
Modeling Concurrency in Parallel Debugging

Wenwey Hseush
Gail E. Kaiser

Columbia University
Department of Computer Science

New York, NY 10027
(212) 854-8123

hseush@cs.wlumbia.edu

Abstract

We propose a debugging language, Data Path Expressions
(DPEs), for modeling the behavior of parallel Programs. The
debugging paradigm is for the programmer to describe the
expected program behavior and for the debugger to compare the
actual program behavior during execution to detect program
errors. We classify DPEs into five subclasses according to
syntactic criteria, and characterize their semantics in terms of a
hierarchy of extended Petri Net models. The characterization
demonstrates the power of DPEs for modeling parallelism. We
present predecessor automata as a mechanism for implementing
the third subclass of DPEs, which expresses bounded parallelism.
Predecessor automata extend finite state automata to provide
efficient event recognizers for parallel debugging. We briefly
describe the application of DPEs to race conditions, deadlock and
starvation.

keywords: debugging, formal models, Petri nets, path
expressions, synchronization

1. Introduction
We arc concerned with debugging parallel programs. One
approach to locating the causes of program misbehavior is for the
programmer to provide a high-level description of the expected
behavior and for the debugger to compare the expected and actual
behavior during execution. Expected behavior is specified
abstractly in terms of control flow, data flow and/or
synchronization events. In this approach, defining an appropriate
notation for modeling program behaviors is a crucial prerequisite
to developing a debugger. The conventional debugging approach,
exemplified by dbx [Linton 811, also models program behavior
but at a lower-level, in terms of source code entities such as
subroutine names and line numbers; the programmer is
responsible for comparing expected with actual behavior during
execution. We refer to the fist approach as problem-oriented,
and the second as program-oriented. Both are necessary in
practical debugging, just as both specification-based testing and
program-based testing are required for practical testing [Howden
871.
Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy othetise, or to republish, requires a fee
and/or specific permission.
Q 1990 ACM 08979 I-350-7/90/0003/0011$ I SO

We have developed a style of problem-oriented debugging for
parallel programs called data path &bugging. Program behaviors
are described in a formal notation called Data Path Expressions
(DPEs), an extension of Bruegge and Hibbard’s generalized path
expressions for debugging sequential programs [Bruegge
85, Bruegge 831. This work is in turn an application to debugging
of Campbell and Habermann’s classical work on path expressions
for describing process behavior in operating systems [Campbell
741. Other researchers also advocate a problem-oriented
approach to parallel debugging (e.g., Bates [Bates 88a], Miller
and Choi [Miller 881). The primary advantage of our DPEs is that
they model true concurrency.

Subclass Semantic Model

Sequential DPEs Finite State Automata

Multiple DPEs K-Safe Nets (subset)

Safe DPEs K-Safe Nets

General DPEs Petri Nets

Extended DPEs Extended Petri Nets (subset)

Figure l-l: DPE Hierarchy

In our previous paper [Hseush 881, we informally described
preliminary work on DPEs and discussed how they could be used
in debugging parallel programs. The goal of this paper is to
formally define several subclasses of DPEs in terms of their
syntax and semantics. We define five subclasses according to
syntactic criteria, and characterize the semantics of each subclass
using a hierarchy of extended Petri net models [Peterson 811 (see
Fig. l-l). Extended Petri nets are equivalent to Turing machines
[Hack 75,Thomas 761. The first subclass expresses only

sequential behavior. The second subclass expresses limited
concurrency, in which process splitting (e.g, fork or para-do) is
not permitted following a program branch (e.g, if-then-else),
while program branching is permitted following a process split.
The third expresses general bounded parallelism. The fourth
permits unbounded parallelism, but without the ability to join an
unknown number of threads. The fifth subclass describes general
concurrency.

We propose predecessor automata as an implementation vehicle
for the third subclass, safe DPEs, which subsumes the frost and
second subclasses. Predecessor automata extend finite state
automata to represent predecessor events, and thus can recognize
or generate partial ordering graphs [Lamport 781 as well as
strings. The concurrent composition [Milner 801 of two
predecessor automata preserves causal independence (i.e., true

11

concurrency), while the concurrent composition of two finite state
automata loses this information. The expected program behavior
described by a programmer as DPEs is translated into a
predecessor automaton for efficiently recognizing concurrent
events during execution. The DPE debugger will be useful for
parallel applications where race conditions, deadlocks and
starvation are concerned, and several small examples are given in
this paper. We are in the process of implementing safe DPEs as a
debugging Ianguage for both a concurrent extension of C and for
the Meld concurrent object-oriented programming language
[Kaiser 891.

Section 2 introduces DPEs and explains other background
material necessary to understand the remainder of the paper. In
section 3, we show the power of the five subclasses of DPEs in
terms of extended Petri Net models. Section 4 presents the
predecessor automata model for efficient implementation of safe
DPEs in a debugging system. Section 5 discusses the practicality
of DPEs for parallel debugging.

2. Background
A DPE consists of up to three components: one or more events,
zero or more relations among events and zero or more actions.
Events and the relations among them specify the behavior of
program execution, while actions are performed by the debugger
on program or debugger variables (or input/output) when the
particular behavior is recognized during execution. A set of
operators like sequencing (;), exclusive selection (+) and
repetition (*) express the basic relationships among events.

2.1. Events and Actions
There are four kinds of events: control, data compound and
conditional. Control events represent control activities, such as
procedure entry and exit. Since there is a simple mapping from
program execution to source code, control events can be specified
using the corresponding identifiers in the program’s source code,
notably procedure names. Function.enter is the entering to
Function, and Function.exit is the exiting from Function.

