
pC++/streams: a Library for I/O on Complex Distributed

Data Structures

Jacob Gotwals Suresh Srinivas Dennis Gannon

Department of Computer Science, Lindley Hall 215,

Indiana University, Bloomington, IN 47405.

{Jgotwak, Ssriniva, gannon} @cs.indiana.edu

Abstract

The design and implementation of portable, efficient, and

expressive mechanisms for I/O on complex distributed data

structures - such as found in adaptive parallel applications - is a

challenging problem that we address in this paper.

We describe the design, programmer interface,

implementation, and performance of pC+ +/streams, a library that

provides an expressive mechanism for I/O on distributed arrays

of variable-sized objects in PC++, an object-parallel language.

pC++lstreams is intended for developers of parallel programs
requiring efficient high-level I/O abstractions for checkpointing,

scientific visualization, and debugging.

pC++lstreams is an implementation of a%treams, a

language-independent abstraction for buffered I/O on distributed

data structures. We describe the d/streams abstraction and
present performance results on the Intel Paragon and SGI

Challenge showing that d/streams can be implemented efficiently

and portably.

1 Introduction

Operating systems provide I/O primitives that allow the
programmer to read and write blocks of bytes. I/O libraries on

the other hand can provide I/O primitives that allow the

programmer to work at higher levels of abstraction. For example,

the C standard I/O library allows the programmer to perform I/O

directly on integer, real, and string variables and the C++ streams
library provides primitives for working at an even higher level of

abstraction I/O on arbitrary objects.

Distributed arrays (as found in HPF [10]) area common data

structure for parallel programming. Recently I/O libraries have

been developed that provide primitives supporting I/O on
distributed arrays of fixed-size elements (e.g. distributed arrays of
reals).

Adaptive parallel applications using dynamic distributed

data structures of variable-sized elements (e.g. distributed grids
of variable density) are now emerging. In addition, parallel
object-oriented programming languages supporting complex
distributed data structures (e.g. distributed arrays of

variable-sized objects) are now becoming available. The design

Permission to make digital/hard copies of all or part of this material with-
out fee is granted provided that the copies are not made or distributed
for profit or commercial advantage, the ACM copyrighffserver
notice, the title of the publication and its date appear, and notice is given
that copyright is by permiss~on of the Association for Computing Machinery,
Inc. (ACM). To copy otherwse: to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

PPOPP ’95 Santa Clara, CA USA
@ 1995 ACM 0-89791-701 -6/95/0007 ...$3.50

and implementation of portable, efficient I/O libraries providing

expressive I/O primitives that support I/O on these complex

distributed data structures is a challenging problem that we

address in this paper.

We first identify parallel programming tasks for which the

use of high-level I/O primitives is appropriate. Next we describe

d/streams, a language-independent abstraction for I/O on
distributed arrays. We then discuss the interface,
implementation, and performance of pC++/streams, an
implementation of d/streams supporting I/O on complex
distributed data structures with variable-sized elements in the
object-parallel language pC++.

2 Parallel Programming Tasks Requiring

High-Level I/O Mechanisms

I/O mechanisms operating at different levels of abstraction are
appropriate for different I/O tasks (see Figure 1). In general, the
higher the level of abstraction at which a set of I/O primitives
operates, the less control it gives the programmer over the details
of the I/O process. I/O libraries such as pC++/streams that
provide the programmer with primitives for explicit I/O at a high
level of abstraction are appropriate for a wide range of parallel
programming tasks in which ease of coding, portability, and
performance are important factors and where a high degree of
programmer control over low-level I/O details is not required.
Such tasks include:

●

●

✎

Communicating partial and final results to other
applications and to tools (e.g., scientific visualization
tools).

Checkpointing: Many long-running parallel applications
need to save the state of complex distributed data-sets
periodically so that computation can be resumed at a later
point. Periodically saving data-sets provides insurance
against program termination by software bugs and
job-control facilities.

Debugging: Many parallel applications originate from
sequential versions of the same program. During the
parallelization process application developers often need
to compare results of parallel and sequential runs on the
same problem, to confirm that parallelization has not
introduced bugs. This frequently involves output of large
distributed data structures from the parallel program.

