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Abstract 

We propose a debugging language, Data Path Expressions 
(DPEs), for modeling the behavior of parallel Programs. The 
debugging paradigm is for the programmer to describe the 
expected program behavior and for the debugger to compare the 
actual program behavior during execution to detect program 
errors. We classify DPEs into five subclasses according to 
syntactic criteria, and characterize their semantics in terms of a 
hierarchy of extended Petri Net models. The characterization 
demonstrates the power of DPEs for modeling parallelism. We 
present predecessor automata as a mechanism for implementing 
the third subclass of DPEs, which expresses bounded parallelism. 
Predecessor automata extend finite state automata to provide 
efficient event recognizers for parallel debugging. We briefly 
describe the application of DPEs to race conditions, deadlock and 
starvation. 

keywords: debugging, formal models, Petri nets, path 
expressions, synchronization 

1. Introduction 
We arc concerned with debugging parallel programs. One 
approach to locating the causes of program misbehavior is for the 
programmer to provide a high-level description of the expected 
behavior and for the debugger to compare the expected and actual 
behavior during execution. Expected behavior is specified 
abstractly in terms of control flow, data flow and/or 
synchronization events. In this approach, defining an appropriate 
notation for modeling program behaviors is a crucial prerequisite 
to developing a debugger. The conventional debugging approach, 
exemplified by dbx [Linton 811, also models program behavior 
but at a lower-level, in terms of source code entities such as 
subroutine names and line numbers; the programmer is 
responsible for comparing expected with actual behavior during 
execution. We refer to the fist approach as problem-oriented, 
and the second as program-oriented. Both are necessary in 
practical debugging, just as both specification-based testing and 
program-based testing are required for practical testing [Howden 
871. 
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We have developed a style of problem-oriented debugging for 
parallel programs called data path &bugging. Program behaviors 
are described in a formal notation called Data Path Expressions 
(DPEs), an extension of Bruegge and Hibbard’s generalized path 
expressions for debugging sequential programs [Bruegge 
85, Bruegge 831. This work is in turn an application to debugging 
of Campbell and Habermann’s classical work on path expressions 
for describing process behavior in operating systems [Campbell 
741. Other researchers also advocate a problem-oriented 
approach to parallel debugging (e.g., Bates [Bates 88a], Miller 
and Choi [Miller 881). The primary advantage of our DPEs is that 
they model true concurrency. 

Subclass Semantic Model 

Sequential DPEs Finite State Automata 

Multiple DPEs K-Safe Nets (subset) 

Safe DPEs K-Safe Nets 

General DPEs Petri Nets 

Extended DPEs Extended Petri Nets (subset) 

Figure l-l: DPE Hierarchy 

In our previous paper [Hseush 881, we informally described 
preliminary work on DPEs and discussed how they could be used 
in debugging parallel programs. The goal of this paper is to 
formally define several subclasses of DPEs in terms of their 
syntax and semantics. We define five subclasses according to 
syntactic criteria, and characterize the semantics of each subclass 
using a hierarchy of extended Petri net models [Peterson 811 (see 
Fig. l-l). Extended Petri nets are equivalent to Turing machines 
[Hack 75,Thomas 761. The first subclass expresses only 

sequential behavior. The second subclass expresses limited 
concurrency, in which process splitting (e.g, fork or para-do) is 
not permitted following a program branch (e.g, if-then-else), 
while program branching is permitted following a process split. 
The third expresses general bounded parallelism. The fourth 
permits unbounded parallelism, but without the ability to join an 
unknown number of threads. The fifth subclass describes general 
concurrency. 

We propose predecessor automata as an implementation vehicle 
for the third subclass, safe DPEs, which subsumes the frost and 
second subclasses. Predecessor automata extend finite state 
automata to represent predecessor events, and thus can recognize 
or generate partial ordering graphs [Lamport 781 as well as 
strings. The concurrent composition [Milner 801 of two 
predecessor automata preserves causal independence (i.e., true 
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concurrency), while the concurrent composition of two finite state 
automata loses this information. The expected program behavior 
described by a programmer as DPEs is translated into a 
predecessor automaton for efficiently recognizing concurrent 
events during execution. The DPE debugger will be useful for 
parallel applications where race conditions, deadlocks and 
starvation are concerned, and several small examples are given in 
this paper. We are in the process of implementing safe DPEs as a 
debugging Ianguage for both a concurrent extension of C and for 
the Meld concurrent object-oriented programming language 
[Kaiser 891. 