Data events occur when the specified program states become true.
Data events are denoted as ” [condition] ‘I, where the
condition is an expression in the target programming language,
augmented with the ability to express the history of program
states and activities associated with data such as read and write.
For example, I1 [X = 0] I’ is the event that variable X
becomesequal to zero, I’ [X = X’ + 1] ‘I is the event that X
is incremented (Xl refers to the previous value of X). Data events
are not associated with any particular control thread when
defined, even though they are eventually caused by specific
control events during execution. The programmer need only
specify the effects on program entities without the knowledge of
which control activities cause them; the debugger detects when
the effects occur and reports which control activities cause them.
It is difficult to efficiently recognize data events without either
hardware support or significant modifications to the compiler
and/or run-time support of the programming language, but we do
not address this here.

Compound events are data path expressions. A compound event is
defined by associating an identifier with a DPEs, permitting new
DPEs to be defied in terms of the identifier in the style of
context-free grammars, except that recursive and empty event
definitions are not allowed. The format is “event-id = dpe”,
where dpe is a data path expression as defied in the next section.

Conditional events are control, data or compound events with
predicates attached. The format is “event [condition] ‘I,
where condition is a predicate. Conditional events are
recognized when the event occurs in a context where the
condition is already satisfied. For example,
"READ [lock = 11" is the condition where the READ
procedure is called while 1 oc k is equal to one.

Actions may be attached to events. The format is
“event (statements) ‘1, where statements is treated as a
single action. The action is evaluated when the event is
recognized. For example,
'I[X'] (counter = counter + 1; } ‘* means that
every time X is updated, counter is incremented by one.
Statements may involve program variables and/or debugger
variables or functions, such as input/output and break.

2.2. Safe Concurrency
The term sufe concurrency refers to the case of bounded
parallelism and unsafe concurrency to unbounded parallelism.
Language constructs designed for expressing concurrency (e.g.,
fork-join) often permit unsafe concurrency. Examples of safe and
unsafe programs are shown in Figs. 2-1 and 2-2. The semantics
of safe concurrency is characterized as a subclass of Petri nets,
k-safe nets [Peterson 811, where the maximum number of tokens
in a place is bounded by k. A k-safe net assures bounded
parallelism. Every program with safe concurrency can be
represented by a k-safe net, and every k-safe net is equivalent to a
program with safe concurrency. The corresponding k-safe and
unsafe nets for the safe and unsafe programs are also shown in
Figs. 2-1 and 2-2.

parallel-do i = 0 to
begin

,..
philosopher(i);
. . .

end

Figure 2-l: A safe program

Loop:
if(fork() != 0) {

parent();
got0 Loop;

I
else child();

Figure 2-2: An unsafe program

3. DPE Hierarchy
DPEs are classified into five subclasses by the operators
employed and some other syntactic restrictions, Each subclass is
also defined in terms of a semantic model and the corresponding

12

morrrammine domain. The first subclass is seuuential DPEs. F 1

w&h expresses only sequential behavior. The second is multiple
DPEs, which subsumes the first and expresses limited safe
concurrency, in which process splitting (e.g, fork or para-do) is
not permitted following a program branch (e.g. if-then-else),
while program branching is permitted following a process split.
The third subclass is sajk DPEs, which expresses safe
concurrency. The fourth subclass is general DPEs, which
expresses limited unsafe concurrency, where unbounded parallel
threads never join. The fifth subclass is extended DPEs, which
subsumes the fourth one and expresses unsafe concurrency.

DPEs employ five operators: sequencing (;), selection (+).
repetition(*), concurrency (&) and concurrent closure (@I).
Examples are shown in Table 3-l. Table 3-2 summarizes the
DPE hierarchy, including equivalence proofs and related work.

Expression Description

A;B A causally precedes B.

A+B Either A or B occurs, but not both.

A* E + A + A;A + A;A;A + . . .

A&B A and B occur causally independently.

A@ E+A+A&A+A&A&A+...

Table 3-1: Operators

The fist subclass is well known as regular expressions or path
expressions. The path expression
“open ; (write -t- read)* ; close” states that a file
has to be opened, before an arbitrary sequence of reads and writes
is performed, and then closed.

Subclass

Expresses

Syntax

T

Sequential DPEs

sequential behavior

dpe, : EVENT

I (duel)
I dpe, + dpel
I WI ; duel
I dpq *

I Semantic

I

finite state automata
Model

Proof

Example

Hopcroft &
Ullman
[Hopcroft 791

open;(read+write)*;
close

Limitations no concurrency

Related
Work

Generalized path
expressions
[Bruegge 851

Multiple DPEs

limited safe
:oncurrency

dpez : dpe,
I dpe, & drq

k-safe nets
;ubset

Lauer & Campbell
[Lauer 751

:a;s;b) & (c;s;d)

IO process
;plitting
bllowing
Jrogram branching

10 unbounded
3arallelism

7OSY [Lauer 811 EBBA [Bates 831

Multiple DPE

W)Mc;d)

Partial Order

a;b and a-‘-

c;d occur
causally
independently. c-d

(a;s;b)&(c;s;d)
a

s b
a;s;b and
c;s;d
synchronize
at s. C x d

(a;s;b)&(c;s”;d)
a

S
a;s;b and

+-+---+b

c;sA;d
occur causally
independently. C

SA
@--+--+d

Safe DPEs

safe concurrency

dpe3 : EVENT
I (dpeJ 1
I dpe3 + dpe3
I4+ ; (be3
I dpe3 *
I dpe, & W,

Table 3-3: Multiple DPEs

1

General DPEs

limited unsafe
concurrency

Extended DPEs

unsafe concurrency

dpe, : dpe:,
I dpq + 4+
I dpe, & dpe4
I W, @

dpes : EVENT

I (dpes 1
I dpe, + dpe,
I dpe5 ; (be5
I dpe, *
I dpe, & We,
I dpes @

E-safe nets I Petri nets [Garg SS]
I

extended Petri nets
subset I

Hseush & Kaiser
[Hseush 891

:enq;deq)+(enq&deq

Garg [Garg 881

(fork;parent)* &
(fork;child)@

no joiniig for
unbounded
parallelism

Hseush & Kaiser
[Hseush 891

(enq;update)@;deq;
display

open question

Concurrent regular
expressions
K%W

Table 3-2: DPE Hierarchy

13

The second subclass, multiple DpEs, expresses only global-level
concurrency, where no nested concurrency (8~) is allowed. Three
examples are shown in Table 3-3. When the same event name
appears in multiple subparts of the DPE, it is treated as a
synchronization event and renaming is necessary to avoid this
synchronization convention. We use (*) to distinguish two
distinct events with the same name (see the third example). In
concurrent programming, a synchronization event usually
involves two events in different threads, as explained in
subsection 3.1.