Object-oriented database management systems (OODBM~
provide another type of I/O mechanism that may prove useful for
such tasks. However, explicit I/O is a more appropriate

11

Level of I/O

Abstraction:

Examples:
‘or
Non-distributed
Data Structures:

for

Dismibuted Data

Stmctures:

Most Suitable

for I/O Tasks

that Reauire:

Explicit I/O I Explicit I/O

on Blocks of Bytes
on Aggregate Data Structures

(e.g. arrays)

Machine Machine I
of with support for

Fixed-Sized Elements
Specific Independent

Variable-Sized Elements

(e.g. doubles) (e.g. objects)

/ lJNLYfilesyskms j I C++ Streams Library
1 !

Extensible File Systems (ELFS)

Parallel tile
PPFS,

systems: CM-5
UIUC’S Panda Library,

CMMD I/0,
MPI-10, Jovian, Argonne’s
(and many others) PetSc/Chameleon

pC++/streams

SP- 112 Vesta,

Paragon PFS
I

PASSION

I machin&pecific II Portability
ffO features

Implicit I/O

on Objects

(via Object-Oriented

Database

Management

Systems)

Object Store, Shore

Shore ParSets

Ease of checkpointing complex data-sets, saving them between

program runs, and communicating them to other

Control over storage format applications (provided the other applications

Ability to write special-format files use the same I/O mechanism)

for communicating data-sets

I/O mechanisms

Figure 1. A RANGE OF UO MECHANISMS: Those mechanisms offering a higher degree of control over low-level UO
details are grouped toward the left; those offering greater ease of use and supporting I/O primitives operating at a higher
level of abstraction are grouped toward the right. I/O libraries such as pC++/streams are appropriate for a wide range of
I/O tasks common in many parallel applications, where ease of coding, portability and performance are important; for
example, checkpointing complex data-sets, saving them between application runs, and communicating them to other
applications and tools. (The thickness of the shapes under a given I/O mechanism in this figure is intended to represent the
suitability of that mechanism for the indicated I/O task.)

mechanism when a higher degree of control over the I/O process
and storage format are desired or when the maintainance of an

OODBMS would entail complexity disproportionate to the size
of the I/O task at hand.

Parallel platforms offer low-level abstractions for I/O to

secondary storage through diverse and often complex interfaces.

Obtaining high I/O performance using these interfaces often
requires a knowledge of parallel I/0, disk striping, and memory

alignment of I/O buffers. Higher-level I/O libraries can be used

to encapsulate this low-level I/O complexity. This is beneficial
for the majority of parallel program developers who generally
prefer not to delve into the low-level details of I/O optimization.

3 Wstreams: An Abstraction for order.

Buffered 170 on Distributed Arrays .

A tistream is a language-independent abstraction with a small

number of simple primitives to be used for buffered 1/0 on
distributed arrays. In this section we define an interface for

d/streams, and in the section following we discuss the interface,
implementation, and performance of an actual d/streams

implementation.

Conceptually a d/stream is a buffer associated with a file.
Data can be inserted from distributed arrays into an output

d/stream’s buffer and later written to the file; data can be read

from the file into an input d/stream’s buffer and later extracted

into distributed arrays. Refer to Figure 2, which gives a

language-independent description of the primitives used to

perform these operations.

The state diagrams in Figure 2 show the order in which the
primitives are called. Several constraints on the use of the

primitives that cannot be indicated in the state diagrams so we
discuss them here. Data written must be read back in the same

More specifically:

When a file written by an output d/stream is read by an
input d/stream, every read or unsortedRead must

correspond to a write that occurred when the file was
written, and every extract must have a corresponding
insert.

12

Figure 2. D/STREAM INTERFACE: A dlstream is a simple abstraction with a small number of primitives to be used to

express 110 operations on distributed arrays. A dhtream provides a high-level interface for buffered I/O to files, so the use

of d/streams is similar to the use of lower-level file interfaces (e.g., data is read in the same order as it was written). The

d/stream primitives are listed below. The state diagrams below to the rkht s~ecify the order in which the primitives are-..

open(filename):

Opens a d/stream file for output or input.

insert(distributedArray):

Inserts a distributed array into an output

d/stream’s buffer - may be performed multiple

times before writing.

writeo:

Writes the buffer to the file, using parallel I/O

if possible.

reado and uusortedReado:

Reads a block of data (which must have been

written by a corresponding writeo) from the

file into the d/stream’s buffer.

extract(distributedArray):

Extracts a distributed array from a d/stream’s

buffer.

closeo:

Closes the dhtream file.

intended to be used, Both read and unsortedRead transfer a block of

data (written by a corresponding write) from a file into an input

dfstream’s buffer. UnsortedRead vields maximum inrmt Performance

when reading un-ordered array d;ta, as discussed in ~ect{on 3.

