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Abstract

Scalable locking is a key building block for scalable multi-threaded
software. Its performance is especially critical in multi-socket,
multi-core machines with non-uniform memory access (NUMA).
Previous schemes such as local locking and remote locking only
perform well under a certain level of contention, and often require
non-trivial tuning for a particular configuration. Besides, for large
NUMA systems, because of unmanaged lock server’s nomination,
current distance-first NUMA policies cannot perform satisfactorily.

In this work, we propose SANL, a locking scheme that can de-
liver high performance under various contention levels by adap-
tively switching between the local and the remote lock scheme.
Furthermore, we introduce a new NUMA policy for the remote
lock that jointly considers node distances and server utilization
when choosing lock servers. A comparison with seven represen-
tative locking schemes shows that SANL outperforms the others in
most contention situations. In one group test, SANL is 3.7 times
faster than RCL lock and 17 times faster than POSIX mutex.

1. Introduction

Designing a scalable lock primitive for multi-core machines is a
challenge, and continues to be so as the core count increases and
memory hierarchies like NUMA get more complex. In large-scale
NUMA machines, scalable locks need to avoid not only centralized
contentions but also those that are across nodes.

There are in general two types of locks: local and remote. It
has been shown that local locking (i.e., based on waiting on shared
variables) is non-scalable and could have performance breakdown
when the number of cores increases [1]. Although numerous de-
signs have been proposed to try to improve local locking, such as
many variants of spin lock [11, 12], MCS lock [9], RCU-based
locks [2, 8], and hierarchical locks [3, 7], due to the intrinsic limi-
tation of data sharing in the critical section, cache invalidation still
happens frequently, especially when the lock contention is heavy.

Remote locking schemes use one dedicated server thread to han-
dle all requests to access the critical section, and thus can signifi-
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Figure 1: The execution flow of critical sections of SANL.

cantly reduce cache bouncing. Examples include OyamaAlg [10],
flat combining (FC) [5], H-Synch [4] and remote core locking
(RCL) [6]. Using this method, however, clients need to commu-
nicate with the server via message exchange of which the over-
head could sometimes outweigh the gain when the contention level
is relatively low. Another issue in NUMA environments is how to
avoid cross-node memory access as much as possible. Current ap-
proaches (e.g., [4]) only allow the server thread to accept the local
node’s lock requests, and the server thread will not be re-nominated
on another NUMA node until all local requests have been pro-
cessed. This leads to two issues: 1) if the local contention is very
heavy, remote clients will starve; 2) if the local contention is very
low on each node, the server may be re-nominated among all the
NUMA nodes far too frequently, which damages cache locality.

To the best of our knowledge, there is currently no locking
scheme capable of performing satisfactorily under varying con-
tention levels. Therefore, an adaptive locking scheme that can prop-
erly and automatically adjust the synchronization method accord-
ing to the contention level is necessary.

In summary, the main contributions of SANL are:

• A scalable synchronization scheme that switches adaptively be-
tween local locking and remote locking in multi-socket multi-
core environments.
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Figure 2: Execution times under different contention levels on
the Intel machine (4 NUMA nodes). The number of shared
cache line in the critical section is 1.
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Figure 3: Throughput results of BerkelyDB’s StockLevel
transaction on the Intel machine.

• A NUMA-aware remote locking scheme that jointly considers
node distances and server utilization.

2. Design

We design SANL to combine the benefits of local locking and
remote locking. We also design a remote locking schemes with
an efficient NUMA support to work with SANL. SANL improves
existing dynamic remote locking scheme through 1) a request array
together with an global Id Manager to avoid contention among the
clients; 2) a new server downgrade policy to improve the server’s
utilization and reduce the frequency of server re-nomination. When
dealing with NUMA in remote locking situations, SANL considers
both node distances and the current server’s utilization. In this way,
both starvation of remote clients and frequent server re-nomination
can be largely avoided. To achieve smooth adaptation, SANL adopts
a voting scheme by profiling thread local contention level.

Figure 1 shows the general execution flow of SANL. When
executing a critical section, a thread will profile its local contention
level (denoted by Cl), and then vote for the global contention level
(denoted by Cg). In Step 1©, if the global contention level is below
a threshold θl (which depends on the architecture), all threads will
enter local locking mode; otherwise, they enter remote locking
mode. In the remote-lock mode, one thread first executes trylock
to attempt upgrading itself to the server thread (Step 2©); the other
unsuccessful threads will automatically become client threads. In
NUMA environments, if the contention level is below a threshold
θ f , free-mode will be adopted which means all clients are allowed
to send lock requests to the server thread, regardless whether they
are in the same NUMA node or not (Step 3©); otherwise, when the
contention on the server node is sufficiently high, SANL will enter
restrictive-mode: local clients are allowed to send requests while
remote clients wait until the server node’s contention level has
come down or server re-nomination happens (Step 4©). A thread
can be in the server’s role for only at most a limited iteration times
Ts, and then it would downgrade to an ordinary thread to finish
its own task. This ensures that the thread will not be occupied
for too long, and server nomination can happen fairly among all
the NUMA nodes. When server downgrading happens, if there are
still unfinished lock requests, the corresponding clients will try to
upgrade to a new server thread after a timeout of Tw in Step 5©.

3. Preliminary Results

We have implemented SANL in Linux 3.14.3. We evaluate SANL
with micro-level benchmarks and application benchmarks. The
benchmark program includes a master thread that dynamically cre-
ates a set of of slaves to repeatedly contend for one critical sec-
tion. The critical section includes acquiring lock, changing data in

shared cache lines and releasing lock. After all contending threads
have terminated, the master thread will compute the throughput
results. The contention level is controlled by varying the inter-
val between accessing the critical section per thread: the shorter
the interval, the higher the contention. In micro-benchmark, we
vary the interval from 100 to 2,000,000 cycles. We apply SANL to
three popular multi-threaded applications: BerkeleyDB with TPC-
C, Memcached and Phoenix2 suite.

Performance results on a 40-core Intel machine show that SANL
can adapt to various contention levels satisfactorily. In one micro-
benchmark, SANL is 3.7 times faster than RCL and 17 times faster
than POSIX lock under high contention, shown in Figure 2. In the
Berkeley DB, Figure 3 shows the result of StockLevel transaction.
SANL achieves performance improvements of up to 66% over RCL
and 9.5 times over POSIX lock. In Memcached tests, SANL is
24% faster than RCL and 3.8 times faster than POSIX lock. For
Phoenix2, SANL also consistently ranks the highest among other
locks, with a speedup of up to 58% over POSIX lock.
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