The third subclass, safe DPEs, allows multi-level concurrency.
One example that can be expressed by safe DPEs but not multiple
DPEs is "enq ; deq + (enq & deql I’, whichstatesthatif
the queue size is equal to zero, then enqueuing must precede
dequeuing; otherwise, enqueuing and dequeuing can operate
concurrently. Safe DPEs are equivalent to k-safe nets.

The fourth subclass, general DPEs, expresses unbounded
parallelism by using the concurrent closure operator (@), but
disallows an event causally succeeding an unknown (unbounded)
number of concurrent events. The general DPE
"(fork;parent) * & (fork;child)@" models the
unsafe program and the corresponding unsafe net mentioned in
Fig. 2-2. Some programming examples are: (1) an unbounded
number of messages may arrive at an object and each message
activates a control thread for executing the same function without
waiting for the prior activations to finish (e.g, process servers);
and (2) an unknown number of signals arise and each signal
invokes an unmasked signal handling routine. General DPEs are
also known as concurrent regular expressions. Concurrent
regular expressions have been proved equivalent to Petri nets
[Garg 881. The limitations on general DPEs are the same as

those on Petri nets: no zero testing [Keller 721. Zero testing is the
ability to test for zero tokens in an unbounded place of a Petri net.
For example, ” (A; B) @ ; C” is not expressible in general DPEs or
Petri nets. It states that an unknown (unbounded) number of
threads A; B are created, and when all B events in the concurrent
threads are complete, then C occurs: note that C can occur while
the number of non-processed B's is tested equal to zero, because
of the concurrent closure operator. This expression cannot be
described by a Petri net, but is expressible by an extended Petri
net [Peterson 8 l].

The fifth subclass of DPEs, extended DPEs, allows an event
causally succeeding an unknown (unbounded) number of
concurrent events, as modeled by extended Petri nets. For
example, 1’ (enq ; update)@ ; deq * display"
represents the case where an unbounded number bf signals arise
and each signal invokes a signal handling routine without
disabling further signal invocations. The handling routine puts
one character into a global queue and updates some information
(the enqueue operation is atomic). After the control eventually
returns to the main program, further signal invocation is disabled
and all characters are dequeued and displayed. Extended DPEs
express extended Petri nets, but whether extended DPEs are
equivalent to extended Petri nets is an open question.

3.1. Synchronization Events
The behavior of language-specific synchronization primitives can
be described using DPEs. Systems programmers or debugger
users instruct the debugger to recognize the event patterns that
constitute synchronizations among threads. For example, the
pattern of sending a message X followed by receiving a message
x constitutes a synchronization between the sender and the
receiver. The description is

send(M); receive(M) { sync-event($l, $2);)
which instructs the debugger that send is causally related to
receive by message M. Then a synchronization event from the
send event ($1) to the receive event ($2) can be established
by the debugger based on the information from the sender and the
receiver, once both are recognized during execution. Otherwise,
the debugger would have no knowledge that send and receive
matched as a synchronization event. Another example,

V(X).exit; P(X).exit { sync-event($l, $2); }

. where P and V are the basic semaphore operations, instructs the
debugger that V .exit is causally related to P .exit by the
shared datum X and constitutes a synchronization event. Say the
set of events is P,. enter, P,.exit, Pp.enter,
Vl.enter, Vl.exit, P,,exit, V2.enter,
V,. exit; the debugger uses the synchronization directive to
establish the synchronization event (VI. exit, P, . exit).

This approach requires the same bowledge as in other
approaches, but it provides the flexibility that users can easily
invent and debug new synchronization primitives. In contrast,
other debugging systems (e.g., [Goldszmidt 891) retrieve such
information through either source-to-source program
transformation or augmenting the compiler with particular
knowledge about synchronization primitives as related to parallel
debugging.

4. Predecessor Automata
The problem-oriented debugging paradigm assumes that the
programmer provides a description of expected program behavior,
and the debugger compares this description to actual behavior at
run-time to detect discrepancies. In our case, the debugger must
be able to recognize sets of concurrent events matching DPEs.
The debugger itself consists of support added (in hardware or
software) to each executing thread or processor that submits
messages representing primitive events (i.e.. control or data
events) to a centralized DPE recognition process. The sequence
of events it receives are treated as a string of tokens and are
compared with the user-specified DPEs. Since the recognition of
primitive events has been addressed in traditional debugging,
where breakpointing is typically adopted, we are here concerned
with the central recognition process, which is to recognize the
program behavior specified in DPEs.

One key issue is the tradeoff between the efficiency of
recognition and the memory space needed to represent the DPEs
in a suitable internal form. In the case where minimizing memory
space is most important, Petri nets are probably the best choice.
Petri nets can represent sequential and concurrent behavior in a
compact form, but they are relatively inefficient for recognizing
events at runtime. In contrast, finite state automata (FSAs) are
efficient recognizers for sequential behavior, but they cannot
represent concurrent events that are causally independent. FSAs
express interleaving semantics, but not true concurrency. The
concurrent composition of two FSAs involves combining two
FSAs into one such that all possible states and all possible
interleavings of two sets of transitions are preserved [Milner 801.
This process loses the information regarding which events occur
causally independently and there is no way to reverse the process
to recover the original two FSAs. With or without concurrent
composition, FSAs cannot distinguish two causally independent
events interleaved with each other from two sequential events.

We present an implementation model, predecessor automata
(PAS), that has the clean and efficient structure of FSAs, but also

14

the capability of representing true concurrency as in safe Petri
nets. PAS can recognize behavior with safe concurrency and
possibly detect the situation of unsafe concurrency, and thus
implement our third subclass, safe DPEs.

