
A Framework for Developing Parallel Applications
with high level Tasks on Heterogeneous Platforms

Chao Liu
Northeastern University
liu.chao@husky.neu.edu

Miriam Leeser
Northeastern University

mel@coe.neu.edu

Abstract
Traditional widely used parallel programming models and meth-
ods focus on data distribution and are suitable for implementing
data parallelism. They lack the abstraction of task parallelism and
make it inconvenient to separate the applications’ high level struc-
ture from low level implementation and execution. To improve this,
we propose a parallel programming framework based on the tasks
and conduits (TNC) model. In this framework, we provide tasks
and conduits as the basic components to construct applications at a
higher level. Users can easily implement coarse-grained task paral-
lelism with multiple tasks running concurrently. When running on
different platforms, the application main structure can stay the same
and only adapt task implementations based on the target platforms,
improving maintenance and portability of parallel programs. For a
single task, we provide multiple levels of shared memory concepts,
allowing users to implement fine grained data parallelism through
groups of threads across multiple nodes. This provides users a flex-
ible and efficient means to implement parallel applications. By ex-
tending the framework runtime system, it is able to launch and run
GPU tasks to make use of GPUs for acceleration. The support of
both CPU tasks and GPU tasks helps users develop and run parallel
applications on heterogeneous platforms. To demonstrate the use of
our framework, we tested it with some kernel applications. The re-
sults show that the applications’ performance using our framework
is comparable to traditional programming methods. Further, with
the use of GPU tasks, we can easily adjust the program to leverage
GPUs for acceleration. In our tests, a single GPU’s performance is
comparable to a 4 node multicore CPU cluster.

Categories and Subject Descriptors D.3.3 [PROGRAMMING
LANGUAGES]: Language Constructs and Features–Concurrent
programming structures, Frameworks

General Terms Design, Languages

Keywords Tasks&Conduits, Task parallelism, Shared memory,
GPU, Accelerator

1. Introduction
With the prevalence of multicore and manycore processors, paral-
lel programming and parallel application development has become

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

PMAM’17, February 04-08, 2017, Austin, TX, USA
Copyright c� 2017 ACM 978-1-4503-4883-6/17/02. . . $15.00
DOI: http://dx.doi.org/10.1145/3026937.3026946

more and more important. For single node systems, shared mem-
ory programming methods such as Pthreads or OpenMP are widely
adopted. For cluster systems, MPI is the most popular program-
ming method. Also, the Partitioned Global Address Space (PGAS)
model [1] is attracting more and more research interest. It extends
the shared memory concept to a distributed memory environment,
allowing a group of processes to share a virtual global memory
space across multiple nodes and make use of one-sided communi-
cation mechanisms to access remote data. Targeting heterogeneous
parallel computing platforms, which have both CPUs and accel-
erators, novel programming languages or models have been intro-
duced to develop programs running on accelerators. OpenCL [2]
and CUDA [3] are two primary programming methods for produc-
ing parallel applications on GPUs. In addition to programming with
a single method, users often combine different programming meth-
ods together, such as MPI+OpenMP or MPI+CUDA.

The above programming methods usually focus on data distri-
bution and providing high performance data communication. They
are suitable for implementing data parallelism in an application, but
they lack the abstraction of high level task parallelism. For an ap-
plication composed of several workload parts, it is hard to use these
parallel programming models to express the application at a higher
level, which abstracts different workload parts as tasks and sepa-
rates an application’s high level structure from the lower level task
implementations. Due to the low level features of traditional paral-
lel programming methods, when the platform changes, lots of mod-
ifications to the application are required to target a new platform.
Also, users may need to familiarize themselves with the hardware
features of the platform to tune parallel applications. This makes
it much harder for domain experts who lack hardware knowledge
or are not familiar with novel processing devices to produce high
quality parallel applications.

To address these problems, we propose a lightweight unified
tasks and conduits (UTC) parallel programming framework based
on the tasks and conduits (TNC) model. In the TNC model, tasks
are the abstraction of computation workloads while conduits are
the abstraction of data transfer between different tasks. TNCallows
a user to express explicit task parallelism easily. Using this model,
application development includes two levels. The high level, the
user mainly focuses on creating the necessary task/conduit compo-
nents to construct the application, while at the low level, the user
can implement each task through various programming methods
based on the target platforms. Different task implementations can
be easily organized in a library for reuse. In this way, an appli-
cation’s main structure can be expressed at the task level, which
is independent from the task implementation and execution on a
specific platform. When running or porting such an application to
different platforms, the application main structure can remain un-
changed and only adopt appropriate task implementations, reduc-
ing the effort of developing and maintaining parallel applications.