Section 2 introduces DPEs and explains other background 
material necessary to understand the remainder of the paper. In 
section 3, we show the power of the five subclasses of DPEs in 
terms of extended Petri Net models. Section 4 presents the 
predecessor automata model for efficient implementation of safe 
DPEs in a debugging system. Section 5 discusses the practicality 
of DPEs for parallel debugging. 

2. Background 
A DPE consists of up to three components: one or more events, 
zero or more relations among events and zero or more actions. 
Events and the relations among them specify the behavior of 
program execution, while actions are performed by the debugger 
on program or debugger variables (or input/output) when the 
particular behavior is recognized during execution. A set of 
operators like sequencing (;), exclusive selection (+) and 
repetition (*) express the basic relationships among events. 

2.1. Events and Actions 
There are four kinds of events: control, data compound and 
conditional. Control events represent control activities, such as 
procedure entry and exit. Since there is a simple mapping from 
program execution to source code, control events can be specified 
using the corresponding identifiers in the program’s source code, 
notably procedure names. Function.enter is the entering to 
Function, and Function.exit is the exiting from Function. 

Data events occur when the specified program states become true. 
Data events are denoted as ” [ condition ] ‘I, where the 
condition is an expression in the target programming language, 
augmented with the ability to express the history of program 
states and activities associated with data such as read and write. 
For example, I1 [ X = 0 ] I’ is the event that variable X 
becomesequal to zero, I’ [ X = X’ + 1 ] ‘I is the event that X 
is incremented (Xl refers to the previous value of X). Data events 
are not associated with any particular control thread when 
defined, even though they are eventually caused by specific 
control events during execution. The programmer need only 
specify the effects on program entities without the knowledge of 
which control activities cause them; the debugger detects when 
the effects occur and reports which control activities cause them. 
It is difficult to efficiently recognize data events without either 
hardware support or significant modifications to the compiler 
and/or run-time support of the programming language, but we do 
not address this here. 

Compound events are data path expressions. A compound event is 
defined by associating an identifier with a DPEs, permitting new 
DPEs to be defied in terms of the identifier in the style of 
context-free grammars, except that recursive and empty event 
definitions are not allowed. The format is “event-id = dpe”, 
where dpe is a data path expression as defied in the next section. 

Conditional events are control, data or compound events with 
predicates attached. The format is “event [ condition ] ‘I, 
where condition is a predicate. Conditional events are 
recognized when the event occurs in a context where the 
condition is already satisfied. For example, 
"READ [lock = 11" is the condition where the READ 
procedure is called while 1 oc k is equal to one. 

Actions may be attached to events. The format is 
“event ( statements ) ‘1, where statements is treated as a 
single action. The action is evaluated when the event is 
recognized. For example, 
'I[ X' ] ( counter = counter + 1; } ‘* means that 
every time X is updated, counter is incremented by one. 
Statements may involve program variables and/or debugger 
variables or functions, such as input/output and break. 

2.2. Safe Concurrency 
The term sufe concurrency refers to the case of bounded 
parallelism and unsafe concurrency to unbounded parallelism. 
Language constructs designed for expressing concurrency (e.g., 
fork-join) often permit unsafe concurrency. Examples of safe and 
unsafe programs are shown in Figs. 2-1 and 2-2. The semantics 
of safe concurrency is characterized as a subclass of Petri nets, 
k-safe nets [Peterson 811, where the maximum number of tokens 
in a place is bounded by k. A k-safe net assures bounded 
parallelism. Every program with safe concurrency can be 
represented by a k-safe net, and every k-safe net is equivalent to a 
program with safe concurrency. The corresponding k-safe and 
unsafe nets for the safe and unsafe programs are also shown in 
Figs. 2-1 and 2-2. 

parallel-do i = 0 to 
begin 

,.. 
philosopher(i); 
. . . 

end 

Figure 2-l: A safe program 

Loop: 
if(fork() != 0) { 

parent(); 
got0 Loop; 

I 
else child(); 