4.1. Definition of Predecessor Automata
A predecessor automaton is a 5-tuple (Q, 2, 6, qo. F).

l Q is a finite set of sfufes.

l Z is a finite set of events.

l 6 is the transition funcrion mapping Q XCXP to Q. where P is the
predecessor set, P E C*.

l q0 is the initial state, q0 E Q.

l F is the set ofjinal states, F E Q.

The definition of a PA is the same as an FSA except for the
transition function, which not only carries the information about
the expected events, but also the information about their
predecessors.

The predecessor p (E P) of an event e is a list of events
(WI, W2’ -*- , wn 1, where (1) n is a non-negative integer,

(2) event wi causally precedes e and (3) wi and wj occur causally

independently, 1 5 i, j I n, i # j. If p = E, e is an original event
(E is also represented as ‘.‘) . The occurrence of event e implies
that all its predecessor events wi E p, 1 5 i I n, have occurred.
The input to a PA is not a string of events, but a string of
event-predecessor pairs, (e. pe), (e, pr). (en p,). where
ei E X, pi E P, 0 I i < n and for w E pi, there exists ej, j # i,
0 < j $ I?, such that ej = w. That is, every event mentioned as a
predecessor event must occur. The string of event-predecessor
pairs can be considered as a partial ordering graph, which
represents a program execution. The vertics in the partial ordering
graph are events and the directed edges indicate the relations of
causal dependency (i.e.. sequencing (;)). Remember that no
relationships like selection (+) and repetition (*) can be
represented in the partial ordering graph. In the case that j < i, it
means the receiving order preserves the occurrence (partial)
order. This is discussed in more detail later in this section.

INPUTS: (a .) (b .) (c a) (d c b) a

Figure 4-1: An example of PA

A PA moves from one state 4 to another state r on an input (e p),
according to the transition function 6(q, (e p)) = r. That is, a move
is made by examining the incoming event and its predecessors.
For example, a predecessor automaton is shown in Fig.4-1, where
the transition function is represented by a set of labeled edges.
Transition (a E) (or (a .)) indicates the state transition of the

occurrence of an original event a (without predecessors), and (d
(c b)) (or (d c b)) indicates the occurrence of event d with
two predecessor events c and b. One possible input that will be
accpeted by the automaton is (a .) (b .) (c a) (d c
b) . The state of the automaton will change from 1 to 2 with (a
.) , from 2 to 5 with (b .),from5to6with (c a),andfrom
6 to the final state with (d c b) , The input represents an
execution of a concurrent program, and its partial ordering graph
is also shown in Fig.4- 1.

In the case where generators are concerned, a partial ordering
graph can be constructec~ by giving a PA and a sequence of
transitions, 6(qo. (e. f-@> = ql, Q,, (el pl)) = q2. @qnMl, keel
p,.t)) = qn, where q,, is the initial state. For each (ei pi). 0 < i I
n, (1) create a vertex labeled with ei and (2) for each event w E
pi, create a directed edge from w to ei.

Two problems arise when constructing partial ordering graphs:
(1) ambiguity and (2) instability. A PA is ambiguous if and only
if there exists a sequence of transitions, 6(q,, (eO p,)) = ql. 6(q,,

(el P,>) = q2. 6(q,_,, (e,,1 p,.,)) = q,, where qO is the initial
state, such that more than one partial ordering graph can be
constructed. Fig. 4-2 illustrates an ambiguous situation.

(a .) (a .)

“1
(b a)

Figure 4-2: An ambiguous situation

a

i

INPUTS: (a .) (b a) (c d)

Figure 4-3: An unstable situation

The first step to eliminate the ambiguous situation is to rename
some events 4i in the ambiguous PA, such that there does not
exist an event ej, i + j and ei = ej. The second step is to modify
the graph construction procedure to eliminate the ambiguous
situations due to cyclic paths of transitions in PAS. When a
directed edge w + e is constructed, the vertex labeled w is the one
that was ad&d to the graph most recently and labeled with w.
These two steps eliminate all possible ambiguous situations.

Given a PA and a sequence of inputs, (e, p,), (e, p,), (e,p,), a
situation is unstable at input (ei pi) if and only if there exists a
predecessor event w E pi, such that e. + w for all j, 0 I j 5 i-l.
Informally, a situation is unstable t an event mentioned as a 2
predecessor has not arrived so far or the event (vertex) is missing

15

in the constructed graph. One example is shown in Fig. 4-3.

4.2. Event Recognition
Recognition involves two components: (1) a target system that
reflects the actual program behavior and provides the information
about primitive events and their predecessors, and (2) a
recognizer that represents the expected program behavior in some
internal form and collects and processes the information. The
target system is a concurrent system, with messages representing
primitive events and their predecessors generated from different
processors and sent to the centralized recognizer.

The recognizer is a sequential machine that receives messages
representing primitive events from different threads one message
at a time, compares them with the expected ones, and eventually
reports the results. The message receiving order is assumed
independent from the order of the event occurrences, since the
sending order may be different from the receiving order. The
recognizer has two parts, a stabilizer and a PA. The stabilizer has
two functions: (1) filtering incoming event/predecessors
messages such that only the “interesting” events (i.e., the
primitive events mentioned by users in DPEs and the
synchronization events) and their similarly “interesting”
predecessor events go into the automaton, and (2) regulating the
incoming event/predecessors messages such that the ordering of
event messages that go into the automaton preserves the partial
ordering of event occurrences in the target system. For example,
if the input messages to the stabilizer are (el E) (ez e,)
(e3 el) (e, el) (es e4), where all events are
“interesting” events except e4. The output of the stabilizer is
(el E) (es el) (e2 es) (es e,). Theoutputmessages

of the stabilizer are the input messages of the PA, which will
compare the input messages (the actual behavior) with the DPEs
(the expected behavior) provided by the users as represented by a
PA. A general structure for such a debugging system is shown in
Fig. 4-4.

