SemCache++: Semantics-Aware Caching
for Efficient Multi-GPU Offloading

Nabeel Al-Saber, Milind Kulkarni

School of Electrical and Computer Engineering
Purdue University
West Lafayette, IN, USA

nalsaber, milind@purdue.edu

Abstract

Offloading computations to multiple GPUs is not an easy task. It re-
quires decomposing data, distributing computations and handling
communication manually. GPU libraries have made it easy to of-
fload computations to multiple GPUs by hiding this complexity in-
side library calls. Such encapsulation prevents the reuse of the data
between successive kernel invocations resulting in redundant com-
munication.

In this work, we introduce SemCache++, a semantics-aware
GPU cache that automatically manages communication between
the CPU and multiple GPUs in addition to optimizing commu-
nication by eliminating redundant transfers using caching. Sem-
Cache++ is used to build the first multi-GPU drop-in replacement
library that (a) uses the virtual memory to automatically manage
and optimize multi-GPU communication and (b) requires no pro-
gram rewriting or annotations. Our caching technique is efficient;
it uses a two level caching directory to track matrices and sub-
matrices. Experimental results show that our system can eliminate
redundant communication and deliver significant performance im-
provements over multi-GPU libraries like CUBLASXT.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel Programming; D.4.2
[Operating Systems]: Storage Management—Distributed Memo-
ries

Keywords Multi-GPU offloading, GPGPU, Communication opti-
mization
1. Introduction

Graphics processing units (GPUs) offer massive, highly-efficient
parallelism, making them an attractive target for computation-
intensive applications. Due to the difficulty of programming GPUs,
a practical option for leveraging their capabilities is to offload com-
putation using libraries. For example, there are many GPU imple-
mentations of linear algebra libraries [4, 6-8], which outperform

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the Owner/Author.
Copyright is held by the author/owner(s).
PPoPP’15, February 7-11, 2015, San Francisco, CA, USA

ACM 978-1-4503-3205-7/15/02
http://dx.doi.org/10.1145/2688500.2688527

255

CPU implementations of popular libraries such as BLAS and LA-
PACK by taking advantage of the GPU’s parallel hardware.

This GPU library-based offloading approach has some draw-
backs. Notably, moving data back and forth between the CPU and
the GPU incurs significant expense. If successive library calls op-
erate on the same data, the data should be moved to the GPU just
once, rather than separately for each call, while data should only be
transferred back to the CPU if a computation requires it. Such opti-
mization is in tension with the encapsulation objectives of library-
based offloading: if a programmer has to manually manage com-
munication between the CPU and GPU, she can no longer port her
program to a heterogeneous system without modification.

To help tackle this problem, over the past several years there
have been several proposals to introduce automatic memory man-
agement between the CPU and single GPU, freeing the program-
mer from the burden of managing data movement [1, 5]; in fact, the
newest version of CUDA [6] offers Unified Memory (UM), which
dynamically tracks data movement minimizing communication.

In recent years, Multi-GPU systems are becoming increasingly
popular. Unfortunately, handling multi-GPU systems is substan-
tially harder than managing a single GPU, as now computation
and data need to be distributed across multiple GPUs. To sim-
plify multi-GPU offloading, libraries such as CUBLASXT [6],
MAGMA [8], CULA [4] and FLAME [7], completely encapsulate
communication in their library calls: prior to invoking a method,
data is transferred to the GPU(s), and upon completion, data is
transferred back. Such encapsulation introduces significant over-
heads, as much of this data movement is redundant. However, with-
out encapsulation, managing data movement between kernels is
quite difficult in multi-GPU systems.

While there have been several attempts at developing multi-
GPU frameworks that can optimize communication more thor-
oughly, they are not well-suited to developing library replacements.
StarPU [2] requires adopting a new programming model. While,
StarSs [3] requires annotating every CPU data access, including
those outside the offloaded library call. The burden of rewriting
an application or annotating large numbers of data accesses makes
these models hard to adopt for large applications.

What is needed is an automatic approach to managing data
movement between the CPU and multiple GPUs that can dynam-
ically determine whether data movement is necessary and most
importantly provide a drop-in replacements for computational li-
braries for heterogeneous computing without adopting a new pro-
gramming model.

In our previous work we proposed SemCache [1], a runtime sys-
tem to automatically manage and optimize communication between
the CPU and a single GPU using caching.



In this work we propose SemCache++, an extension of Sem-
Cache that makes the following contributions:

e The design and implementation of SemCache++, a generic
multi-GPU cache that automatically manages communication
between CPU and multiple GPUs at variable granularity. Sem-
Cache++ enables multi-GPU caching to avoid communication.

e SemCache++ exploits all devices (CPUs and GPUs) in parallel,
and uses CUDA streams to allow overlapping of communica-
tion and computation.

e A SemCache++-enabled multi-GPU BLAS library that pro-
vides a drop-in replacement for existing BLAS libraries.

e Experimental results showing that SemCache++ can dramat-
ically reduce redundant communication, and deliver signifi-
cant performance improvements over CUBLASXT, NVIDIA’s
tuned multi-GPU BLAS library.

2. SemCache++

SemCache++ manages communication by tracking the locations of
the submatrices, identifying whether it is on the CPU, or on one
or more GPUs, or shared between the CPU and GPUs. Data is
not eagerly communicated, but instead it is only transferred if it
is needed by a computation. Because the data remains distributed
after a library call completes, when a future library call is issued,
the subtasks of that call can be dispatched to appropriate GPUs to
reduce communication.