Output d/stream (sty)

,-

,
,

L J
open

(
Empty Buffer

insert

Non-Empty Buffer

insert J
1
. .

● Each extracted array must have the same size and

element type as the corresponding array that was inserted.

D/streams are intended to support interleaving [23], in

which data from corresponding elements of separate arrays can

be written contiguously in the file even if the corresponding
elements are not contiguous in memory. The intended

implementation of interleaving is one where arrays inserted into

an output cllstream consecutively, with no intervening write, will

have their elements interleaved in the file. To support this, we

require that if more than one array is inserted before a write,

then those arrays must have the same size and number of

dimensions.

Both read and tmsortedRead transfer a block of data

(written by a corresponding write) from the file into the

dhtream’s buffer, to be extracted into distributed arrays later.
When read is used, then elements of the extracted arrays will be

in exactly the same order as the elements of the originally

inserted arrays. This may require interprocessor communication

by the d/stream implementation on distributed-memory parallel

machines with Paragon-style parallel I/O systems.

UnsortedRead is intended to be used to read array data in

which the element indices perform no important role in the

computation. When unsortedRead is used, no guarantee is made

about the order in which the element data is extracted into

elements of the receiving array, so the interprocessor

communication can be avoided, resulting in higher performance.

4 pC++/streams: A Library Implementing

Wstreams in an Object-Parallel Language

PC++ [2] is a portable object-parallel programming language for
both shared-memory and distributed-memory parallel systems.
Traditional data-parallel systems are defined in terms of the
parallel action of primitive operators on distributed arrays.
Object-parallelism extends that model to the object-oriented
domain by allowing the concurrent application of arbitrary

Input dhtream (Stp)

t J
open

f - Vp&r&i “ -

*

,
extract 7

I
. .

functions to the elements of more complex distributed data

structures. This allows the construction of parallel applications

having complex dynamic distributed data structures, within an

object-oriented framework. pC++ is based on a simple extension

to C++ that provides parallelism via the collection construct. A

collection is a distributed array of objects with additional

infrastructure supporting the implementation of arbitrary

distributed data structures (e.g. distributed trees of objects) over

the distributed array base. pC++ provides facilities for specifying

HPF-style distribution and alignment of collections.

The I/O library pC+ +/streams is a portable implementation

of dktreams supporting parallel I/O on pC++ collections.

Figure 3 gives a simple example of how d/streams are used in

pc++, and Figure 4 sketches the internal structure of the

implementation of pC++/streams for distributed-memory parallel

machines having parallel file systems, such as the Intel Paragon

and Thinking Machines CM-5. The implementation for

shared-memory multiprocessors is somewhat simpler; depending

on the capabilities of the underlying file system, the “per-node”

d/stream buffers can be reduced to one or eliminated.

4.1 pC++/streams Implementation

Implementation of open and close

The pC++/streams library implements clktreams as collections

having the same alignment and number of elements as the

collection(s) on which I/O is to be performed. Using the

pC++/streams library, the programmer sets up a d/stream and

invokes the open primitive by declaring a cVstream object. An

output d/stream “s” is declared as follows:

13

Figure 3. A SIMPLE pC++ D/STREAMS EXAMPLE:

pC++ supports collectwns, complex data structures based

on distributed arrays of arbitrary objects. We have

implemented d/streams for pC++ to support I/O on

collections. The two PC++ programs below demonstrate

how d/streams can be used in PC++ to output and then

later input a distributed grid of objects which hold lists of

particles. The declarations to the right are included in

both programs below.