Figure 2-2: An unsafe program 

3. DPE Hierarchy 
DPEs are classified into five subclasses by the operators 
employed and some other syntactic restrictions, Each subclass is 
also defined in terms of a semantic model and the corresponding 
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morrrammine domain. The first subclass is seuuential DPEs. F 1 

w&h expresses only sequential behavior. The second is multiple 
DPEs, which subsumes the first and expresses limited safe 
concurrency, in which process splitting (e.g, fork or para-do) is 
not permitted following a program branch (e.g. if-then-else), 
while program branching is permitted following a process split. 
The third subclass is sajk DPEs, which expresses safe 
concurrency. The fourth subclass is general DPEs, which 
expresses limited unsafe concurrency, where unbounded parallel 
threads never join. The fifth subclass is extended DPEs, which 
subsumes the fourth one and expresses unsafe concurrency. 

DPEs employ five operators: sequencing (;), selection (+). 
repetition(*), concurrency (&) and concurrent closure (@I). 
Examples are shown in Table 3-l. Table 3-2 summarizes the 
DPE hierarchy, including equivalence proofs and related work. 

Expression Description 

A;B A causally precedes B. 

A+B Either A or B occurs, but not both. 

A* E + A + A;A + A;A;A + . . . 

A&B A and B occur causally independently. 

A@ E+A+A&A+A&A&A+... 

Table 3-1: Operators 

The fist subclass is well known as regular expressions or path 
expressions. The path expression 
“open ; (write -t- read)* ; close” states that a file 
has to be opened, before an arbitrary sequence of reads and writes 
is performed, and then closed. 

Subclass 

Expresses 

Syntax 

T 

Sequential DPEs 

sequential behavior 

dpe, : EVENT 

I ( duel ) 
I dpe, + dpel 
I WI ; duel 
I dpq * 

I Semantic 

I 

finite state automata 
Model 

Proof 

Example 

Hopcroft & 
Ullman 
[ Hopcroft 791 

open;(read+write)*; 
close 

Limitations no concurrency 

Related 
Work 

Generalized path 
expressions 
[Bruegge 851 

Multiple DPEs 

limited safe 
:oncurrency 

dpez : dpe, 
I dpe, & drq 

k-safe nets 
;ubset 

Lauer & Campbell 
[ Lauer 751 

:a;s;b) & (c;s;d) 

IO process 
;plitting 
bllowing 
Jrogram branching 

10 unbounded 
3arallelism 

7OSY [Lauer 811 EBBA [Bates 831 

Multiple DPE 

W)Mc;d) 

Partial Order 

a;b and a-‘- 

c;d occur 
causally 
independently. c-d 

(a;s;b)&(c;s;d) 
a 

s b 
a;s;b and 
c;s;d 
synchronize 
at s. C x d 

(a;s;b)&(c;s”;d) 
a 

S 
a;s;b and 

+-+---+b 

c;sA;d 
occur causally 
independently. C 

SA 
@--+--+d 

Safe DPEs 

safe concurrency 

dpe3 : EVENT 
I ( dpeJ 1 
I dpe3 + dpe3 
I4+ ; (be3 
I dpe3 * 
I dpe, & W, 

Table 3-3: Multiple DPEs 

1 

General DPEs 

limited unsafe 
concurrency 

Extended DPEs 

unsafe concurrency 

dpe, : dpe:, 
I dpq + 4+ 
I dpe, & dpe4 
I W, @ 

dpes : EVENT 

I ( dpes 1 
I dpe, + dpe, 
I dpe5 ; (be5 
I dpe, * 
I dpe, & We, 
I dpes @ 

E-safe nets I Petri nets [Garg SS] 
I 

extended Petri nets 
subset I 

Hseush & Kaiser 
[Hseush 891 

:enq;deq)+(enq&deq 

Garg [Garg 881 

(fork;parent)* & 
(fork;child)@ 

no joiniig for 
unbounded 
parallelism 

Hseush & Kaiser 
[Hseush 891 

(enq;update)@;deq; 
display 

open question 

Concurrent regular 
expressions 
K%W 

Table 3-2: DPE Hierarchy 
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The second subclass, multiple DpEs, expresses only global-level 
concurrency, where no nested concurrency (8~) is allowed. Three 
examples are shown in Table 3-3. When the same event name 
appears in multiple subparts of the DPE, it is treated as a 
synchronization event and renaming is necessary to avoid this 
synchronization convention. We use (*) to distinguish two 
distinct events with the same name (see the third example). In 
concurrent programming, a synchronization event usually 
involves two events in different threads, as explained in 
subsection 3.1. 

