-access to message descriptors in end- 
points. It would be costly if they were maintained in host 
memory. 

5.3 Driver Operations 
The NI interleaves the servicing of the driver endpoint 
among all others. While the driver/NI protocol defines a set 
of atomic operations in the driver, the network interface 
overlaps the processing of driver requests with user messag- 
es. The fundamental complication arises when the driver at- 
tempts to unload or invalidate an endpoint which has 
unacknowledged messages in flight. The mechanics of send- 
ing packets and protocol messages create references to 
physical endpoints, which must be eliminated before reus- 
ing that state. In essence, the network interface implements 
a lockup-free cache of the most active endpoints in the sys- 
tem, and while the interface must take special care while the 
driver modifies a particular entry, the processing of messag- 
es of all other entries continues at full speed. 

Putting an endpoint with unacknowledged messages into a 
quiescent state adds transient states to the dispatch loop 
driving the interface operation. These states prevent new 
messages from being sent from endpoints to be modified by 
the driver, while periodically retransmitting unacknowl- 
edged packets until acknowledgments are received. Once 
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quiescent, the driver may safely operate upon the endpoint. 
Because the retransmission protocol may introduce multiple 
copies of messages in the network, the interface must ac- 
count for all such copies and their acknowledgments before 
responding to driver requests. For simplicity, the system 
statically binds flow control channels to physical network 
routes, and this imposes a first-in first-out ordering of mes- 
sages across each logical channel. Receiving an acknowl- 
edgment for the most recent retransmission is then sufficient 
to account for all copies. 

6. Performance 
Previous sections have described a family of interrelated de- 
sign choices for an effective virtual network system and the 
general rationale behind them. This section presents empiri- 
cal measurements to evaluate its performance in three re- 
gimes and reflects upon the design choices made. It begins 
with microbenchmarks that reveal how virtualization effects 
point-to-point overheads, latencies, and bandwidths. It uses 
dedicated and time-shared parallel applications to evaluate 
typical workloads that operate well within the capabilities of 
the network. The remainder of the section examines its scal- 
ability and robustness under a demanding set of workloads 
that systematically overcommit physical network resources, 
and stress the virtualization mechanisms and policies. 

6.1 Stand-alone Microbenchmarks 
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Figure 3. LogP performance characterizations. AM denotes AC. 
tive Messages for virtual networks. GAM refers to a single-endpoint 
interface with none of the necessary enhanacements of Section 3. 

The LogP microbenchmark results in Figure 3. characterize 
performance for both virtual networks and a first-generation 
Active Message interface for stand-alone parallel programs, 
using a technique described in [9]. In the LogP model, the 
send and receive overheads, 0, and 0, account for the host 
processor time spent writing and reading a message to the 
NI, respectively. The latency, L, accumulates the remaining 

end-to-end time. Each message incurs a total overhead of 0, 
+ 0, and experiences a one-way time 0, + 0, + L. The gap, 
g, is the time per (16-byte) message through the rate-limit- 
ing communications stage between two endpoints. Messag- 
es can be sent every g time units in steady state. 

Virtualization and the increased demands placed upon the 
network interface increase the round-trip time by 23% and 
the gap by a factor of 2.21, while the total per-packet over- 
head remains the same. The larger gap is due primarily to 
the transport protocol and acknowledgment processing. 
Other aspects of virtualization, such as error checking and 
defensive firmware practices, contribute only 1.1 u~ec to L 
and g. Sensitivity studies 1321 show that increases in gap 
are, in general, less detrimental than increases in overheads, 
because such increases only effect applications which send 
long, frequent bursts of small messages. Whereas the larger 
send overhead reflects the cost of writing bigger message 
descriptors to the NI, the smaller receive overhead shows 
the benefit of reading entire descriptors across the SBUS us- 
ing a single SPARC VIS block load instruction. 

6 sbus: read dma 
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Transfer Size (bytes) 

Figure 4. Transfer bandwidths. Microbenchmarks showing de- 
livered bandwidth for 128 byte to 8192 byte messages, with maxi- 
mum hardware transfer rates across the SBUS for comparison. 

Figure 4. shows that virtualization has no appreciable per- 
formance impact for point-to-point bulk data transfers. The 
system delivers 43.9 MB/s with 8 KB messages with an NI,2 
of 540 bytes. The first-generation interface delivered only 
38 MB/s for the same size message. The round-trip latencies 
for n-byte messages, n z 128 , take time = 0.1112(n) + 
61.02 usec (R2 = 0.99). The SBUS exhibits asymmetric di- 
rect memory access transfer rates whether reading or writ- 
ing host memory from the NI. Thus, the delivered 
performance approaches 93% of the 46.8 MB/s hardware 
limit for 8KB DMA transfers (SBUS write dma) when writ- 
ing to host memory. Although the NI pipelines its process- 
ing of message descriptors to compensate for the store-and- 
forward delay when staging transfers through its memory, 
the transfer time across the SBUS dominates the added 
packet and protocol processing arising from virtualization. 
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Figure 5. NPB speed-ups through 32 processors on the IBM SP-2, Berkeley NOW and SGI Origin 2000. Shows speedups for the NAS 
Parallel Benchmarks 2.2 (Class A) on the IBM SP-2, Berkeley NOW, and SCI Origin 2000, from 1 to 36 nodes with constant problem size 
scaling. 