Outmrt Promarn:
#include “declarations .h”

Processor_Main {

Processors P;

Distribution d(12, &P, CYCLIC);

Align a(12,0’ [ALIGN (dununy[il, d[il) l”’);

// defining a distributed grid of ParticleLists g

DistributedPartic leGrid <ParticleList> g(&d, &a) ;

I / defining an output dlstream s:

ostream s (&d, &a, “whole Grid File”) ;

// to insert the entire collection g:
s << g;

/ / to insert only the nunrberOf Particles field

1/ from each element

a << g.numberOf Particles;

s.writeo ;

)

Declarations:
class Position {

double x, y, z;

);

class ParticleList (/ I the element class

int numberOf Particles;

double * mass; // variable sized

Position * position; / / arrays

);

Collection DistributedParticleGrid (

updateParticles () ; / / could be used to move the

); // particles over the grid

[mrut Promun:
#include “declarations. h“

Processor_Main {

Processors P;

Distribution d(12, &P, CYCLIC);

Align a(12,’’ [ALIGN (duruny[i], d[il) l”);

// defining a distributed grid of ParticleLists g

DistributedPart icleGrid <ParticleList> g(&d, &a) ;

/ / defining an input dlstream s:

iStream s (&d, &a, “whole Grid File”) ;

s.reado ;

// extracting the entire collection g:
s >> g;

// extracting only the numberOfParticles field

1/ into each element

s >> g.numberOf Particles;

)

ostream s (&distribution, &alignment,

“ filename”) ;

where distribution and alignment are objects which

specify the distribution and alignment of the collection(s) to be

output, and filename is the name of the file in which the data

to be output is to be stored. An input d/stream is declared the

same way, except “iStream” is substituted for “oStream”.

Multiple dktreams may be set up and connected to the same file

if collections with differing distributions and alignments are to be

output. The d/stream close primitive is implemented in the

destructor for i stream and ostream, so close is automatically

called when a program block in which a dlstream is declared is

exited.

Implementation of insert and extract

pC++ allows a particularly elegant programmer interface for the

d/stream insert and extract primitives. In pC++, parallel

operations on collections can be expressed using a data-parallel

style syntax: if a and b are collections and if * is an operator on

the element types of a and b, then a * b specifies the

concurrent application of * to the corresponding elements of a

and b. As in C++, any binary operator can be overloaded by the

programmer to implement any binary function.

The pC++/streams library implements the d/stream insert

primitive by overloading the operator <<. This lets the

programmer insert an entire collection g into a dheam s in

parallel with a single line of code:

s << g;

which concurrently applies the operator << to the corresponding

elements of s and g. This syntax is similar to that used for

formatted ASCII I/O in C++, implemented by the C++ iostream

library [3].

pC++/streams defines the -=< insertion operator for each of

the fundamental pC++ types (such as integers and doubles) and

for arrays of the fundamental types. These operators insert

pointers to the data to be output into the per-element pointer lists,

as described in Figure 4, Additionally, pC++/streams provides a

straightforward means for the programmer to indicate the way in

which complex programmer-defined types are to be inserted.

The programmer can specify insertion jimcfions to decompose

the insertion of any complex type in terms of simpler insertions

of the fields of that type. For example, for the type

Part ic 1 eLis t described in Figures 3 and 4, which contains

the dynamic arrays mass and posit ion, the programmer could

define art insertion function as follows:

14

Figure 4. D/STREAM IMPLEMENTATION IN DC++: This diamam shows the internal structure of the DC++ d/stream

im-plementation used for distributed-memory par;llel machines &th parallel file systems, such as the Int;l Paragon and

Thinking Machines CM-5. The diagram also depicts g, an example collection containing a one-dimensional distributed

array of 12 Part icleList objects. pC++ allows an elegant programmer interface to the d/stream primitives. The

programmer can insert the entire collection g into the d/stream s with a single line of code: s << g. Any subfield of the

elements of collection g can be inserted in a single line as well, for example: s << g. numberof part icles. Invocation

of the insert primitive causes a pointer to the inserted data to be added to each of the per-element pointer lists in the

d/stream. Invocation of the write primitive with s. write () causes the pointer lists to be traversed and the corresponding

data from g to be output to the underlying (system-provided) parallel file system, as described in Section 4.1. Invocation of

the red primitive with s. read () inputs data from the parallel file system into the per-node buffers, then invocation of the

extract primitive (using s >> g or s >> g. numberof part icles, for example) causes that dats to be transferred into

collection g.