TARGET SYSTEM

Figure 4-4: Event recognizer

The PA is in the initial state before receiving any messages.
Every time a message describing an event and its predecessors
arrives from the stabilizer, the PA compares the received
information with the transitions directed from the current state. If
both the event and its predecessors match one of the transitions,
the automaton moves to the next state according to the matched
transition. An example is illustrated in Figs. 4-5 and 4-6. One
important assumption in our event recognition framework is that
the target system (eventually) has full knowledge about every
event that occurs and its predecessor events, where these events
appear in some DPE used to construct the PA and/or reflect
synchronization events.

cc 1)
CC b d)

Cd c)
Cc b d)

PA

Figure 4-5: An event recognizer for a;(b&(c;d));e

Targeted system
events

1;1i)
(d c)
(c a)

(e b 4

stabilizer
events

8:)

(c 4
(d c>
(e b 4

PA
state transitions
o-->l
l-+2

2-->4
4-->6
6-->7

Figure 4-6: PA Description

4.3. Constructing Predecessor Automata From Safe
DPEs

Given a safe DPE, a predecessor automaton can be constructed.
There are two steps, involving transformations of subexpressions
and translation using an attribute grammar [Knuth 681. The fist
step is to transform each expression into a new expression where
there are no s&expressions R*, such that E E R. For example,
@*I* can be transformed into e*. This guarantees that the
constructed automaton has no transition cycles 6(q,, (el pl)) = q2,
6(q2. (e,pp)) = 43. @q,,, (e,p,)) = qt, such that e; = E, for all i,
0 < i 5 n. The transformation is based on an extension to
Foster’s conversion theorem [Foster 861. For any DPE R, there is
a DPE N(R) such that (1) N(R) does not contain the empty string,
and (2) R* = (N(R))*. If E c R, N(R) = R. Otherwise, there
are four cases.

l.lfR=P*,N(R)=N(P)

2. If R = P+Q, N(R) = N(P) + N(Q)

3. If R = P;Q, N(R) = N(P) + N(Q)

4. If R = P&Q, N(R) = (N(Q) & N(P)) + N(Q) + N(P)

The second step applies an attribute grammar that specifies how
to construct a PA. A DPE is fust parsed into an abstract syntax
tree, where three attributes are attached to each node of the tree,
AUTO, PRED and LAST. The AUTO attribute of a node n will
contain an automaton that represents the subtree (subexpression)
rooted at node n. A subtree can be considered as a subexpression
or a PA. The PRED attribute of n represents its predecessors, the
events that might precede any event occurring in the subtree
rooted with n. The LAST attribute of II refers to the events
without successors in the subtree. The values of PRED and
LAST have the form (eu,,~...r\e~,~) v . . . v (e,,,,-+..~e,,~,),

where the events related with (A) occur concurrently and the
events related with (v) occur exclusively. The semantic rules
associated with the grammar are shown in Fig. 4-7.

This is not a syntax-directed translation system like YACC
[Johnson 781. Instead, the semantic rules describe the relations

between a node in the abstract syntax tree and its parent node, and

16

between the node and its children nodes. A semantic rule is
evaluated only when its dependent attribute(s) is changed [Reps
841. instead of at the time of parsing. For example, the fist
semantic rule,
"dpe.AUTO = new PAtEVENT, dpe.PRED)",
which is associated with a leaf node, is evaluated when its PRED
attribute is changed.

dpe : EVENT
I
dpe.AUTO = new-PA(EVENT, dpe.PRED);
dpe.LAST = last-events(dpe.AUTO);

; ,(, dpel ‘)’
1
dpe’.PRED = dpe.PRED;
dpe.AUTO = dpe’.AUTO;
dpe.LAST = dpe’.LAST;

1
1 dpe’ ‘;’ dpc *
i
dpe’.PRED = dpe.PRED;
dpe2.PRED = dpel.LAST;
dpe.AUTO = concat(dpe1.AUT0,dpe2.AUTO);
dpe.LAST = dpe2.LAST;

1
1 dpe’ ‘+’ dpe 2
{
dpe’.PRED = dpe.PRED;
dpe2.PRED = dpe.PRED;
dpe.AUTO = union(dpe1.AUT0,dpe2.AUTO);
dpc.LAST = dpel.LAST v dpe2.LAST;

I

t””
el >*9

dpe’.PRED = dpc.PRED-
dpe.AUTO = repeat(dpei.AUTO);
dpe.LAST = dpel.LAST v E;

1
1 dpe’ ‘&’ dpc 2
1
dpe’.PRED = dpe.PRED;
dpe’.PRED = dpe.PRED;
dpe.AUTO = compose(dpe’.AUTO,dpe’.AUTO);
dpe.LAST = last-events(dpe.AUTO);

1

Figure 4-7: Attribute Grammar for DPEs

The function last-events, with a PA as an input parameter,
obtains the last events that might occur in the PA. The return
value has the same form as LAST and PRED. The function
new PA creates a new automaton with two input parameters, an
evenre and its predecessors p. The new automaton has one start
state p, one final state 9 and one transition 6(p (e PRED(e))) = q.
The attribute grammar evaluation is started by setting the PRED
attribute of the root to E; every node will eventually be visited a
few times, as changes are propagated around the tree. The root is
the first node visited, since its PRED is changed. For each node e
visited, if e is a leaf, AUTO is assigned a new PA and LAST is
set to e. Since the values of PRED and AUTO are changed, its
parent node will be visited again according to the semantic rules
associated with the parent. If the node is not a leaf, it propagates
the value of PRED down to its child nodes, and when the node is
eventually visited again, it constructs a new PA from its
children’s PAS according to the operators and properly sets the
value of its LAST attribute. The functions concat is to
concatenate two PAS, union is the union of two PAS, and

repeat is the Kleene closure of a PA. These fuctions are the
same as those for FSAs. The function compose concurrently
composes two PAS into one, as explained in the next section.
When the evaluation is complete, the AUTO attribute of the root
contains the PA for the given DPE.