6.2 Dedicated Parallel Applications 
The performance of individual parallel applications using 
the system in a stand-alone MPP fashion has been shown on 
several benchmarks. This section illustrates that the commu- 
nication layer continues to deliver full hardware perfor- 
mance to parallel applications that use the system in a stand- 
alone way. 

Using the public-domain Scalapack library, the optimized 
BLAS routines from the Sun Performance Library, and our 
port of the standard MPICH on Active Messages, our lOO- 
node cluster sustained 10.14 GF on the massively-parallel 
linpack benchmarks, making it the first cluster on the Top- 

-500 list [14], ranking #315 on June 19th, 1997. 

We have also evaluated the performance and scalability of 
the NAS Parallel Benchmarks (~2). As shown in Figure 5, 
for Class A, the scalability is significantly better than the 
SP-2. All but two of the benchmarks demonstrate linear 
speed-ups through 32 processors. They are not embarrass- 
ingly parallel, but improved cache performance compen- 
sates for increased communication, which is even more 
pronounced on the Origin. The all-to-all communication 
within the FT and IS benchmarks was limited by the bisec- 
tion bandwidth. Comparing with the newer, faster SGI Ori- 
gin 2000, the execution times of all benchmarks on our 
cluster are at most a factor of two larger. Instrumentation re- 
veals that not only is the relative time spent performing 
communications lower on the cluster, but in some instances 
the absolute time spent performing communication is lower. 

6.3 Multiple Parallel Applications 
To demonstrate support for more general workloads, we 
consider multiple parallel programs, each with one or more 
virtual networks that timeshare a partition within the cluster. 
This workload shows virtual networks adapting to process 
scheduling and not constrained in its usage model. 

In general, parallel applications that communicate frequent- 
ly must be co-scheduled to some degree because there are 

strong dependencies between the processes. A variety of 
mechanisms exist for co-scheduling parallel applications, 
either in the operating system or run-time libraries. Some 
systems require co-scheduling for system correctness be- 
cause the communication substrate can support direct, pro- 
tected access for only one process at a time [ 191. Our system 
does not require this; it uses implicit co-scheduling which 
coordinates the scheduling of processes within parallel ap- 
plications using conventional local schedulers. Regardless, 
however the scheduling system selects processes to run, the 
virtual network subsystem adapts the resident set to the ac- 
tive endpoints. 

Previously published results in [12] shows that the execu- 
tion time of multiple, time-shared Split-C applications (as 
well as synthetic benchmarks) on 16-nodes is within 15% of 
the time to run them in sequence. The time spent in commu- 
nication remains nearly constant, which indicates that when 
applications communicate, they receive full network perfor- 
mance. In the presence of application load imbalance, time- 
sharing improved the throughput of some workloads up to 
20%. 

6.4 Virtualization at Scale and Load 
We conclude this section with an examination of synthetic 
workloads that stress network virtualization mechanisms 
and reveal their robustness under severe loads. These work- 
loads build upon a simple client/server model, with one 
server, and one or more client processes. The flexibility of 
virtual networks and the Active Message interface motivate 
measuring a few different workload configurations. First, to 
limit interactions with process scheduling and resource 
management external to the communication layer, the server 
and each of the client processes run on distinct, dedicated 
nodes, Second, we consider two natural designs, one where 
each client has an endpoint that communicates with one 
shared server endpoint, so only one virtual network is used, 
and another where each client communicates with its own 
unique server endpoint, so there are as many virtual network 
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as clients. With multiple virtual networks, we consider two 
natural server threading models, one where a single thread 
handles requests from all client (ST), and another where 
there is a server thread for each endpoint (MT). Each server 
thread waits for messages to arrive from its client, processes 
requests until none remain, and waits again. Finally, we con- 
sider two configurations of the server’s network interface, 
one with only 8 endpoint frames, and the second with the 
default 96 frames. As the number of clients increases, the 
number of server endpoints increases, too. More than 8 cli- 
ents cause the 8-frame configuration to overcommit its 
physical endpoint resources and to begin re-mapping them 
on-the-fly. (None occurs with the 96-frames). 