Using the TNC model as a high level abstraction for applications
was first presented in [4]. Targeting signal processing applications,
the authors provided a Parallel Vector Tile Optimizing Library (PV-
TOL) to help developers create portable parallel programs on multi-
core platforms. However, the PVTOL library is mainly used for de-
veloping signal processing programs, and TNC is not implemented
as a single layer for easy extension. This restricted the usage of this
model.

We propose the UTC framework based on the concepts of
TNC and provide features to help develop and run parallel appli-
cation on heterogeneous platforms. In the framework we leverage
the PGAS programming model’s global shared memory feature
to improve tasks’ ability to perform more complex parallel algo-
rithms. A task uses a group of threads for parallel execution. These
threads can be on a single node or multiple nodes. Threads on the
same node can work with traditional shared memory, and threads
on different nodes will work with global shared memory, still shar-
ing data with each other. So in the UTC framework we provide a
hybrid threads + PGAS programming method for users to imple-
ment parallel programs within a task, improving the usability of
tasks. However, data sharing and hybrid threads + PGAS is only
applied to single tasks, it is not available between different tasks.
Different tasks do not share data with each other, they perform ex-
plicitly communication through conduits. Targeting heterogeneous
platforms, our framework is not constrained to only running par-
allel applications on CPU platforms; it supports both CPU tasks
and accelerator tasks. Various types of task are created and used
in a uniform way so that an application’s main structure remains
the same and is constructed of tasks. Only the task implementa-
tion changes when porting the program to make use of different
computing resources on different target platforms.

The contributions of this paper are:

• Providing uniform task and conduit components for construct-
ing parallel applications on heterogeneous platforms through
the UTC framework, isolating application high level structure
from low level task implementation and execution, thus improv-
ing application maintenance and portability.

• Supporting both CPU and GPU tasks and allowing different
tasks to run in parallel in a MPMD manner and communicate
through conduits to express task parallelism. The global shared
data object enables a single task to make use of hybrid thread
and PGAS method to implement data parallelism with multiple
threads.

• Completing pipeline execution of multiple tasks easily and
overlapping communication and computation within a multi-
threaded task to improve performance through the framework.

• Implementing four kernel applications to test and demonstrate
the use of this framework.

The paper is organized as follows: Section 2 shows the design
of the framework. In Section 3 we discuss the framework runtime
system implementation and extension for GPU platforms. Test re-
sults and analysis are presented in Section 4. In Section 5 we talk
about related work, and draw conclusions in Section 6.

2. Unified Tasks and Conduits Framework
In this section we give an overview of the framework, describe how
parallel applications are composed and then briefly show the frame-
work interfaces for applications. Also we discuss the data shar-
ing patterns and parallel programming methods that the framework
provides.

2.1 Framework Overview
Based on the TNC model, we provide high level abstract com-
ponents (Task/Conduit) for implementing parallel applications. In
our framework, we leverage object oriented programming methods
to express these two components. An object is the integration of
data and specific operations on that data. This is well suited to the
TNC model where tasks and conduits are treated as basic objects.

In a task object, the data members contain the data that will
be used for computation. The member functions define and imple-
ment specific computational logic or algorithms. The conduit object
works as the bridge between different task objects, used to transfer
data between task objects. To represent parallel program execution,
we use a thread as the basic execution unit. Each task object is
bound to one or several threads, and invokes threads to execute cer-
tain member functions. The overall UTC framework design is show
as Figure 1.

UTC process N

UTC process 2
UTC process 1

UTC process 0

taskA
instance1

taskB
instance1

taskA
instance2

UTC thread A1

UTC thread A0

UTC thread B0

UTC thread B1

Conduit
Instance A-B

Create taskA on
process 0 and 1

each with 1
thread;

Framework
Start process0,

process1,
processN

Create Task
object instances

Create Conduit
object instances

Launch UTC
threads for each

task

Signal UTC threads
to execute

Wait and finish
threads

Application:

Create taskB on
process 1 with 2

threads;

Environment
start;

Run taskA,taskB

Figure 1: UTC framework overall design

In our design, we assign one process (UTC process) to one
compute node, thus each process represents a unique node in the
cluster. One UTC process stands for one compute node. Under this
framework, a UTC-task is made up of a group of threads running
on a single or multiple nodes. Threads of different tasks that run on
the same node belong to the same UTC process.