4.4. Concurrent Composition
The concurrent composition of two PAS creates a new PA that
preserves all possible states and all possible transitions as if the
two original automata operate concurrently. As explained above,
the concurrent composition of two finite state automata will lose
the concurrency information, while the concurrent composition of
two PAS will not. An example is shown in Fig. 4-8.

I

FSAl

FSA2

FSAl&FSAZ

Figure 4-8: Concurrent composition of two FSAs

Figure 4-9: Concurrent composition of two PAS

Composition of two PAS can be divided into two cases, those that
do and do not involve synchronization. Synchronization occurs
when two automata have common events (or reflect components
of synchronization events). Assume the first automaton has n
states, so, sl, snel, so is the initial state, and the second
automaton has m states, zo, zt, z,,,t, z. is the initial state. In
the case that two PAS have no synchronization, the composed
automaton will have n xm states, 9r r, q1 2, qnmel, qn m. The . I
state qij is the combined state of the state si in the first automaton
and the state zj in the second automaton. The transitions from qIj

to qkj in the composed automaton are the transitions from si to sk
in the first automaton, and the transitions from si j to qi, in the
composed automaton are the transitions from zj to zi in the second
automaton. There exist no transition between 9ij and 9t.,K i # h
and j # k. In the case where two PAS do have synchronization,
there must exist a transition (ei pi) in the first automaton and
transition (ej pj) in the second automaton, such that ei = ej.
Assume sk and s1 are the pre-state and the post-state for transition
(ei pi) in the first automaton, and zs and z,, for (ej pj) in the
second. The composed PA will have a combined state qk g of sk
and z g, a combined state 91 ,, of s1 and zh, and a transition

17

behavior to be replayed by re-execution or simulation over and
over again until the bugs are located. We assume this is possible,
but do not address the mechanism here.

4.5. Related Work
EBBA [Bates 88b] employs ~shufle automata [Bates 871 as a
formal model for event recognition in distributed systems.
Shuffle automata recognize concurrent events based on the
interleaving semantics. That- is, shuffle automata cannot
distinguish two causally independent events interleaving with
each other from two causally dependent events.

Shuffle automata are an FSA-like formalism that consist of a set
of states and a finite state control that effects transitions from an
initial state to some final state. An important difference between
the shuffle automaton and an FSA is that in order to make
transitions in the shuffle automaton, the finite state control
examines sets of input symbols, rather than individual symbols.
At run-time, the recognizer will accumulate the incoming events
in a set. Whenever a subset of the accumulated event set becomes
sufficient to make a transition, the finite control then goes from
the current state to another state.

5. Debugging Concurrent Programs
Most concurrency-related bugs involve problems with
synchronization among multiple threads, which may share
information in a number of different ways, including shared
memory, message passing, files and devices, and human
interaction. In this section, we demonstrate that DPEs are useful
for aiding detection and correction of three typical kinds of
synchronization errors: race conditions, deadlocks and
starvations.

A race condition happens when two or more concurrent threads
interact with some common resources without properly
constraining the ordering of interactions, resulting in a
computation that is nondeterministic and incorrect. To eliminate
the race conditions, appropriate synchronization must be added to
the program so that the crucial interactions are properly ordered.
Two types of synchronization mechanisms are frequently
adopted: (1) wait-resume and (2) rollback-retry. Wait-resume
constrains the ordering of interactions by blocking threads from
competing for resources, but may lead to a deadlock situation
when two or more threads wait for each other indefinitely due to
lack of knowledge of the global situation. In the rollback-retry
type of synchronization, a thread constrains the ordering of
interactions by expecting other threads to complete their crucial
interactions while temporarily releasing its resources. This may
lead to a starvation situation where one or more threads repeats
the rollback-retry cycle indefinitely. In the dining philosophers
example, there is a deadlock when every philosopher has a fork in
his right hand and is waiting for the fork on his Ieft-hand side;
there is starvation when a philosopher repeatedly picks up the
forks on his right-hand side and then puts down the fork because
the fork on his left-hand side is always unavailable.

It is difficult to debug programs with race conditions, deadlocks
or starvations, where bugs may be embedded in (1) the
synchronization primitives and/or (2) the program units that apply
the synchronization primitives. It is also difficult for
programmers to detect, by observing the external program
behavior, whether the error is caused by buggy synchronization
primitives or buggy program units. We assume in this paper that
synchronization primitives are always correct, and are thus
concerned only with (2). One concern in debugging is
reproducibility, since it is desirable for the identical program

5.1. Debugging Race Conditions
There are two necessary conditions for race conditions: (1)
concurrent threads share common resources, and (2) the particular
events within these threads that compete for the common
resources are causally independent. Therefore, debugging a
program with race conditions can be treated as a process of
establishing relations of causal dependence and detecting whether
the critical events that access the common resources occur
causally independently.

program producer-consumer;
var

s: semaphore := 1;
deposited: semaphore := 0;

procedure producer;
var next: integer;
begin
while true do
begin
next = calculate();
P(s); - ----------------------, (1)
enqueue(next); ----------> (2)
V(s);
V(deposited);

end;
end;

procedure consumer;
var next: integer;
begin
while true do
begin
P(deposited);
P(s);
next = dequeue();
VW;
print(next);

end;
end;

begin
para-do
producer();
consumcr();

para-end
end

Figure S-l: Producer-Consumer Program

For example, Fig. 5-1 shows a producer-consumer program,
where the producer thread puts numbers in a queue, and the
consumer thread gets and prints the numbers from the queue
when the queue is not empty. A semaphore s and its operations
P (s) and v (S) are used for synchronization. Assume the P(s)
at point (1) is missing from the program. During execution, the
queue data structure may become inconsistent. In order to debug
the program, the first step is to define, using DPEs, the
synchronization events in the program (see section 3.1).