In general, we might model client/server communication as 
alternating between computation and burst communication 
phases, but here we want to examine system behavior under 
increasingly demanding loads that overcommit NI resources 
and activate the underlying virtualization mechanisms. The 
workload is somewhat like a page thrash test. Each client 
sends a continuous stream of requests to its endpoints in the 
server, and we increase the number of clients. Each graph 
shows the throughput for five possible configurations over a 
20 second interval in the steady state. 

100000 n 1 
OneVN 

5 1000 
3 
z 2 100 
0 
r: 
E 10 

‘I (4 3 I+ m Y.2 4 2 ;? s GJ s 2 5; 
Nnmher of Clients 

90000 , 
z 80000 
g .!z 70000 
z 60000 
8 50000 
$ 40000 
22 
& 

30000 
g 20000 
St” 10000 

0’ 
3 c- 2 o\ 3 z 2? q 3 2 G 3 

Number of Clients 

Figure 6. Small message performance under contention. 

Figure 6. shows throughput for small messages across dif- 
ferent configurations. 6a shows per-client throughput on a 
semi-log scale, and 6b shows the aggregate server through- 
put. In the OneVN configuration, each client obtains its pro- 
portional share of the server’s maximum throughput of 78K 
msgs1.s. With ST, clients continue to receive their propor- 
tional share, but two factors may contribute to the aggregate 
performance degradation. With 8 server frames, the server 
may stall when endpoint re-mapping occurs, and with 96 
frames, the costs of polling resident but non-cacheable end- 
points in interface memory outweigh that of polling non- 
resident but cacheable endpoints in host memory. In the MT 
configuration, performance is resilient to the number of 
server frames. Theads with empty endpoints remain asleep 
until messages arrive. Threads blocked waiting for their 
endpoints to become resident don’t prevent threads with 
non-empty, resident endpoints from running. 

Figure 7 shows throughput for 8KB bulk messages. 7a 
shows per-client throughput, and 7b shows the aggregate 
server throughput. In the OneVN configuration, each client 
obtains approximately its proportional share of the server’s 
maximum throughput, in this case of -42.8 MB/s. The ST 
configuration shows sensitivity to the number of server 
frames. With only 8 frames, server performance drops with 
9 clients and then degrades slowly. With 96 frames, no re- 
mappings occur and ST performance surpasses OneVN for 
the reasons explained below. In the MT configuration, per- 
formance is similar to the ST configuration and remains sen- 
sitive to the number of server frames. The local scheduler 
does interact with the endpoint scheduling in the operating 
system, and the service and queueing discipline on the NI. 
Threads for client endpoints with pending messages can be 
run while threads suspended during re-mapping operations 
or awaiting the arrival of requests will not block them. 

6.4. I Discussion 
These results demonstrate the ability to overcommit NI re- 
sources (by more than 8: I), while providing robust through- 
put for resident endpoints and fair service for all endpoints 
over time. Under these workloads, the operating system sus- 
tains approximately 200-300 endpoint re-mappings per sec- 
ond, but still delivers .50%-75% of its performance. Over 
short intervals, those clients with resident server endpoints 
successfully deliver messages. Messages for non-resident 
endpoints are negatively acknowledged and retransmitted 
later, while the server interface requests the driver re-map 
the endpoint. Similarly, round-trip latencies experienced by 
client requests are strongly bimodal. Those requests deliv- 
ered to resident endpoints are processed quickly, while oth- 
ers experience re-mapping and retransmission delays. 

Without the support for event-driven operation, the multi- 
threaded server would not be implementable. Without re- 
sorting to preemptively scheduled threads bound to light- 
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weight processes, a single user-level thread would either 
poll forever (wasting cpu cycles), or use time-outs or other 
clumsy notification mechanisms to wake its up periodically. 
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Figure 7. Bulk transfer performance under contention. 

Originally, the endpoint management protocol in Section 
4.2 did not include the on-host r/w state (transitions to it 
went directly to the on-nit r/w state). Single threaded serv- 
ers fell off sharply as soon as endpoint re-mapping began 
with the 9th client. Only a few percent of the hardware per- 
formance was delivered. This was because the server thread 
blocked for the full-duration of the upload each time it 
wrote replies into a non-resident endpoint. However, the 
multi-threaded server did perform well, because it allowed 
multiple threads to block awaiting re-mappings, while those 
threads with resident endpoints could always be run and 
could process incoming requests from their clients. 

The single virtual network configuration shows the impact 
of receive queue overruns, and subsequent retransmissions. 
Figure 6(b) shows the drop from 75K to 60K msgs/s, from 2 
to 3 clients, which occurs when this lightweight mechanism 
no longer prevents receive queue overruns, and the link pro- 
tocols begins retransmitting them. Credit-based flow control 
in the user-level library allows each endpoint to have 32 out- 
standing Active Message requests because each endpoint’s 

request receive queue is 32 entries deep. Similarly, Figure 
7(b) shows the ST and MT configurations with 96 frames 
outperforming the OneVN configuration for the same rea- 
son: with one-to-one “connections,” overruns do not occur 
and retransmissions only result from the destination end- 
point not being resident. 