The third subclass, safe DPEs, allows multi-level concurrency. 
One example that can be expressed by safe DPEs but not multiple 
DPEs is "enq ; deq + (enq & deql I’, whichstatesthatif 
the queue size is equal to zero, then enqueuing must precede 
dequeuing; otherwise, enqueuing and dequeuing can operate 
concurrently. Safe DPEs are equivalent to k-safe nets. 

The fourth subclass, general DPEs, expresses unbounded 
parallelism by using the concurrent closure operator (@), but 
disallows an event causally succeeding an unknown (unbounded) 
number of concurrent events. The general DPE 
"(fork;parent) * & (fork;child)@" models the 
unsafe program and the corresponding unsafe net mentioned in 
Fig. 2-2. Some programming examples are: (1) an unbounded 
number of messages may arrive at an object and each message 
activates a control thread for executing the same function without 
waiting for the prior activations to finish (e.g, process servers); 
and (2) an unknown number of signals arise and each signal 
invokes an unmasked signal handling routine. General DPEs are 
also known as concurrent regular expressions. Concurrent 
regular expressions have been proved equivalent to Petri nets 
[Garg 881. The limitations on general DPEs are the same as 

those on Petri nets: no zero testing [Keller 721. Zero testing is the 
ability to test for zero tokens in an unbounded place of a Petri net. 
For example, ” (A; B) @ ; C” is not expressible in general DPEs or 
Petri nets. It states that an unknown (unbounded) number of 
threads A; B are created, and when all B events in the concurrent 
threads are complete, then C occurs: note that C can occur while 
the number of non-processed B's is tested equal to zero, because 
of the concurrent closure operator. This expression cannot be 
described by a Petri net, but is expressible by an extended Petri 
net [Peterson 8 l]. 

The fifth subclass of DPEs, extended DPEs, allows an event 
causally succeeding an unknown (unbounded) number of 
concurrent events, as modeled by extended Petri nets. For 
example, 1’ (enq ; update)@ ; deq * display" 
represents the case where an unbounded number bf signals arise 
and each signal invokes a signal handling routine without 
disabling further signal invocations. The handling routine puts 
one character into a global queue and updates some information 
(the enqueue operation is atomic). After the control eventually 
returns to the main program, further signal invocation is disabled 
and all characters are dequeued and displayed. Extended DPEs 
express extended Petri nets, but whether extended DPEs are 
equivalent to extended Petri nets is an open question. 

3.1. Synchronization Events 
The behavior of language-specific synchronization primitives can 
be described using DPEs. Systems programmers or debugger 
users instruct the debugger to recognize the event patterns that 
constitute synchronizations among threads. For example, the 
pattern of sending a message X followed by receiving a message 
x constitutes a synchronization between the sender and the 
receiver. The description is 

send(M); receive(M) { sync-event($l, $2); ) 
which instructs the debugger that send is causally related to 
receive by message M. Then a synchronization event from the 
send event ($1) to the receive event ($2) can be established 
by the debugger based on the information from the sender and the 
receiver, once both are recognized during execution. Otherwise, 
the debugger would have no knowledge that send and receive 
matched as a synchronization event. Another example, 

V(X).exit; P(X).exit { sync-event($l, $2); } 

. where P and V are the basic semaphore operations, instructs the 
debugger that V .exit is causally related to P .exit by the 
shared datum X and constitutes a synchronization event. Say the 
set of events is P,. enter, P,.exit, Pp.enter, 
Vl.enter, Vl.exit, P,,exit, V2.enter, 
V,. exit; the debugger uses the synchronization directive to 
establish the synchronization event ( VI. exit, P, . exit ). 

This approach requires the same bowledge as in other 
approaches, but it provides the flexibility that users can easily 
invent and debug new synchronization primitives. In contrast, 
other debugging systems (e.g., [Goldszmidt 891) retrieve such 
information through either source-to-source program 
transformation or augmenting the compiler with particular 
knowledge about synchronization primitives as related to parallel 
debugging. 