To start an application, N processes (UTC process) are started
by the system and execute the application program in a SPMD pat-
tern. Every process has a unique id (from 0 to N-1). The subsequent
procedures on one node happen in the corresponded UTC process.

1. When creating a task to run on a single node, a task object

is instantiated in the UTC process of that node. Also one or
several threads can be launched in the same UTC process.
These threads serve this task and are bound with the task

object, like “taskB” in Figure 1.
2. When creating a task to run on several nodes, in each UTC process

of these nodes, a task object is constructed and bound to the
demanded number of threads, such as “taskA” in Figure 1.

So in our framework, a task is made up of one or multiple task
object instances and a group of threads which can perform com-
putations in SPMD. Tasks can be dynamically created during the
execution of programs. Different tasks run with different threads
and can perform parallel computations using the MPMD paradigm.
Thus parallel applications can express both data parallelism and
task parallelism easily and naturally in the UTC framework.

With the help of this framework, we can define and create neces-
sary tasks and conduits, and invoke predefined interfaces and meth-
ods to construct the main structure of an application. Then in dif-
ferent tasks, we implement the necessary computational algorithms
with supported programming methods. In this way, the higher level
logic of the application is isolated from lower level task implemen-
tation. When the platform changes, the application structure needs

little or no modifications; we only focus on the adaptation of task
implementation codes. For example, with the framework runtime
support, we may realize tasks to be run on GPUs and replace the
old CPU tasks with new versions of GPU tasks to make use of
GPUs to accelerate the application.

2.2 Framework Interface
In the UTC framework, we provide a set of classes and utilities
to define and run tasks in the system. A simple way to define and
create a task is:

TaskhUSER TASKi task instance(proc list, ...);
There are two important required arguments:

1. USER TASK: This is a user defined class template, based on
which the task object is instantiated and bound to the
execution threads. This class must implement certain inter-
faces, such as initImpl/runImpl, which are defined in the
UserTaskBase interface class. Inside these interfaces, the user
can realize necessary computational algorithms.

2. proc list: This is a vector of UTC process IDs. Each ele-
ment of the vector indicates where threads will be launched and
the size of the vector is the total number of threads for this task.

After the task is created, all necessary threads are launched and
suspended, waiting for commands from the application to perform
a specific execution. There are four basic methods used to send
commands to threads:

Task::init: Signal threads to execute initImpl;
Task::run: Signal threads to execute runImpl;
Task::wait: Wait for threads’ ongoing work to complete;
Task::finish: Terminate associated threads;

A user just invokes these methods to inform all threads bound
to the calling task object to perform the required actions.
init/wait/finish are blocking methods. They will wait for the
threads to finish a certain job. The run method is a nonblocking
method and returns as soon as the command is submitted. So a user
can invoke different tasks to run successively, no need to wait for
an earlier tasks’ completion.

We also implement the Conduit class, allowing the user to
define conduit objects and pass them as arguments to tasks for data
communication. Two basic conduit methods are: Conduit::read
and Conduit::write, which are used for fetching and putting data
through a conduit object.

2.3 Hybrid Data Sharing and Different Types of Parallelism
From the above description we learn that a task in the UTC frame-
work is associated with a number of task object instances and a
group of threads. In a task, threads from the same UTC process are
bound to the same task object. Therefore, for each task, there
are three different data scopes:

local-private: data belongs to a singe thread, not shared.
local-shared: data are shared by threads on the same node, we
call these threads local thread group.
global-shared: data are shared by all threads serving one task
across multiple nodes.

In the UTC framework, local-shared is straightforward. Because
threads on the same node are bound and share the same task

object, all the ordinary data members of the object are shared by
local thread group, and they are local-shared. To enable a user
to create data members in a task object that can be local-private
or global-shared, we define the following data types:

PrivateScopedData: Implement with thread-local storage
(TLS) which is supplied by an underlying pthread or boost
thread library. Each thread operates on the local copy of the
data.
GlobalScopedData: Implement through underlying OpenSH-
MEM library [5], dynamically create OpenSHMEM symmetric
memory space across multiple processes and utilize one-sided
put/get operations to access data remotely on other nodes.