declareStreamInserter (ParticleList &p) {

/ / Insert the nurnberOf Particles field

// of p (an integer) :

s <c p.numberOfPartic les;

// Insert the mass field,

// a variable-sized array

// of size numberOfParticles:

s <c array (p. mass, p.numberOf Particles) ;

// Similarly, insert the position field

s << array (p. position,

p .numberOfPartic les) ;

)

(declareStreamInserter and array are macros defined

by the pC++/streams library.) This insertion function would have

to be defined before the programmer could insert a collection of

ParticleLists (with s << g for example). Recursively structured

data types such as trees can be output naturally using recursive

insertion functions.

In addition to inserting entire collections in a single line,

pC++/streams allows the programmer to insert any single field of

the elements of a collection in a single line. For example:

s << g.nurnberOf Particles;

Assume g2 is a second collection aligned with g and containing

a double precision field part ic leDens it y. The programmer

can invoke

S << 9.ntierOf Particles;

s << g2 .particleDensi. ty;

s.writeo ;

which will cause the corresponding nurrberOf Particles and
particleDensi ty fields of g and g2 to be written
contiguously in the tile, even if they are not contiguous in
memory. This feature, called interleaving, is useful for writing

tiles for communication with many visualization tools which

require related data to be written contiguously.

The d./stream extract primitive is implemented similarly to

the insert primitive. The programmer can extract data from an
input d/stream into an entire collection using s >> g, or into a
single field of a collection using

S >> 9. numberOfElements. As with insertion, the
programmer can define extraction functions to define how
complex types are to be extracted.

15

Implementation of write, read, and unsortedRead

pC++/streams allows the programmer to invoke the write

primitive on an output stream s by calling s. write (), which

initiates the following two output steps:

2)

Writing distribution and size information:

Information about the distribution of the collection s

(and thus the distribution of all collections that could

have inserted data into s) and about the size of the data

to be output from each element needs to be written to

the file prior to the actual data, so that the
implementation of read will know how much data is to

be read on input and where the data belongs. For
collections having a large number of elements (and thus

a large amount of distribution and size information),

this information can be written from all the nodes

concurrently using a parallel write operation.
However, for collections having a small number of

elements, the latency involved in this parallel write
may be greater than the time that would be required to

communicate the information to node zero. In this

case, instead of writing the distribution and size
information separately, it should be collected into node
zero and placed at the head of the “per-node” buffer on

that node so that it can be written with the actual data in
step 2 below.

Writing the actual data: Next the per-element pointer

lists are traversed, the data referenced in those lists

(data the programmer previously inserted) is copied

into the per-node buffers, and the per-~ode buffers are

written in a single parallel write operation, using the

parallel I/O primitives of the underlying parallel file

system. On the Intel Paragon and Thinking Machines

CM-5, we use parallel I/O primitives which transfer a

contiguous block of data from each compute node to
the file system simultaneously and write those blocks to

the file in node order.

The programmer invokes the d/stream read primitive on an
input stream s by calling s. read (), and the unsortedRead

primitive by calling s. unsortedFtead (). When either

primitive is invoked, the input stream reads the distribution and

size information (which appear ahead of the actual data in the

file) using one parallel read operation, then reads the actual data

into the per-node buffers using a second parallel read. If

unsortedRead was invoked, then the actual data is ready to be
extracted directly from the per-node buffers by the programmer,
If read was invoked, then the actual data may need to first be

sorted and sent to the owner nodes by the library if the number of

processors or distribution has changed since the data was written.

Note that no information about the distribution or size of the

data to be read needs to be passed to the library by the
programmer when reading, since that information is stored
directly in the file, preceding the data itself. The programmer
simply invokes s . read () and the library does the paperwork
involved in determining the structure of the data that was written,

reading it in correctly regardless of differences in the number of

processors and distribution of the reading and writing arrays.

4.2 Compiler Support

In Section 4.1 we mention that the programmer can write inserter

and extractor operators to specify exactly how
programmer-defined types are to be inserted and extracted. We
have developed a simple tool (stream-gerr) that analyzes pC++

programs and generates the inserter and extractor operators for all
programmer-defined types. The library can be used without the

tool but the tool makes the programmer’s job easier. In inserters

and extractors for dynamic types containing pointers stream-gen

generates comment statements allowing the programmer to

specify exactly how the pointers should be handled. Stream-gen

was written using the Sage++ compiler toolkit [8].