4. Predecessor Automata 
The problem-oriented debugging paradigm assumes that the 
programmer provides a description of expected program behavior, 
and the debugger compares this description to actual behavior at 
run-time to detect discrepancies. In our case, the debugger must 
be able to recognize sets of concurrent events matching DPEs. 
The debugger itself consists of support added (in hardware or 
software) to each executing thread or processor that submits 
messages representing primitive events (i.e.. control or data 
events) to a centralized DPE recognition process. The sequence 
of events it receives are treated as a string of tokens and are 
compared with the user-specified DPEs. Since the recognition of 
primitive events has been addressed in traditional debugging, 
where breakpointing is typically adopted, we are here concerned 
with the central recognition process, which is to recognize the 
program behavior specified in DPEs. 

One key issue is the tradeoff between the efficiency of 
recognition and the memory space needed to represent the DPEs 
in a suitable internal form. In the case where minimizing memory 
space is most important, Petri nets are probably the best choice. 
Petri nets can represent sequential and concurrent behavior in a 
compact form, but they are relatively inefficient for recognizing 
events at runtime. In contrast, finite state automata (FSAs) are 
efficient recognizers for sequential behavior, but they cannot 
represent concurrent events that are causally independent. FSAs 
express interleaving semantics, but not true concurrency. The 
concurrent composition of two FSAs involves combining two 
FSAs into one such that all possible states and all possible 
interleavings of two sets of transitions are preserved [Milner 801. 
This process loses the information regarding which events occur 
causally independently and there is no way to reverse the process 
to recover the original two FSAs. With or without concurrent 
composition, FSAs cannot distinguish two causally independent 
events interleaved with each other from two sequential events. 

We present an implementation model, predecessor automata 
(PAS), that has the clean and efficient structure of FSAs, but also 

14 



the capability of representing true concurrency as in safe Petri 
nets. PAS can recognize behavior with safe concurrency and 
possibly detect the situation of unsafe concurrency, and thus 
implement our third subclass, safe DPEs. 

4.1. Definition of Predecessor Automata 
A predecessor automaton is a 5-tuple (Q, 2, 6, qo. F). 

l Q is a finite set of sfufes. 

l Z is a finite set of events. 

l 6 is the transition funcrion mapping Q XCXP to Q. where P is the 
predecessor set, P E C*. 

l q0 is the initial state, q0 E Q. 

l F is the set ofjinal states, F E Q. 

The definition of a PA is the same as an FSA except for the 
transition function, which not only carries the information about 
the expected events, but also the information about their 
predecessors. 

The predecessor p (E P) of an event e is a list of events 
(WI, W2’ -*- , wn 1, where (1) n is a non-negative integer, 

(2) event wi causally precedes e and (3) wi and wj occur causally 

independently, 1 5 i, j I n, i # j. If p = E, e is an original event 
(E is also represented as ‘.‘) . The occurrence of event e implies 
that all its predecessor events wi E p, 1 5 i I n, have occurred. 
The input to a PA is not a string of events, but a string of 
event-predecessor pairs, (e. pe), (e, pr). . . . . (en p,). where 
ei E X, pi E P, 0 I i < n and for w E pi, there exists ej, j # i, 
0 < j $ I?, such that ej = w. That is, every event mentioned as a 
predecessor event must occur. The string of event-predecessor 
pairs can be considered as a partial ordering graph, which 
represents a program execution. The vertics in the partial ordering 
graph are events and the directed edges indicate the relations of 
causal dependency (i.e.. sequencing (;) ). Remember that no 
relationships like selection (+) and repetition (*) can be 
represented in the partial ordering graph. In the case that j < i, it 
means the receiving order preserves the occurrence (partial) 
order. This is discussed in more detail later in this section. 

INPUTS: (a .) (b .) (c a) (d c b) a 

Figure 4-1: An example of PA 

A PA moves from one state 4 to another state r on an input (e p), 
according to the transition function 6(q, (e p)) = r. That is, a move 
is made by examining the incoming event and its predecessors. 
For example, a predecessor automaton is shown in Fig.4-1, where 
the transition function is represented by a set of labeled edges. 
Transition (a E) (or (a . ) ) indicates the state transition of the 

occurrence of an original event a (without predecessors), and (d 
(c b) ) (or (d c b) ) indicates the occurrence of event d with 
two predecessor events c and b. One possible input that will be 
accpeted by the automaton is (a .) (b .) (c a) (d c 
b) . The state of the automaton will change from 1 to 2 with (a 
. ) , from 2 to 5 with (b . ),from5to6with (c a),andfrom 
6 to the final state with (d c b) , The input represents an 
execution of a concurrent program, and its partial ordering graph 
is also shown in Fig.4- 1. 