With the help of these data types, the UTC framework provides
multiple levels and mixed data sharing mechanisms. It enables the
user to use threads + PGAS hybrid programming methods to imple-
ment multi-threaded task programs. Through the global-shared data
object, a task can run multiple threads on different nodes, not lim-
ited to a single node by the traditional thread programming method.
The parallel threads of different nodes can communicate through
global shared data with one-sided remote memory access (RMA)
operations, which brings more convenience to a user to realize a
parallel algorithm across multiple nodes. At the same time, unlike
pure PGAS methods, multiple threads on the same node already
share memory spaces, so there is no need to create global shared
data for every parallel thread, reducing the memory pressure. In ad-
dition, using this hybrid threads + PGAS method, a problem space
is divided and distributed by the number of nodes you are using. On
each node, multiple threads share the sub-problem space and work
on it. This distribution may reduce the inter-node communication
in some applications.

Besides using hybrid threads + PGAS programming methods
to implement a single task, a user can define and create several
tasks dynamically in an application. These tasks runs independently
or cooperatively in parallel. A complex application may includes
several parts or sub-problems. Each part represents a UTC task
and can be realized as a parallel program, using groups of threads
running on the cluster. In each UTC task, the concurrent threads are
tightly coupled to implement data parallelism. Between different
UTC tasks, they are loosely coupled. They may collaborate through
exchanging data using a conduit, or just run independently for task
parallelism. A special case occurs when an application includes
several consecutive parts. Then it is easy to create multiple tasks
and implement a pipeline pattern.

Through the UTC framework, a user can implement coarse-
grained MPMD parallelism with multiple tasks running concur-
rently; also a user can implement fine grained SPMD parallelism
with multiple threads running in parallel for each task. Overall the
UTC framework provides flexible and efficient means for the user
to design and implement parallel applications for cluster platforms.

3. Framework Implementation and Discussion
3.1 Framework Implementation
The UTC framework runs on cluster platforms. It needs to start
up processes locally and remotely as well as dynamically creating
and managing threads within each process. It is able to exchange
data between different tasks and share data among all threads of
one task. Based on these requirements there are various tools and
libraries that could be used for framework implementation.

3.1.1 Parallel Execution Creation
To start up multiple processes executing both locally and remotely,
we make use of an MPI library in our framework runtime. Applica-
tions are initialized through the mpirun command which launches
a number of processes on multiple nodes. Besides using MPI, it is
also feasible to use other tools, like SLURM [16] or Active Mes-
sage [15] to start up a process on a remote node.

To launch multiple threads in each process, we make use of
Pthreads library to create and manage multiple threads. We lever-
age the native C++11 threads utilities which may require recent
compiler support. Also we use some boost::thread functions for as-
sistance.

3.1.2 Data Communication
In the framework, we use conduits for communication between dif-
ferent tasks. The conduit expresses the data dependencies. As two
tasks may be active on the same node or on different nodes, we
implement both intra-node conduits and inter-node conduits. For
intra-node conduits, we use a shared memory method to build in-
termediate buffers for data movement. For inter-node conduits, we
make use of MPI communication methods to transfer data between
processes. More details about implementation are available [12].

Another important part of data communication is to support
global data sharing within one task among multiple processes.
Currently, we implement this feature through tools that support
the PGAS model. In our runtime implementation we make use
of the OpenSHMEM library [5] to accomplish our goal. We use
OpenMPI as the MPI implementation in the system. OpenMPI also
has realized the OpenSHMEM standard and provides the related
methods.

Besides using MPI or OpenSHMEM as the network communi-
cation layer, we also could use network libraries such as GASNet
[8] or UCCS [9] directly to build up the inter process data move-
ment and sharing in the framework runtime system. In this way
we may have more control and flexibility to implement the ex-
pected data communication behavior, and have better support for
our multi-threaded environment. This also increase the difficulty to
implement the framework runtime system.

