
Efficient and Reasonable Object-Oriented Concurrency

Scott West Sebastian Nanz Bertrand Meyer*
Department of Computer Science

ETH Zürich, Switzerland
firstname.lastname@inf.ethz.ch

Abstract
Making threaded programs safe and easy to reason about is one of
the chief difficulties in modern programming. This work provides
an efficient execution model and implementation for SCOOP, a
concurrency approach that provides not only data-race freedom
but also pre/postcondition reasoning guarantees between threads.
The extensions we propose influence the underlying semantics to
increase the amount of concurrent execution that is possible, exclude
certain classes of deadlocks, and enable greater performance.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Concurrent program-
ming structures; D.3.4 [Programming Languages]: Processors—
Code generation, Optimization, Run-time environments

Keywords Concurrency, object-oriented, performance, optimiza-
tion

1. Introduction
There is an increasing amount of attention on developing concurrent
programming approaches that provide certain execution guarantees;
they support the programmer in avoiding delicate concurrency
errors such as data races or deadlocks. Providing these guarantees
can, however, be at odds with attaining good performance. Pure
message-passing approaches face the difficulty of how to transfer
data efficiently between actors; and optimistic approaches to shared
memory access, such as transactional memory, have to deal with
recording, committing, and rolling back changes to memory. For this
reason, execution strategies have to be developed that preserve the
performance of a language while maintaining its strong execution
guarantees.

This work focuses on SCOOP [3], an object-oriented approach to
concurrency that aims to make concurrent programming simpler by
providing higher-level primitives that are more amenable to standard
pre/postcondition reasoning. To achieve this goal, SCOOP places re-
strictions on the way concurrent programs execute, thereby gaining
more reasoning capabilities but also introducing performance bottle-
necks. To improve the performance while maintaining the core of the
execution guarantees, this paper introduces a new execution model

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PPoPP’15, February 7–11, 2015, San Francisco, CA, USA.
Copyright c© 2015 ACM 978-1-4503-3205-7/15/02. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

called SCOOP/Qs1. We give a formulation of the SCOOP semantics
which admits more concurrent behaviour than the existing formal-
izations [1], while still providing the reasoning guarantees. On this
basis, lower-level implementation techniques are developed to make
the scheduling and interactions between threads efficient. These
techniques are applied in an advanced prototype implementation [4].
The overall performance is compared to a broad variety of other
paradigms for parallel and concurrent programming – C++/TBB,
Go, Haskell, and Erlang – demonstrating SCOOP’s competitiveness.

A companion report [5] provides more details and, in addition, a
formalization of the execution model, implementation notes, and an
evaluation of the individual optimizations.

2. Execution Model
SCOOP aims to provide areas of code where pre/postcondition
reasoning exists between independent threads. To do this, it allows
one to mark sections of code where, although threads are operating
concurrently, data races are excluded entirely. For example, consider
the following two programs that are running in parallel.

separate x
do
x.foo()
a := long_comp()
x.bar()

end

Thread 1

separate x
do
x.bar()
b := short_comp()
c := x.baz()

end

Thread 2

Supposing that x is the same object in each thread, there are only
two possible interleavings:

x.foo(), x.bar(), x.bar(), x.baz() or
x.bar(), x.baz(), x.foo(), x.bar()

However, in contrast to synchronized blocks in Java, these
separate blocks not only protect access to shared memory, but
also initiate concurrent actions: for both threads, the calls on x are
performed asynchronously, thus for Thread 1, x.foo() can execute
in parallel with long_comp(). It cannot be executed in parallel
with x.bar() as they have the same target, x. SCOOP has another
basic operation, the query, that provides synchronous calls. It is so
called because the sender expects an answer from the other thread;
this is the case with the c := x.baz() operation, where Thread 2
waits for x.baz() to complete before storing the result in c.

The SCOOP model associates every object with a thread of
execution, its handler. There can be many objects associated to
a single handler, but every object has exactly one handler. In the
example, x has a handler that takes requests from Threads 1 and 2.
The threads that wish to send requests to x must register this desire,

1 Qs is pronounced “queues”, as queues feature prominently in our new
approach; the runtime and compiler associated with Qs is called Quicksilver,
available from [4].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the author/owner(s).

PPoPP’15, February 7–11, 2015, San Francisco, CA, USA
ACM 978-1-4503-3205-7/15/02
http://dx.doi.org/10.1145/2688500.2688545

273

*Also Politecnico di Milano, Italy, and Innopolis University, Kazan, Russia

expressed by separate x. The threads are deregistered at the end
of the separate block.

This model is similar to other message passing models, such as
the Actor model. What distinguishes SCOOP is that the threads have
more control over the order in which the receiver will process the
messages: since each thread registers with the receiver, the messages
from a single separate block to its handler will be processed in order,
without any interleaving. This is summarized by the key reasoning
guarantees that an implementation of SCOOP must provide:

1. Regular (non-separate) calls and primitive instructions execute
immediately and are synchronous.

2. Calls to another handler, h, on which object x resides, within the
body of a separate x block will be executed in the order they
are logged, and there will be no intervening calls logged from
other clients.