As in SemCache, SemCache++ determines when a CPU reads
or writes data through the use of page protection. Note that while
data on the GPUs is tracked at the granularity of decomposed inputs
(submatrices), data on the CPU is tracked at the granularity of entire
matrices. Thus, SemCache++ uses a two-level directory structure to
track data. The first-level entry points to a set of translation records
for the matrix. When a matrix is decomposed into submatrices and
distributed across the GPUs, each submatrix is assigned a record
in this second level. A translation record serves several purposes.
First, it translates between the location of data on the CPU and the
corresponding location on the GPUs, facilitating data movement
between devices. Second, it keeps track of the coherence state of
the data (i.e., where valid copies of the submatrix reside).

When a task is launched to execute on a GPU, it uses Sem-
Cache++ directives to identify which submatrices are needed for
the computation. If the data is already being tracked by the first
level, SemCache++ checks the status of the required submatrices
in the second level. If the data does not exist on the target GPU,
communication is performed.

3. Experimental Evaluation

To evaluate SemCache++, we built multi-GPU implementation of
BLAS library interfaces provided by CUBLAS (NVIDIA’s single-
GPU linear algebra libraries) using SemCache++ directives. Our
experiments were performed on a server with AMD Opteron Pro-
cessors and 32GB memory connected via PCle 2.0 to two NVIDIA
Kepler K20 GPUs.

We used a simple microbenchmark that performs two matrix
multiplies and a DAXPY: D = AB+ AC. Note that the two matrix
multiplies share one of their operands (A), and the DAXPY oper-
ates on the results. As a baseline, we used CUDA 6’s unified mem-
ory along with CUBLAS to implement a communication-optimized
single-GPU version of the microbenchmark. We compared this
baseline to SemCache++, CUBLASXT and StarPU using one and
two GPUs. Unlike SemCache++ and CUBLASXT, StarPU imple-
mentation requires rewriting the benchmark using their program-
ming model. CUBLASXT supports multi-GPU computation by

256

3 BUMCUBLAS 1-GPU (Baseline)
m SemCache++ 1-GPU
= CUBLASKT 1-GPU, B:4K

25 = CUBLASXT 2-GPUs, B-1K
= CUBLASXT 2-GPUs. B:2K
) = CUBLASXT 2-GPUs. B:4K

StarPU 2-GPUs
B SemCache++ 2-GPUs

Speedup (x)

BK

MK
Matrix Size N

Figure 1. Speedup of microbenchmark for different matrix sizes,
normalized to UM CUBLAS 1-GPU)

overlapping communication with computation. Its performance is
dependent on setting the block size for this pipelined schedule.
Hence, we evaluated different block sizes for CUBLASXT.

Figure 1 shows the results of the microbenchmark experiment,
looking at two different matrix sizes. We see that even on a sin-
gle GPU, both SemCache++ and CUBLASXT are faster than
the baseline because they overlap communication with computa-
tion. SemCache++ is faster than CUBLASXT because it is able
to minimize communication. The A matrix is cached on both
GPUs, as are the results of the DGEMMs. Hence, the DAXPY
can be performed with no additional communication. In contrast,
CUBLASXT, which does not leave the DGEMM results on the
GPUs, must communicate the results of the DGEMMs back to the
GPUs to perform the DAXPY.

When scaling to two GPUs, we find that SemCache++’s advan-
tage increases: it is nearly 3x faster than the baseline, and 30-50%
faster than CUBLASXT and StarPU. StarPU is slightly faster than
CUBLASXT because it avoids redundant communication. How-
ever, synchronization was used to produce correct results which
made it slower than SemCache++.

References

[1] N. AlSaber and M. Kulkarni. Semcache: Semantics-aware caching for
efficient gpu offloading. In Proceedings of the 27th International ACM
Conference on International Conference on Supercomputing, ICS *13,
2013.

[2] C. Augonnet, S. Thibault, R. Namyst, and P--A. Wacrenier. Starpu:
A unified platform for task scheduling on heterogeneous multicore
architectures. In Euro-Par 2009 Parallel Processing. 2009.

[3] E. Ayguadé, R. M. Badia, F. D. Igual, J. Labarta, R. Mayo, and E. S.
Quintana-Orti. An extension of the starss programming model for
platforms with multiple gpus. In Proceedings of the 15th International
Euro-Par Conference on Parallel Processing, Euro-Par *09, 2009.

[4] J. R. Humphrey, D. K. Price, K. E. Spagnoli, A. L. Paolini, and E. J.
Kelmelis. Cula: hybrid gpu accelerated linear algebra routines. SPIE
Defense and Security Symposium (DSS).

[5] T. B. Jablin, J. A. Jablin, P. Prabhu, F. Liu, and D. I. August. Dynam-
ically managed data for cpu-gpu architectures. In Proceedings of the
Tenth International Symposium on Code Generation and Optimization,
CGO ’12, 2012.

[6] NVIDIA. Cuda.
cuda-toolkit.

[7]1 G. Quintana-Orti, F. D. Igual, E. S. Quintana-Orti, and R. A. van de
Geijn. Solving dense linear systems on platforms with multiple hard-
ware accelerators. In Proceedings of the 14th ACM SIGPLAN sympo-
sium on Principles and practice of parallel programming, PPoPP *09,
2009.

[8] P.D. S. Tomov, R. Nath and J. Dongarra. Magma version 0.2 user guide.

http://developer.nvidia.com/