3.2 Framework Extension for GPU task Support
Our framework design does not limit running tasks to multicore
CPUs; it also supports creating and running tasks on accelerators.
Programs that make use of accelerators for execution are not ex-
ecuted on accelerators alone. There must be control flow (host-
control) that runs on CPUs, and computing flow (device-kernel)
that runs on the accelerator. The host-control part is the same as a
normal thread which runs on CPU. To integrate the device-kernel
part, we have defined a set of interfaces for extension, such as
acc init, acc device bind, acc kernel launch and so on.
To target a specific accelerator, we need to implement these in-
terfaces and some glue code in the runtime system to be able to
manage and control GPUs. From the application perspective, the
“accelerator task” behaves the same as a “CPU task”, except that it
launches a kernel on an accelerator for computing.
TaskhUSER TASKi ctask instance(proc list, “cpu task”, ...);
TaskhUSER TASKi gtask instance(proc list, “gpu task”, ...);

Targeting Nvidia GPUs and leveraging CUDA runtime and
methods, we have implemented a preliminary GPU tasks extension
in our framework runtime system. A “gpu task” is also associated
with multiple threads, but each thread will be bound to a GPU de-
vice, executing the host-control workloads and invoking the CUDA
kernels to launch massive CUDA threads on GPUs for computing.
There is no difference for a user to define and use a “gpu task”,
however, the task’s computational kernel must be implemented
through CUDA or another programming method.

4. Application Tests
We developed several applications to test and evaluate our frame-
work implementation. One experimental platform is a small cluster
comprised of four computing nodes, connected by Gigabit Ether-
net. Each node has an Intel Xeon E-2620 CPU (6 cores with hyper-
threading support). Another platform is a desktop server equipped

with one Nvidia C2070 GPU. There are four applications used
for testing. Three of them: Matrix Multiply (MM), 2D Heat Con-
duction Simulation (2Dheat) and Heat Image generation (HeatIm-
age) are ported based on the test suite example programs from
the OpenSHMEM (OSH) website [6]. The k-means program is a
widely used clustering application. Some input data set informa-
tion is shown in Table 1.

Name Data set information
Matrix Multiply Matrix size: 2880*2880(double).
2D Heat 2D plain size: 288*800(single)
Heat Image Image size: 2880*1000(double)
k-means 1600*1066 points, 5 attributes(single)

Table 1: Test Applications Info

4.1 Multicore CPUs Execution Test
We first run these test programs on the cluster platform, scaling up
and using various number of parallel jobs for execution. MM and
2Dheat both have only one primary core computation procedure, so
there is one task in each program. In HeatImage and k-means pro-
grams, there are two procedures: one for computation and another
for file read or write. So we implement them as two task templates.

0

5

10

15

20

25

30

35

40

45

1 2 4 6 12 24 36 48

Ru
nT
im

e(
s)

Number	of	parallel	jobs

MM_osh
MM_utc
k-means_mpi
k-means_utc

(a)

0

5

10

15

20

25

30

35

40

45

1 2 4 6 12 24 36 48

Ru
nT
im

e(
s)

Number	of	parallel	jobs

2Dheat_osh
2Dheat_utc
HeatImage_osh
HeatImage_utc

(b)

Figure 2: Application run-time tests: (a) MM and k-means;(b)
2Dheat and HeatImage.(Up to 12 parallel jobs on one node)

The applications run-time test results are show in Figure 2. In
our test platform each node has 6 cores with 2 hyper-threads, thus
4 nodes support 48 parallel threads or processes. In the tests we run
at most 12 parallel jobs on one node, so when the number of jobs
is more than 12 we use multiple nodes for execution. From the test
results we can see that when increasing parallel jobs from 6 to 12,
the run-time does not change much, indicating that hyper-threading
does not bring much parallel execution ability for these applica-
tions. When running with more nodes, the run-time improvements
are not as much as on a single node. This is because the inter-node
communication and synchronization latency is higher than on a sin-
gle node; also the workload of each job is already low which makes
the effect of communication and synchronization more apparent.
Generally, we can see that programs implemented with our frame-
work have comparable performance to traditional parallel program-
ming methods. But with the use of high level task and conduit prim-
itives for programming, the UTC programs have a clear and concise
structure, which brings better portability and maintenance.