In the case where generators are concerned, a partial ordering 
graph can be constructec~ by giving a PA and a sequence of 
transitions, 6(qo. (e. f-@> = ql, Q,, (el pl)) = q2. . . . . @qnMl, keel 
p,.t)) = qn, where q,, is the initial state. For each (ei pi). 0 < i I 
n, (1) create a vertex labeled with ei and (2) for each event w E 
pi, create a directed edge from w to ei. 

Two problems arise when constructing partial ordering graphs: 
(1) ambiguity and (2) instability. A PA is ambiguous if and only 
if there exists a sequence of transitions, 6(q,, (eO p,)) = ql. 6(q,, 

(el P,>) = q2. . . . . 6(q,_,, (e,,1 p,.,)) = q,, where qO is the initial 
state, such that more than one partial ordering graph can be 
constructed. Fig. 4-2 illustrates an ambiguous situation. 

(a .) (a .) 

“1 
(b a) 

Figure 4-2: An ambiguous situation 

a 

i 

INPUTS: (a .) (b a) (c d) 

Figure 4-3: An unstable situation 

The first step to eliminate the ambiguous situation is to rename 
some events 4i in the ambiguous PA, such that there does not 
exist an event ej, i + j and ei = ej. The second step is to modify 
the graph construction procedure to eliminate the ambiguous 
situations due to cyclic paths of transitions in PAS. When a 
directed edge w + e is constructed, the vertex labeled w is the one 
that was ad&d to the graph most recently and labeled with w. 
These two steps eliminate all possible ambiguous situations. 

Given a PA and a sequence of inputs, (e, p,), (e, p,), . . . . (e,p,), a 
situation is unstable at input (ei pi) if and only if there exists a 
predecessor event w E pi, such that e. + w for all j, 0 I j 5 i-l. 
Informally, a situation is unstable t an event mentioned as a 2 
predecessor has not arrived so far or the event (vertex) is missing 
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in the constructed graph. One example is shown in Fig. 4-3. 

4.2. Event Recognition 
Recognition involves two components: (1) a target system that 
reflects the actual program behavior and provides the information 
about primitive events and their predecessors, and (2) a 
recognizer that represents the expected program behavior in some 
internal form and collects and processes the information. The 
target system is a concurrent system, with messages representing 
primitive events and their predecessors generated from different 
processors and sent to the centralized recognizer. 

The recognizer is a sequential machine that receives messages 
representing primitive events from different threads one message 
at a time, compares them with the expected ones, and eventually 
reports the results. The message receiving order is assumed 
independent from the order of the event occurrences, since the 
sending order may be different from the receiving order. The 
recognizer has two parts, a stabilizer and a PA. The stabilizer has 
two functions: (1) filtering incoming event/predecessors 
messages such that only the “interesting” events (i.e., the 
primitive events mentioned by users in DPEs and the 
synchronization events) and their similarly “interesting” 
predecessor events go into the automaton, and (2) regulating the 
incoming event/predecessors messages such that the ordering of 
event messages that go into the automaton preserves the partial 
ordering of event occurrences in the target system. For example, 
if the input messages to the stabilizer are (el E) (ez e,) 
(e3 el) (e, el) (es e4), where all events are 
“interesting” events except e4. The output of the stabilizer is 
(el E) (es el) (e2 es) (es e,). Theoutputmessages 

of the stabilizer are the input messages of the PA, which will 
compare the input messages (the actual behavior) with the DPEs 
(the expected behavior) provided by the users as represented by a 
PA. A general structure for such a debugging system is shown in 
Fig. 4-4. 