7. Related Work 
Despite important differences, many similarities exist in 
contemporary user-level network systems. Most provide 
processes with direct network access, typically by mapping 
device hardware into virtual address spaces. The systems 
optimize the transfer of control, data, and status information 
between user-level applications and the NI. The operating 
system is always off the critical path. 

Several prototypes have explored the integration of high- 
speed network adaptors into commodity operating systems. 
These small-scale systems provided varying degrees of pro- 
tected multiprogramming. The Osiris project at the Univer- 
sity of Arizona created Application Device Channels [15] 
that provided a small number of memory mappings to an 
ATM adaptor, using flfbufs to manage sharing of message 
buffers between the device and higher-level protocols. The 
U-Net [30] system illustrated user-level networking with 
ATM and Myrinet adaptors (and also emulated it using Fast 
Ethernet). It demonstrated limited-degree virtualization, and 
rather than addressing protocol issues with the NI, each ap- 
plication provides all of its protocol support at user-level. 

In addition to Active Messages, several high-performance 
communication systems have been realized on both clusters 
and MPP’s. Remote queues [2] provide an interface to mes- 
sage queues with direct control over their servicing. The Illi- 
nois Fast Message system [24, 251 is similar to remote 
queues and Active Messages, and has been implemented 
successfully on clusters and massively parallel processors. 
With recent extensions, it, too, supports limited-degree vir- 
tualization for parallel programs. Although it assume a per- 
fectly reliable interconnect, this allows careful use of pre- 
allocated storage and user-level credits to avoid receiver 
overruns. (Support for thread-based events is pending.) 

The remote memory-mapped regions as used in the Memory 
Channel system [ 171 establishes import-export relationships 
between virtual memory regions in different applications. 
The SHRIMP project designed Virtual Memory-Mapped 
Communication [5] where reflective memory channels are 
established such that writes into an imported segment even- 
tually appear in the exported one. It implemented memory- 
based message passing across its logical channels, as well as 
RPC [3] and data stream abstractions [ 131. Almost all state 
resides in host memory, leaving the NI and OS to coordinate 
the management of device TLB’s. The Hamlyn [4] system 
implemented sender-based communication. 
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The Virtual Interface Architecture [8] combines elements of 
these systems. It provides direct user-level network access 
to multiple applications, supports several different reliability 
models, and both memory-based and message-based trans- 
port primitives. The reference architecture takes a conserva- 
tive position on memory management, requiring explicit 
memory registration and pinning before communicating. It 
specifies a rather complicated model for operating upon de- 
scriptors in host memory, as well as several weaker reliabili- 
ty models. Although it uses connections, collections of VI’s 
may share a completion queue which provides a central lo- 
cation for polling. A parallel program on n nodes requires rz2 
total VI’s for complete connectivity, rather than a single 
endpoint. Resource provisioning is also done on a connec- 
tion bases rather than pooling resources across a set. 

8. Conclusions 
We have demonstrated the feasibility of network virtualiza- 
tion at scale within the existing frameworks of programming 
interfaces, operating systems, and network interfaces. Our 
implementation delivers the full hardware performance to 
parallel applications that run in a stand-alone fashion, and 
adapts to process scheduling with time-shared workloads. 
Moreover, it continues to deliver a large fraction of the net- 
work performance even with demanding workloads that 
overcommit the NI resources. The fast, user-level communi- 
cation that we take for granted in parallel systems can be- 
come available to all components. 

Because virtual networks require dealing with the interac- 
tions between layers of the system, and across nodes in the 
network, their implementations are challenging. When done 
carefully, the necessary extensions are localized in scope 
and reasonable in their demands on processing and storage. 
The extensions to Active Messages focused on three specific 
areas, and left its original request/response paradigm intact. 
The enhancements to Solaris found existing virtual memory 
management and kernel thread facilities entirely adequate. 

Although the NI protocols are non-trivial, we believe that 
their complexity remains in line with high-performance im- 
plementations in hardware. Our implementation was suc- 
cessful even with the significant processing and storage 
constraints of the LANai. Additional processing power 
would improve latency and gap, and recover some of the 
costs of virtualization. It would also enable more sophisti- 
cated algorithms, e.g., round-trip times estimation for 
scheduling retransmissions, or piggybacking acknowledg- 
ments to reduce network occupancy. 

We are currently working on applying these techniques for 
network virtualization to an implementation of the Virtual 
Interface Architecture in order to address a number of limi- 
tations from which it currently suffers. The challenges fac- 
ing large-scale implementations, such as managing a large 

logical space of VI’s given finite interface resources, and the 
stronger reliable delivery modes given less-than-perfect net- 
works, have analogous solutions to those described herein. 
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