4.2 Multi-threaded Task Optimization
In our framework, we design the parallel algorithm for each task
using threads + PGAS programming method. Multiple threads on
the same node can easily share data, and threads of different nodes
can share data through global shared data objects. The explicit mul-
tiple threads of a task gives the user more flexibility to manipulate

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

No_opt 0_rows 30_rows 50_rows 100_rows

Ru
nT
im

e(
s)

Figure 3: MM overlapping test on two nodes

0

1

2

3

4

5

6

7

8

9

10

2 3 4 2 3 4

Ru
nT
im

e(
s)

Number	of	nodes

2Dheat
2Dheat_opt
HeatImage
HeatImage_opt

Figure 4: 2Dheat and HeatImage overlapping
test on multiple nodes

0

2

4

6

8

10

12

SingleTask with #threads 2Tasks with #threads

Ke
rn

el
 T

im
e(

s)

Total time Compute File write

1 2 4 12 1 2 4 12

Figure 5: Pipeline execution test

and use parallel threads for program optimization. One optimiza-
tion approach is overlapping computation and communication with
multiple threads.

In the Matrix Multiply application (A ⇥ B = C), we imple-
ment a block-column distribution for all three matrices. Each par-
allel job holds one column block of A, B and C. When running
multiple nodes, it is easy for us to schedule one thread (comm-
thread) to fetch data from the neighbor nodes for future use while
the other threads keep busy with computing (comp-thread). In ad-
dition to using one thread for communication, we can add small
computational workloads to the comm-thread to keep it busier. We
also test this scenario. Figure 3 shows the test results of running
MM on two nodes. In Figure 3, “No opt” is the run-time without
overlapping optimization. “0 rows” means we do not assign addi-
tional computation to comm-thread, while “30 rows”, “50 Rows”
and “100 Rows” means we let comm-thread compute 30, 50 or 100
rows of points in addition to do the communication. We can see
that without adding extra computational workload, we do not get
run-time improvement. But adding too much extra computation to
the comm-thread, results in a degradation of performance because
of the workload imbalance of different threads. We also adopt the
same optimization on 2Dheat and HeatImage programs and figure
4 shows the test results.

4.3 Pipeline Execution Test
In the Heat Image Generation example, there are two procedures:
one is to compute the heat image data set; the other is to write the
heat image data to a file on disk. We made some modifications to
the program: we select and save one image to file for every 100
iterations. We implement the application in two approaches. First,
we use one task to compute and save data to files successively.
Second, we create two tasks: one does the computation and then
writes image data to a conduit; the other one reads data from the
conduit and saves it to files. As both tasks are running with different
threads, the file writing task can run concurrently with the data
computation task. The UTC framework enables them to run in a
pipelined pattern easily. Test results are shown in Figure 5. We
see that for the single task version, the total time is the same as
the summation of data computing and file writing times. But with
pipelining for two tasks, the total time is only a little more than the
computation time, which indicates that the file write procedure is
hidden by computation.

4.4 GPU Execution Test
In addition to implementing and running tasks on multicore CPU
cluster platforms, we also implement the GPU tasks for the above
applications. The GPU we used is a Nvidia Tesla C2070 GPU,
which has 448 CUDA cores and 6GB on device memory. We im-
plement the necessary GPU tasks for each application with CUDA
and use these GPU task implementations as the class template to
instantiate tasks. The main structure of the original UTC programs

is unchanged. In the tests, we only realize the basic CUDA imple-
mentations for each algorithm and do not adopt any sophisticated
optimizations. We compare the performance of programs run on a
single GPU to those executed on 4 CPU nodes with 48 threads. The
results are shown in Figure 6a. Here speedup refers to a comparison
with single threaded, sequential code.

0

10

20

30

40

50

60

MM 2Dheat HeatImage k-means

Sp
ee
du
pT
oS
eq
ue
nt
ia
l

48CPUthreads

1GPU

(a)

0

10

20

30

40

50

60

70

80

90

100

2Dheat k-means MM HeatImage

Pe
rc
en
ta
ge
(%

)

GPU-memcpy

GPU-kernel	computing

(b)

Figure 6: GPU task tests: (a) GPU task speedup;(b)Percentage of
different work in total run-time.