Then, in the case where a race condition between producer and
consumer is suspected, the second step is to describe, in DPEs,

the expected misbehavior that enqueue and dequeue occur
concurrently. The expression
“enqueue & dequeue() (print(s); break,)” instructs the
debugger to print the value of semaphore s and stop the execution
when enqueue and dequeue occur concurrently. The third
step is to replay the program execution. The program execution
will stop at (2) and the value of s is printed out. The debugger
will detect the true concurrency of enqueue and dequeue, no
matter how the event messages interleave with each other. Some
interleavings might accidently produce correct results and others
produce the wrong results; in both cases, the debugger will detect
the race condition.

5.2. Debugging Deadlocks
There are four necessary conditions for deadlock [Coffman 711:
(1) Threads claim exclusive control of the resources they require
(mutual exclusion condition), (2) Threads hold resources already
allocated to them while waiting for additional resources (wait for
condition), (3) Resources cannot be removed from the threads
holding them until completion (no preemption condition), and (4)
A circular chain of threads exists in which each holds one or more
resources that are requested by the next thread in the chain
(circular wait condition). Debugging a program with deadlock
requires the same description of synchronization events as in
debugging a program with race conditions, but has a more
complicated expected program behavior.

One example is that lock and un 1 oc k are used to allocate
resources before reference to the data. The first three conditions
are determined by the synchronization primitives, and the fourth
condition can be established by constructing a wait-for graph
during debugging. The synchronization events can he described
as “unlock(X).exit; lock(X).exit (sync-event($l, $2); }“. The
expected program behavior can then be described as “lock(X).exit
(hoId($l .pid, X)); unlock(X).exit (unhold($2.pid, X)) ” and
“lock(X).enter; wait0 [wait-for($l.pid,X); check-deadlock());
resume(); lock(X).exit (release($4.pid,X)) “, where (1) the
hold () function informs the debugger that the thread of the
event ($l.pid) holds the resource X, (2) unhold() tells the
debugger that the associated thread ($3.pid) does not hold the
resource X any more, (3) wait for () means that the associated
thread ($l.pid) waits for resource X, (4) release () that the
associated thread no longer waits for the resource X, and (5)
check deadlock asks the debugger to check whether a
deadlock exists according to the information provided by the first
four functions.

5.3. Debugging Starvations
Starvation is a special type of race condition where a set of
causally independent events might repeat indefinitely. In the
example of dining philosophers, every philosopher might repeat
picking up the fork on his left-hand side and putting it down. One
possibility for detecting this is to store the program state every
time a philosopher picks up his right fork and compare it with the
previous states. If there exists an identical previous state and
between them no progress has been made, there may (or may not)
be an error. Detecting starvation is probably more amenable to
program verification than debugging, but DPEs can cheek the
correctness of verification assertions during execution.

6. Conclusions
We have defined a formal notation, DPEs, for modeling
concurrent behavior in the context of debugging parallel
programs. There are five subclasses of DPEs. four equivalent in
power to a member of a hierarchy of Petri net models and the fifth
a subset of extended Petri nets. We have developed an efficient
implementation vehicle for the third subclass of DPEs, which
models safe concurrency. We have briefly described the
application of DPEs to practical concurrent debugging problems,
from a viewpoint of problem-oriented behavior. DPEs must be
combined with conventional debugging mechanisms to observe
program-oriented behavior, for example, to support single-
stepping among statements and modification of the program state
at a breakpoint.

Acknowledgments
Hseush is supported in part by the Center for
Telecommunications Research. Part of this research was
conducted while Hseush was a summer employee of the IBM T.J.
Watson Research Center. Kaiser is supported by National Science
Foundation grants CCR-8858029 and CCR-8802741, by grants
from IBM, AT&T, Siemens, Sun and Xerox, by the Center for
Advanced Technology and by the Center for Telecommunications
Research. Some of the ideas presented here originated in
discussions with Timothy Balraj. who has been working on Petri
net models [Balraj 861 and path expressions in the context of
silicon compilers. We would also like to thank Janice Stone,
Bowen Alpem, Felix Wu and Dannie Durand for their helpful
discussion, and Colin Harrison for hi support of DPE debugging.
Krish Ponamgi is working with us on an implementation of DPEs
for C on the IBM 8CE multiprocessor running the Mach operating
system [Rashid 871. Krish is a co-op MS student at IBM under
the supervision of Cohn Harrison. Yi-wun Lu and Taka Ishizuka
have previously worked with us on the Meld Debugger (MD)
implementation of DPEs on Sun 3 workstations,

References

(Balraj 861

[Bates 831

[Bates 87)

[Bates 88a]

[Bates 88b]

T.S. Balraj and M.J. Foster.
Miss Manners: A Specialized Silicon Compiler for Synchronizers.
In Proceedings of the Fourth MIT Conference, pages 3-20. The

MIT Press, April, 1986.

Peter Bates and Jack C. Wiieden.
An Approach to High-Level Debugging of Distributed System.
In ACM SIGSoftiSIGPlan Software Engineering Symposium on

High-Level Debugging. pages 107-l 11. Pacific Grove. CA,
March, 1983.

Special issue of Software Engineering Notes, 8(4), August 1983.

Peter C. Bates.
Shyffle Automata: A Formal Modelfor Behavior Recognition in

Distributed Systems.
Technical Report COINS 87-27. University of Massachusetts at

Amherst, January, 1987.

Peter Bates.
Distributed Debugging Tools for Heterogeneous Distributed

systems.
In 8th International Conference on Distributed Computing

Sysrem. pages 308-315. Computer Society Pms. San Jose
CA, June, 1988.

Peter Bates.
Distributed Debugging Tools for Heterogeneous Distributed

systems.
In ACM SIGPLAAVSIGO~ Workshop 01 PamlleI aadDirnibrcred

Debugging. pages 11-22 Madison WI, May. 1988.
Special issue of SIGPLAN Notices, 24(1). January 1989.

19

[Foster 861

[Hack 751

[Bruegge 831 Bemd Bmegge and Peter Hibbard.
Generalized Path Expressions: A High-Level Debugging

Mechanism.
The Journal of Systems and Sofhwe 2(3):265-276.1983.

