
Data Layout Optimization for GPGPU Architectures

Jun Liu, Wei Ding, Ohyoung Jang, Mahmut Kandemir
The Pennsylvania State University, University Park, PA 16802, USA

{jxl1036, wzd109, oyj5007, kandemir}@cse.psu.edu

Abstract
GPUs are being widely used in accelerating general-purpose ap-
plications, leading to the emergence of GPGPU architectures.
New programming models, e.g., Compute Unified Device Archi-
tecture (CUDA), have been proposed to facilitate programming
general-purpose computations in GPGPUs. However, writing high-
performance CUDA codes manually is still tedious and difficult.
In particular, the organization of the data in the memory space
can greatly affect the performance due to the unique features of a
custom GPGPU memory hierarchy. In this work, we propose an
automatic data layout transformation framework to solve the key
issues associated with a GPGPU memory hierarchy (i.e., channel
skewing, data coalescing, and bank conflicts). Our approach em-
ploys a widely applicable strategy based on a novel concept called
data localization. Specifically, we try to optimize the layout of the
arrays accessed in affine loop nests, for both the device memory
and shared memory, at both coarse grain and fine grain paralleliza-
tion levels. We performed an experimental evaluation of our data
layout optimization strategy using 15 benchmarks on an NVIDIA
CUDA GPU device. The results show that the proposed data trans-
formation approach brings around 4.3X speedup on average.

Categories and Subject Descriptors D.3.4 [Processors]: Code
generation, Compilers, Optimization

General Terms Algorithms, Design, Performance, Experimenta-
tion

Keywords GPGPU, Data Layout Transformation, CUDA, Opti-
mization

1. Introduction
The CUDA [1, 5] programming model can greatly improve the pro-
grammer productivity. However, fully utilizing the specific features
of the underlying architecture can be very challenging. One of the
most important reasons for this is that the customized memory hier-
archy in GPGPUs needs to be explicitly managed at an application
level by the CUDA programmer. We believe that automated com-
piler support can play a critical role in exploiting the memory hier-
archy of emerging GPGPU systems. It is also to be noted that loop
nests constitute a significant fraction of application execution time
in high performance computing. The unique characteristics of the
GPGPU architectures pose new challenges as well as opportunities

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPoPP’13, February 23–27, 2013, Shenzhen, China.
Copyright c© 2013 ACM 978-1-4503-1922/13/02. . . $10.00

GPU

Device Memory

Multiprocessor

Shared Memory

Core

Registers

Multiprocessor

Host Memory

Shared Memory

Core

Registers

Core

Registers

Core

Registers

Figure 1. Memory hierarchy of a GPU architecture.

for traditional loop optimization techniques. As shown in Figure
1, the CUDA GPU memory hierarchy consists of a (global) device
memory and shared memories on the streaming multiprocessors.
Clearly, patterns exhibited by data accesses to different memory
components can greatly affect the overall performance of the appli-
cations running on this architecture.

In this work, we target the codes already parallelized for CUDA
GPGPUs, and focus on data layout transformations to improve ap-
plication performance by taking into account the underlying mem-
ory hierarchy. Our approach employs a general data layout opti-
mization strategy based on a novel concept called data localization.
Specifically, we first consider the data access patterns exhibited by
the parallel processing units (thread blocks/threads), followed by
identifying localized arrays and partitioning them into data blocks
that are mostly accessed by corresponding processing units. We
then apply both an affine data transformation and a non-affine data
transformation to change the layout of the localized arrays to solve
three specific problems associated with the GPGPU memory hi-
erarchy: channel skewing, memory coalescing and shared memory
bank conflicts.

2. Problem Definition
As shown in Figure 1, the device memory of the GPU can be ac-
cessed by all thread blocks mapped to different streaming multi-
processors. Each multiprocessor has its own shared memory, which
can only be accessed by the threads assigned to that multiproces-
sor. The device memory can be accessed through different memory
channels at the same time to increase memory level parallelism.
In addition, if the data accessed by different threads on the same
multiprocessor are aligned and continuous in the device memory,
they can be coalesced into a single memory operation to increase
memory bandwidth. On the other hand, the most frequently reused
data are likely to be copied into the shared memory to reduce ac-
cess latency, and the banks of the shared memory provide parallel
data accesses. However, there exist three issues as follows regard-
ing this GPU memory hierarchy that need to be addressed in order
to exploit its full potential.

283

0
2
4
6
8

10

corcol covcol sten2d adi matmul seidel fdtd-2d pf gaussian cfd nn hotspot backprop srad heartwall

N
or

m
al

iz
ed

Pe

rf
or

m
an

ce

LayoutSkewing LayoutCoalescing LayoutConfElm LayoutAll

Figure 2. Performance of our data layout transformations normalized to the Original version.

• Channel Skewing If the accesses to the memory channels of
the device memory are not well balanced, some of the channels
may be congested, and as a result, bandwidth utilization can be
affected.