We can see that GPU task performance depends on the appli-
cation. For MM, a single GPU performs much better than 4 CPU
nodes. But the other three programs’ performances of GPU and
CPU are similar. One reason may be that our GPU implementa-
tions are not specially tuned. In some applications, such as 2Dheat
and k-means, we need to do some reduction-like computation to
check the convergence state between every iteration. This work is
not implemented on the GPU and becomes a bottleneck for overall
performance. Also, when porting tasks to GPU, the memory copy
procedures of transmitting data between main memory and GPU
memory may influence the performance. In Figure 6b we show the
run-time percentages of memory copy and GPU kernel in the total
program run-time. We can see that the GPU kernel runtime percent-
age in both k-means and 2Dheat is not very high, so the workload
on the CPU limits the overall performance. Also in 2Dheat test,
we can see that the time cost of data transfer between GPU mem-
ory and main memory is even more than the actually time spent
on computation on GPU, so the memory copy becomes the bot-
tleneck for this application. However, here we only run with one
GPU. If running on GPU clusters with multiple GPUs or running
with more powerful newer GPUs, we will achieve even more per-
formance improvement compared to only running with CPU tasks.
By implementing appropriate GPU tasks with CUDA and replacing
the task templates in the main program, we can easily port the pro-
gram to GPU platforms to leverage GPUs for acceleration in our
framework.

5. Related Work
As multicore and manycore processors become prevalent, there is
growing research interest in parallel programming and develop-
ing parallel applications to benefit from changing platforms. Tra-

ditional parallel programming models, such as OpenMP and MPI,
are still the most widely used and there are lots of legacy appli-
cations based on them. OpenMP helps users run code blocks in
parallel with multiple threads on shared memory systems, and is
especially suitable for dealing with data parallelism in loop struc-
tures. OpenMP3.0 introduces “#pragma task” to better support task
parallelism, and OpenMP4.0 [13] introduces “#pragma target” to
support offloading code to accelerators. This ability relies on com-
piler support, such as Intel OpenMP for Intel Xeon Phi [11]. In
the UTC framework, we create threads based on system thread li-
braries explicitly. This gives the user more control and flexibility to
manipulate the threads. In addition, our framework is compatible
with OpenMP. It is able to make use of OpenMP for deeper fine
grained data parallelism in task execution.

The PGAS model introduces a distributed shared memory space
to ease programming effort with a shared memory model and one-
sided communications. There are a series of languages and libraries
belonging to the PGAS family, including Unified Parallel C [10],
SHMEM [7], OpenSHMEM [5]. By extending the PGAS model
with dynamic asynchronous activities, Asynchronous PGAS (AP-
GAS) [17] is proposed. X10 [14] is a representative programming
language of APGAS. Through extending the Java language, X10
introduces place and async keywords for the user to define and cre-
ate parallel activities. The runtime system will convert a function
declared with async to a task (an activity) that will be scheduled
to run asynchronously. Each async functions’s input/output infor-
mation must be provided by the user and the X10 runtime will use
this info to build a Directed Acyclic Graph (DAG). Each function
is then scheduled to run based on this graph. Besides X10, other
APGAS programming languages such as ClusterSs [18], OmpSs
[19] are also introduced. These programming methods try to help
the user express task parallelism in an application more easily,
and make use of parallel resources to improve application perfor-
mance. However, the tasks created in these methods are usually
very lightweight sequential programs, such as small functions or
several lines of statements in a loop structure. Also, they follow and
extend the Java language and use a front-end compiler to prepro-
cess the programs. This makes it difficult to support new processing
devices such as GPUs or FPGAs. We use the C++ language and im-
plement our framework through a library-based approach, which is
easier to extend to integrate new hardware, such as running tasks
on GPUs.

6. Conclusions
In this paper we propose a parallel programming framework: UTC.
In the framework, we leverage the TNC model to describe task
parallelism explicitly for applications. Users can define and cre-
ate multiple tasks to run on a single node or multiple nodes easily
and naturally. For a single task, we leverage multiple threads and
a global shared data object to create a distributed shared memory
environment, allowing users to design and implement data paral-
lelism through hybrid threads + PGAS programming. Through the
UTC framework, users can explore both data parallelism and task
parallelism for an application efficiently, as well as separating the
high level application structure from low level task implementation
and execution. By supporting GPU tasks, our framework runtime
allows users to develop and run parallel applications on heteroge-
neous platforms. Test results show that our framework runtime in-
troduces little performance overhead to applications. It is easy to
apply pipelined execution or overlap computation with computa-
tion to improve parallel applications’ performance. Without chang-
ing the program main structure, we also implement the GPU ver-
sion of required tasks and make use of GPUs for parallel execution.
The results show that the performance of a single GPU is better than
four CPU computer nodes. In the future we plan to improve the

framework’s runtime implementation, especially the global shared
data implementation. Our current GPU task support is still in a pre-
liminary stage; there are several aspects for future exploration, such
as the use of multiple GPUs, and GPU memory integration.