Additionally, I/O on local data that is replicated on all nodes

of a distributed-memory machine is supported in pC++ through a

facility similar to the C standard I/O library. The pC++ compiler

automatically transforms programs to insure that local data is

output and input by only one node. For input, the data is

broadcast to the rest of the nodes after it is read.
PetSc/Chameleon [11] provides similar functionality.

4.3 Performance

The Benchmark

We developed a simple benchmark that contains the I/O skeleton

from a Grand Challenge Computational Cosmology application

written in pC++, the Self Consistent Field (SCF) code [12] [9].

SCF is an N-body code in which the primary data structure is a

one dimensional collection of Segments where each segment

stores data corresponding to several particles. There could

be several segments on a given processor. Per-particle
information includes the x, y, and z coordinates of the particles,

their x, y, and z velocities, and their masses.

In the SCF code particle data is periodically saved for later
analysis (for visualization of how the particles interact as well as

for comparing the results to the sequential algorithm). The SCF

code is mostly an “output only” application, but in our

benchmark we perform both input and output on the particle

data. We coded the I/O and measured its performance in 2 ways:

using the pC++/streams library, and using operating system I/O

primitives directly with no buffering. Application developers
often use unbuffered I/O to avoid the extra code required for

buffering, and this can lead to less than optimal I/O performance,
since buffering reduces total I/O latency time.

In addition, we measured the overhead of the automatic

bookkeeping of distribution and element size information

supported by pC++/streams. pC++/streams stores size and
distribution information for each element in the file. In

applications where element sizes do not vary or where element

sizes can be computed, a programmer using manual buffering

with operating system primitives might not store as much
per-element information in the file as pC+/streams. Therefore we
also present pC++/streams’ performance as a percentage of the
performance that could be attained for such applications by using

manual buffering, storing no element size or distribution

information in the file.

Performance results

Figure 5 shows performance results for implementations of

pC++/streams on the Intel Paragon and the SGI Challenge. The

library also runs on the CM-51 and a number of workstation plat-
forms. The unsortedRead dktreams primitive was used for

input in these measurements.

The results indicate that pC++/streams performance is
competitive with manually buffered I/O. The results show that

the overhead introduced by the library decreases as the I/O size

10n the CM-5 wall clock time has to be used for measuring I/O

performance since the CMMD timers do not account for I/O [16].

16

Table 1: Benchmark Results on Intel Paragon Table 2: Benchmark Results on Intel Paragon
(4 processors) (in seconds) (8 processors)

I/O Size 1.4 MB 2.8 MB 5.6MB 11.2MB

(#of Segments) (256) (512) (1000) (2000)

Unbuffered I/O I 7.13 sec. I 14.73 I 283.00 556.78 I

lManual Buffering 2.14 I 3.04 I 5.42 I 54.17 I

pC++/streams 2.47 3.31 5.71 55.00

% of Manual Buf. 86.770 91.9% 95.070 98.5%

I/O Size 1.4 MB 2.8 MB 5.6 MB 11.2MB

(#of Segments) (256) (512) (1000) (2000)
, , , ,

Unbuffered I/O I 7.53 sec. I 14.47 273.77 561.72 1

I Manual Buffering I 2.91 I 3.75 I 5.72 I 9.69 I

pC++/streams 3.36 4.20 6.16 10.19

% of hbnuaf Buf. 86.5% 89.3% 93% 95.1%

Table 3: Benchmark Results on Table 4: Benchmark Results on Multiprocessor SGI

Uniprocessor SGI Challenge (preliminary) Challenge (8 processors) (preliminary)

I/O Size 5.6 MB 11.2MB 112MB I/O Size 5.6 MB 11.2MB 44.8 MB

(#of Segments) (1000) (2000) (20000) (#of Segments) (1000) (2000) (8000)

Unbuffered I/O 1.68 sec. 3.42 32.20 Unbuffered I/O 0.55 sec. 1.10 4.95

Manual Buffering 1.05 2.13 20.9 ManuaI Buffering 0.22 0.34 2.38

pC++/streams 1.32 2.71 21.84 pC++/streams 0.39 0.75 2.65

% of Manuat Buf. 79% 78% 95% % of h’fanurd Buf. 56% 45% 89%

Figure 5. pC++/STREAMS PERFORMANCE: The timings above are in seconds and the measurements are for an output

operation followed by an input operation on a distributed data structure. The total number of elements in the data

structure (i.e., the number of segments) is varied to determine pC++/streams’ performance for various I/O sizes. The

d/streams unsortedRead primitive is used for input.