• Coalescing Threads from the same warp may access the data
elements stored non-contiguously in the device memory. In
such cases, the memory coalescing instructions provided by the
underlying architecture cannot be utilized.

• Bank Conflicts If at the same time, different data accessed
by different threads to the shared memory are located in the
same bank, conflicts occur and the accesses involved need to be
serialized.

3. Data Layout Optimization
3.1 Parallelization
In this work, we mainly target at optimizing the CUDA kernels that
are transformed from affine loop nests. We assume that the array
references and loop bounds are affine functions of the enclosing
loop indices and loop-independent variables. Our optimizations are
thus based on polyhedral model and mainly focus on optimizing di-
rect/regular data accesses, which are more common in most appli-
cations. We further assume that our target loop nests have already
been parallelized for the CUDA. Specifically, how the computa-
tions are divided into thread blocks and how each thread block is
partitioned into threads, are assumed to be known to our approach.

3.2 Layout Optimization
For a kernel extracted from an affine loop nest under the paral-
lelization described above, to achieve high performance, we need to
solve the three problems discussed above. Considering the unique
features of the CUDA programming model and memory hierarchy,
each layout optimization applied in our work mainly consists of
two basic steps, localization and data relocation. The basic idea of
the first step (data localization) is to divide the entire data space
of an array into data blocks, such that the data elements in each
data block are mostly accessed by only one processing unit (thread
block/thread). In other words, data localization ensures that the
data elements accessed by the same processing unit are not spread
over the entire data space. The second step then performs the ac-
tual transformation that maps the data from its current layout to
the desired layout. Overall, our layout optimization employs a two-
level transformation, i.e., coarse level (thread block) and finer level
(thread). Specifically, the data optimization at the coarse level is
used to minimize channel skewing in the device memory. Our goal
of this optimization is to obtain a data layout so that the data ac-
cesses made by different thread blocks will go to different mem-
ory channels of the device memory. In this way, the thread blocks
mapped to different multiprocessors will have balanced accesses to
the memory channels of the device memory, lessening the channel
skewing problem. Our data optimization at the finer level tries to
increase the opportunities for data coalescing in the device mem-
ory and reduce the number of bank conflicts in the shared memory.
Intuitively, in the device memory, we apply affine transformation

to obtain a data access pattern such that the threads of a warp will
access (at each time step) data elements that are stored in consec-
utive memory locations. In other words, our layout transformation
targets at improving data locality among the threads of a warp, i.e.,
inter-thread locality. In the shared memory, we apply strip-mining
and permutation to obtain the desired data layout where data ac-
cessed by a thread will be only stored in its own associated bank.

4. Experimental Evaluation
We implemented our proposed data layout optimization strategy in
Pluto 0.6.2-CUDA [2, 3], a source-to-source transformation frame-
work for affine loop nests based on the polyhedral model with
CUDA support. The optimized kernel code is then compiled with
the CUDA compiler (nvcc release 4.0, V0.2.1221) into binaries
for execution on the GPU. We performed our experiments on an
NVIDIA Tesla C2050 GPU device. The device is equipped with
2.8 GB of device (global) memory and 14 streaming multiproces-
sors clocked at 1.15 GHz.

We evaluated our strategy on 15 benchmarks from Pluto [2]
and Rodinia [4]. Each benchmark is compiled into five versions,
namely, Original, LayoutSkewing, LayoutCoalescing, LayoutCon-
fElm, and LayoutAll. Specifically, the Original version is the orig-
inal parallel CUDA kernel code without our data layout optimiza-
tion; the LayoutSkewing version is obtained by applying our data
optimization (to the Original version) for reducing channel skew-
ing in the device memory; the LayoutCoalescing version is gener-
ated by applying our data optimization (to the Original version) for
increasing coalescing instructions; the LayoutConfElm version is
formed by applying our data optimization (to the Original version)
for reducing bank conflicts in the shared memory; and the Lay-
outAll version is obtained by applying all of our three optimizations
to the Original version. Figure 2 gives performance numbers for
different versions, normalized with respect to the Original version.
The average normalized performance values (when all 15 appli-
cations are accounted for) of LayoutSkewing, LayoutCoalescing,
LayoutConfElm and LayoutAll versions are 2.3, 1.8, 1.3 and 4.3,
respectively.

Acknowledgments
This research is supported in part by NSF grants #1213052,
#1152479, #1147388, #1139023, #1017882, #0963839, #0811687
and a grant from Microsoft Corporation.

References
[1] CUDA. http://www.nvidia.com/object/cuda_home_new.html.
[2] PLUTO. http://pluto-compiler.sourceforge.net/.
[3] U. Bondhugula et al. A practical automatic polyhedral parallelizer and

locality optimizer. Proc. of PLDI, 2008.
[4] S. Che et al. Rodinia: A benchmark suite for heterogeneous computing.

IISWC, 2009.
[5] M. Garland et al. Parallel computing experiences with CUDA. MICRO,

2008.

284