[Bmegge 851 Bemd Bmegge.
Adnprability and Portability of Symbolic Debuggers.
PhD thesis, Carnegie Mellon University, 1985.
CMU-CS-85-174.

[Campbell 741 R.H. Campbell and A.N. Habermann.
The Specification of Process Synchronization by Path

Expressions.
In G. Goas and J. Harimanis (editors),Lscrwe Noras inComptder

Science. Volume 16: Operating Systems, pages 89-102
Springer-V&g. Berlin, 1974.

[C&man 711 E. G. Coffman, Jr., M. Elphick; and A. Shoshani.
Systems Deadlocks.
Computing Surveys 3(2):71-76. June, 1971.

M.J. Fososrer.
Avoiding Latch Formation in Regular Language Recognizers.
In Proceedings of the Akron Conference on Communication.

Conrrol. and Compufing, pages 740’148. University of
Illinois, Urbana-Champaign IL, October, 1986.

This paper also appears in the IEEE VLSI Technical Buflefin, l(Z),
September 1986.

[GargW Vijay Ktunar Garg.
Specification and Analysis of Distributed Systems With o Large

Number of Processes.
PhD thesis, University of California at Berkeley, 1988.

[Goldszmidt 891 German S. Goldszmidt, Shmuel Katz and Shaula Yemini.
High Level Lungwrgc Debugging for Concurrent Programs.
Technical Repon RC14341, IBM Research Division, T.J.Watson

Research Center, Yodttown Heights, N.Y. 10598, January,
1989.

M. Hack.
Deck&ability Que.&nsfor Petri Nets.
PhD thesis, Department of Electrical Engineering. Massachusetts

Institute of Tecbttology, 1975.
Technical Repoa 161.

(Hopcroft 791 John E. Hopcroft and Jeffrey D. Ullman.
Iniroduction to Automata Theory, Languages and Computation.
Addison-Wcslcy Publishing Company, 1979, pages 28-35.

[Howdett 871 William E. Howden.
Software Engineering and Technology: Functional Program

Teering & Analysis.
McGraw-Hill Book Co., New York. 1987.

[Hseush 881 Wenwey Hseush and Gail E. Kaiser.
Data Path Debugging: Data-Oriented Debugging for a Concurrent

Progratnming Language.
In ACM SlGPLAh’lSIGOps Workshop on Parallel and Distributed

Debugging, pages 236246. Madison WI, May, 1988.
Special issue of SlGPLANNotices, 24(l), January 1989.

[Hseush 891 Wemvey Hseush and Gail E. KAISER.
MooZing Concurrency in Parallel Debugging.
Technical Report CUCS460, Computer Science Depaament,

Colombia University, Ny,NY. October. 1989.

[Johnson 781 SC Johnson and M.E. Lesk.
Language Development Tools.
The Bell System Technical Journal 57(6):2155-2175, July-August,

1978.

[Kaiser 891 Gail E. Kaiser, Steven S. Popovich. Wenwey Hseush and
Shyhtstm Felix Wu.
Melding Multiple Granularities of Parallelism.
In Stephen Cook (editor), 3rdEwopenn Conference on Object-

Oriented Programming. pages 147-166. Cambridge
University Press, Nottingham, UK, July, 1989.

[Keller 721 R. Keller.
Vecror Reptacemenr Sprtemr: A Formolirm for Modeling

Asymhro~wr Sysfem.
Technical Report 117, Computer Science Laboratory, Princeton

Univenity. December, 1972.

[Knuth 681 Donald E. Knuth.
Semantics of Context-Free Languages.
Mafhsmah’col Syzrem Theory 2(2):127-145, June, 1968.

[Latnport 781 Leslie Lamport.
Time, Clocks and the Ordering of Events in a Distributed System.
CACM 21(7):558-X4, July, 1978.

[Laucr 751 P. E. Lauer and R. H. Campbell.
Formal Semantics of a Class of High-Level Primitives for

Coordinating Concurrent Processes.
Acta Informutica .5(4):297-332, 1975.

[Lauer 811 P. E. Lauer and M. W. Shields.
Formal behaviottral specification of concurrent systems without

glob&y assumptions.

[Litton 811

[Miller 881

[Mihr 801

[Peterson 811

[Rashid 87)

[Reps 841

pnomas 761

In J. Diaz and IRamos (editor), Lechue Notes in Computer
Science. Number 107: Proceedings of Internation
Colloquium on Formalization of Programming Concepts.
pages 115-151. Springa-Verlag, Berlin, 1981.

M. Linton.
A Debugger for the Berkeley Pascal System.
Master’s thesis, University of California at Bcxkeley, June. 1981.

Barton P. Miller and Jong-Deok Choi.
Breakpoints and Halting in Distributed programs.
In 8th itiernational Conference on Distributed Compufing

System, pages 316-323. Computer Society Press, San Jose
CA, June. 1988.

R&ii Milner.
A C&t&us of Communicating Systems.
In G. Gcm and J. Hartmanis (cditon),Lecfwe Notes in Computer

Science (92). Springer-Verlag, Berlin, 1980.

James L. Peterson.
Petri Net Theory andThe Modeling of Systems.
Prentice-Hall, Inc., Englewaod Cliffs, NJ 07632.1981.

Richard Rashid, Avadis Tevanian, Michael Young, David Golub.
Roben Baron, David Black, Wiiam B&sky and Jonathan Chew.
Machine-Independent Virtoal Memory Management for Paged

Uniprcnxssor and Muitiprcccssor Architectures.
In ZndInternarionaI Conference on Archirecrwal Supponfor

Programming Languages and Operoling Systems, pages
31-39. Palo Alto CA, October, 1987.

Special issue of SIGPlanNofices. 22(10), October 1987.

Thomas Reps.
Generating Language-Based Environments.
The MIT Press, Cambridge MA, 1984.

P. Thomas.
The Peui Net: A Modeling Tool for the Coordination of

Asynchronous pmcesses.
Master’s thesis. University of Temtessce, 1976.

20