The final row in every table gives pC++/streams’ performance as a percentage of the performance obtained using

manually buffered I/O (indicating the overhead of pC++/streams’ automatic bookkeeping of element size and distribution

information). These results indicate that pC++/streams performance is competitive with manually buffered I/O. As

expected, the buffered I/O supported by pC++/streams outperforms unbuffered I/O.

increases - that is the performance of the libra~ scales well with

problem size. As expected, the buffered I/O supported by

pC++/streams outperforms unbuffered I/O.

These results show that d/streams, an abstraction for

high-level I/O on distributed data structures, can be implemented
without substantial performance penalties in a portable fashion.

5 Related Work

The libraries PetSc/Chameleon [11] from Argonne and Panda

[23] [22] from UIUC, and the software system PASSION [6]

from Syracuse, support I/O on distributed arrays of fixed-sized

elements in the context of the distributed-memory data-parallel
programming model. pC++/streams differs from these systems in

that it supports buffered I/O on distributed arrays of objects
whose size may vary over the array itself, for example distributed
arrays of variable-density grids or distributed arrays of lists of

particles, in the context of a portable object-pmallel language.
PetSc/Chameleon supports I/O on block-distributed arrays.
Panda supports more general HPF-style array distributions and
interleaving, as does pC++/streams. PASSION is a large effort at

Syracuse which provides support at the language, compiler,
runtime, and file system level for I/O on distributed arrays as well
as for computing over out-of-core distributed arrays. It should be
noted that pC++/streams is not intended to be used for
out-of-core computation. The two-phase access strategy

described in PASSION for parallel access to files, where data is

first read in a manner conforming to the distribution on disk and

then redistributed among the processors, is similar to the design

of the pC++/streams read primitive. Language extensions for

parallel I/O on distributed arrays have been discussed in the HPF

Forum [13].

6 Conclusions

This paper makes several contributions:

.

.

.

.

17

It describes a%treams, a language-independent

abstraction with a small set of simple primitives for

buffered I/O on distributed data structures, which can be

implemented in I/O libraries.

It describes the interface and implementation of

pC+ +/streams, a library that implements d/streams in the
object-parallel language pC++ to provide simple and
expressive primitives for I/O on distributed arrays of
arbitrary variable-sized objects.

It presents performance results which show that d/streams

can be implemented efficiently and portably on a range of
distributed-memory and shared-memory parallel

machines.

It shows that compiler support can be used to ease the

coding of I/O.

● It provides a good picture of the landscape of mechanisms
for I/O on distributed data structures.

pC++/streams is intended for developers of parallel

programs requiring efficient high-level I/O abstractions for

checkpointing, scientific visualization, and debugging. It uses

parallel I/O primitives on machines that provide them, to

implement the abstractions efficiently.

Acknowledgements

This research is supported in part by ARPA under contract AF

30602-92-C-01 35, and the National Science Foundation Office of
Advanced Scientific Computing under grant ASC-91 11616. We

would also like to acknowledge the anonymous referees for their

comments, which helped us improve the paper.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Robert Bennett, Kelvin Bryant, Alan Sussman, Raja Das,

and Joel Saltz. Jovian: A framework for optimizing

parallel I/O. In Proceedings of the 1994 Scalable Parallel
Libraries Conference, Ott 1994. Available on the WWW

at http: 11-. cs .umd. edulprojectslhps llio[io. html.

Francois Bodin, Peter Beckman, Dennis Gannon, Srinivas

Narayana, and Shelby Yang. Distributed pC++: Basic

ideas for an object parallel language. Scientific
Programming, 2(3), Fall 1993.

B. Stroustroup. The C++ programming language. Addison

Wesley, 1986.