References
[1] K. Yelick, D. Bonachea, W.-Y. Chen, et al. Productivity and

performance using partitioned global address space languages. In
Proceedings of the 2007 international workshop on Parallel symbolic
computation, pages 24–32. ACM, 2007.

[2] J. E. Stone, D. Gohara, and G. Shi. OpenCL: A parallel programming
standard for heterogeneous computing systems. Computing in science
& engineering, 12(1-3):66–73, 2010.

[3] Nvidia. CUDA C programming guid. URL
http://docs.nvidia.com/cuda/pdf/.

[4] H. Kim, N. Bliss, R. Haney, J. Kepner, M. Marzilli, S. Mohindra,
S. Sacco, G. Schrader, and E. Rutledge. PVTOL: A high level signal
processing library for multicore processors. In High Performance
Embedded Computing Workshop, 2007.

[5] B. Chapman, T. Curtis, S. Pophale, S. Poole, J. Kuehn, C. Koelbel, and
L. Smith. Introducing openshmem: Shmem for the pgas community.
In Proceedings of the Fourth Conference on Partitioned Global
Address Space Programming Model, page 2. ACM, 2010.

[6] OpenSHMEM test suites. URL
https://github.com/openshmem-org/test-suites.

[7] R. Barriuso and A. Knies. Shmem user’s guide for C. Technical
report, Technical report, Cray Research Inc, 1994.

[8] D. Bonachea. Gasnet specification, v1.1. Technical report, Berkeley,
CA, USA, 2002.

[9] A. Bouteiller, T. Herault, and G. Bosilca. A multithreaded communi-
cation substrate for openshmem. In Proceedings of the 8th Interna-
tional Conference on Partitioned Global Address Space Programming
Models, page 16. ACM, 2014.

[10] T. El-Ghazawi and L. Smith. Upc: unified parallel c. In Proceedings of
the 2006 ACM/IEEE conference on Supercomputing, page 27. ACM,
2006.

[11] Intel Corporation. User and Reference Guide for the Intel C++
Compiler 14.0, 2014.

[12] C. Liu and M. Leeser. Unified and lightweight tasks and conduits:
A high level parallel programming framework. In IEEE High
Performance Extreme Computing Conference, 2016.

[13] OpenMP Architecture Review Board. OpenMP Application Program
Interface, Version 4.0, 2013.

[14] V. A. Saraswat, V. Sarkar, and C. von Praun. X10: concurrent
programming for modern architectures. In Proceedings of the 12th
ACM SIGPLAN symposium on Principles and practice of parallel
programming, pages 271–271. ACM, 2007.

[15] T. Von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser.
Active messages: a mechanism for integrated communication and
computation. In ACM SIGARCH Computer Architecture News,
volume 20, pages 256–266. ACM, 1992.

[16] A. B. Yoo, M. A. Jette, and M. Grondona. Slurm: Simple linux utility
for resource management. In Workshop on Job Scheduling Strategies
for Parallel Processing, pages 44–60. Springer, 2003.

[17] V. Saraswat, G. Almasi, G. Bikshandi, C. Cascaval, D. Cunningham,
D. Grove, S. Kodali, I. Peshansky, and O. Tardieu, “The asynchronous
partitioned global address space model,” in The First Workshop on
Advances in Message Passing, 2010, pp. 1–8.

[18] E. Tejedor, M. Farreras, D. Grove, R. M. Badia, G. Almasi,
and J. Labarta, “Clusterss: a task-based programming model for
clusters,” in Proceedings of the 20th international symposium on High
performance distributed computing. ACM, 2011, pp. 267–268.

[19] J. Bueno, L. Martinell, A. Duran, M. Farreras, X. Martorell, R. M.
Badia, E. Ayguade, and J. Labarta, “Productive cluster programming
with OmpSs,” in European Conference on Parallel Processing.
Springer, 2011, pp. 555–566.