The original SCOOP operational semantics [3] mandated the
use of a lock to ensure this behaviour. One can visualize this as the
client c0 placing the calls in a queue for the handler h to dequeue
and process:

h

c0

c1c2c3

The other clients (c1, c2, c3) that may want to access the handler’s
queue must wait until the current client is finished.

The SCOOP/Qs semantics, in contrast, gives each client their
own private queue in which to place their requests, thus preventing
clients from interfering with one another. Each client then just shares
this private queue with the handler to which it wants to send requests:

c0

h

c1c2

This nested queueing maintains the reasoning guarantees while still
allowing all clients to enqueue asynchronous calls without waiting.

3. Implementation
To evaluate the change in semantics, and explore lower-level opti-
mizations, a compiler and run-time were constructed. The compiler
uses the LLVM framework to generate optimized code, and the
accompanying C run-time is also very efficient.

An important aspect of the new semantics is that each of the
queues (the outer queue-of-queues and the private queue) can
be implemented by specialized concurrent queue structures. The
queue-of-queues is a multiple-producer-single-consumer (MPSC)
pattern because only a single handler will dequeue from it; there
is an efficient, specialized, implementation of the MPSC queue.
The private queues however are single-producer-single-consumer
(SPSC), which can be made even more efficient than the multiple-
producer case. These queues are lock-free in the common case, only
blocking when the queues are empty.

Another key run-time optimization involves, on shared-memory
systems, the execution of synchronous calls. There are two optimiza-
tions in this area:

1. Have the client, instead of the handler, execute the call.
2. Group synchronizations so that multiple back-to-back syn-

chronous calls to the same handler synchronize only once.

Having the client execute the call means that the call is known
statically and can be optimized (i.e., inlined) as normal; this isn’t
possible when the call is sent to the handler as a function pointer.
To maintain the reasoning guarantees, the client must first send a
synchronizing message to the handler (sync) to make sure that it is
not executing any other asynchronous calls.

Naı̈vely, each sync call requires a round trip to the handler. A
run-time optimization remembers the sync-state of the handler and
the client turns subsequent sync operations into no-ops, until an
asynchronous call is made; this can also be done statically through
our custom LLVM optimization pass.

When a client is copying large amounts of memory, as in
many parallel data processing operations, these optimizations make
the code about as efficient as memcpy. On data-intensive parallel
benchmarks this increases performance by 100× on average.

4. Language Comparison
We compared SCOOP/Qs with four well-established languages:
C++/TBB (Threading Building Blocks), Erlang, Go, and Haskell. To
rigorously evaluate performance, two types of benchmarks are used:
the parallel problems [6] focus on numerical processing and working
over large arrays and matrices; the concurrent problems focus on
coordination between different threads or handlers. External review
by language experts [2] increased confidence in the overall quality
of the benchmark set.

The parallel benchmark times (above the dashed line) on 32
cores, and the concurrent task times (below the dashed line), are
given here in seconds:

Task C++ Erlang Go Haskell SCOOP/Qs
randmat 0.08 4.14 0.08 1.03 0.24
thresh 0.11 11.96 0.17 0.50 2.30
winnow 0.15 23.95 0.28 0.52 2.59
outer 0.14 8.05 0.67 0.36 0.91
product 0.12 11.33 0.13 0.15 1.36
chain 0.32 16.01 2.60 2.94 0.60
chameneos 0.32 8.67 2.40 61.97 4.19
condition 15.92 2.15 5.95 26.05 1.46
mutex 0.14 6.13 0.17 0.86 0.14
prodcons 0.40 8.78 0.66 2.99 0.88
threadring 34.13 3.30 13.98 57.44 5.08
geom. mean 0.46 7.41 0.75 2.68 1.10

Note that neither Go nor C++/TBB offers any of the guarantees of
SCOOP/Qs, and SCOOP/Qs offers more guarantees than Erlang.
This places SCOOP/Qs as the best performing of the data-race-free
languages (Haskell, Erlang).

Acknowledgements
This work was partially supported by ERC grant CME #291389.

References
[1] B. Morandi, M. Schill, S. Nanz, and B. Meyer. Prototyping a concurrency

model. In Proc. ACSD’13, pages 170–179. IEEE, 2013.
[2] S. Nanz, S. West, K. Soares da Silveira, and B. Meyer. Benchmarking

usability and performance of multicore languages. In Proc. ESEM’13,
pages 183–192. IEEE, 2013.

[3] P. Nienaltowski. Practical framework for contract-based concurrent
object-oriented programming. PhD thesis, ETH Zurich, 2007.

[4] Quicksilver, an implementation of the SCOOP/Qs model. https:
//github.com/scottgw/quicksilver, Sept. 2014.

[5] S. West, S. Nanz, and B. Meyer. Efficient and reasonable object-oriented
concurrency. http://arxiv.org/abs/1405.7153, 2014.

[6] G. V. Wilson and R. B. Irvin. Assessing and comparing the usability of
parallel programming systems. Technical Report CSRI-321, University
of Toronto, 1995.

274