Michael Carey, David Dewitt, et al. Shoring up persistent

applications. In Proceedings of A CM-SIGMOD
Conference on the Management of Data 1994, May 1994.

Available on the World Wide Web at
http: Ilwww. cs .wisc .edu/p/8hore/html18hore .homa .html

Alok Choudhary. Parallel I/O systems: Guest editor’s

introduction. Journal of Parallel and Distributed

Computing, 17:1--3, 1993.

Alok Choudhary et al. PASSION: Parallel And Scalable

Software for I/O. Technical Report NPAC SCCS-636,
Syracuse University, September 1994.

Peter Corbett and Dror Feitelson. Design and
implementation of the vesta parallel file system. In
Proceedings of Scalable High Peg20rmance Computing

Conference, SHPCC94, May 1994.

D. Gannon, P.Beckman, F. Bodin, J.Gotwals, S.Narayana,

S.Srinivas, and B. Winnika. Sage++: An object oriented
toolkit for program transformations. In Proceedings of

Oonski 94, April 1994. Available on WWW at
http: / Iwww. extreme. indhna. edulsaqeldoca. html

D. Gannon, S.Yang, S.Srinivas, V. Menkov, and P.Bode.

Object-oriented methods for parallel execution of
astrophysics simulations. In Proceedings of Mardigras94,
February 1994. Available from gannon@cs.indiana. edu.

D. Loveman. High performance fortran. IEEE Parallel and
Distributed Technology, 1:25--42, 1993. The HPF Forum

archive for HPF related material is anonymous ftp from

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

titM. cs. rice .edu:pub/IiPFF.

N. Galbreath, W. Gropp, and D. Levine. Application

driven parallel I/O. In Proceedings of Supercomputing 93,
November 1993. Also Argonne technical report

MCS-P381-0893.

L. Hernquist and J, P, Ostriker. A self-consistent field

method for galactic dynamics. The Astrophysical Journal,

386:375--397, 1992.

High Performance Fortran Forum. On the WWW at
httpz Ilwww. erc .msstate. edulhpf f /home .html.

Intel Supercomputing System Division. Paragon Users

Guide. Chapter 5 and Chapter 8 available online from
http: //www. eed. intel .coas/.

John Karpovich, Andrew Grimshaw, and James French.
Extensible file systems (ELFS): An object-oriented

approach to high performance file UO. In Proceedings of

00PSL4 94, 9th conference on object-oriented
programming systems, languages, and applications,

October 1994. Available on the WWW at

http: Iluvacs .CS .virginia. edu.

Thomas Kwan and Daniel Reed. Performance of the CM-5

scalable file system. In Proceedings of International

Conference on Supercomputing 94, July 1994. Also

accessible on the m at htt~: 1/bugle. cs. uiuc. edul.

Lamb et al. The ObjectStore database system.

Communications of the ACM, October 1991.

MPI-10: A parallel file I/O for MPI. Available on WWW

at http: //lovelace .nas .nasa. gov/MPI-lO/aspi- io. htasl.

Portable Parallel File System project. Available at
http: Ihww-picaaso. ca .uiuc. edu/Projects/PPFS/.

Juan Rosario and Alok Choudhary. High-performance I/O

for massively parallel computers: Problems and Prospects.

IEEE Computer, pages 59--68, March 1994.

Documents from the scalable I/O initiative. Available on

the World Wide Web at
http: //ccsf .caltech. edu/SIO/SIO. html.

Kent Seamons and Marianne Winslett. An efficient

abstract interface for multidimensional I/O. In Proceedings
of Supercomputing 1994, November 1994. Accessible on
the WWW at
http: //www. computer .org/p31nc94homa .htnl.

Kent Seamons and Marianne Winslett. Physical schemas
for large multidimensional arrays in scientific computing

applications. In Proceedings of the 7th International
Working Conference on Scientz$c and Statistical Database

Management, September 1994. Accessible on the WWW

at
http: / /bunny. cs. uiuc. edu/CADR/winslett Iarraye. html.

The parallel i/o archive. Available on the World Wide

Web at http: I Iwmr. cs. dartmouth. edulpario. html.

Thinking Machines Corporation. CMMD Reference

Manual. Chapter 12.

18