TARGET SYSTEM 

Figure 4-4: Event recognizer 

The PA is in the initial state before receiving any messages. 
Every time a message describing an event and its predecessors 
arrives from the stabilizer, the PA compares the received 
information with the transitions directed from the current state. If 
both the event and its predecessors match one of the transitions, 
the automaton moves to the next state according to the matched 
transition. An example is illustrated in Figs. 4-5 and 4-6. One 
important assumption in our event recognition framework is that 
the target system (eventually) has full knowledge about every 
event that occurs and its predecessor events, where these events 
appear in some DPE used to construct the PA and/or reflect 
synchronization events. 

cc 1) 
CC b d) 

Cd c) 
Cc b d) 

PA 

Figure 4-5: An event recognizer for a;(b&(c;d));e 

Targeted system 
events 

1;1i) 
(d c) 
(c a) 

(e b 4 

stabilizer 
events 

8:) 

(c 4 
(d c> 
(e b 4 

PA 
state transitions 
o-->l 
l-+2 

2-->4 
4-->6 
6-->7 

Figure 4-6: PA Description 

4.3. Constructing Predecessor Automata From Safe 
DPEs 

Given a safe DPE, a predecessor automaton can be constructed. 
There are two steps, involving transformations of subexpressions 
and translation using an attribute grammar [Knuth 681. The fist 
step is to transform each expression into a new expression where 
there are no s&expressions R*, such that E E R. For example, 
@*I* can be transformed into e*. This guarantees that the 
constructed automaton has no transition cycles 6(q,, (el pl)) = q2, 
6(q2. (e,pp)) = 43. . . . . @q,,, (e,p,)) = qt, such that e; = E, for all i, 
0 < i 5 n. The transformation is based on an extension to 
Foster’s conversion theorem [Foster 861. For any DPE R, there is 
a DPE N(R) such that (1) N(R) does not contain the empty string, 
and (2) R* = (N(R))*. If E c R, N(R) = R. Otherwise, there 
are four cases. 

l.lfR=P*,N(R)=N(P) 

2. If R = P+Q, N(R) = N(P) + N(Q) 

3. If R = P;Q, N(R) = N(P) + N(Q) 

4. If R = P&Q, N(R) = (N(Q) & N(P)) + N(Q) + N(P) 

The second step applies an attribute grammar that specifies how 
to construct a PA. A DPE is fust parsed into an abstract syntax 
tree, where three attributes are attached to each node of the tree, 
AUTO, PRED and LAST. The AUTO attribute of a node n will 
contain an automaton that represents the subtree (subexpression) 
rooted at node n. A subtree can be considered as a subexpression 
or a PA. The PRED attribute of n represents its predecessors, the 
events that might precede any event occurring in the subtree 
rooted with n. The LAST attribute of II refers to the events 
without successors in the subtree. The values of PRED and 
LAST have the form (eu,,~...r\e~,~) v . . . v (e,,,,-+..~e,,~,), 

where the events related with (A) occur concurrently and the 
events related with (v) occur exclusively. The semantic rules 
associated with the grammar are shown in Fig. 4-7. 

This is not a syntax-directed translation system like YACC 
[Johnson 781. Instead, the semantic rules describe the relations 

between a node in the abstract syntax tree and its parent node, and 
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between the node and its children nodes. A semantic rule is 
evaluated only when its dependent attribute(s) is changed [Reps 
841. instead of at the time of parsing. For example, the fist 
semantic rule, 
"dpe.AUTO = new PAtEVENT, dpe.PRED)", 
which is associated with a leaf node, is evaluated when its PRED 
attribute is changed. 

dpe : EVENT 
I 
dpe.AUTO = new-PA(EVENT, dpe.PRED); 
dpe.LAST = last-events(dpe.AUTO); 

; ,(, dpel ‘)’ 
1 
dpe’.PRED = dpe.PRED; 
dpe.AUTO = dpe’.AUTO; 
dpe.LAST = dpe’.LAST; 

1 
1 dpe’ ‘;’ dpc * 
i 
dpe’.PRED = dpe.PRED; 
dpe2.PRED = dpel.LAST; 
dpe.AUTO = concat(dpe1.AUT0,dpe2.AUTO); 
dpe.LAST = dpe2.LAST; 

1 
1 dpe’ ‘+’ dpe 2 
{ 
dpe’.PRED = dpe.PRED; 
dpe2.PRED = dpe.PRED; 
dpe.AUTO = union(dpe1.AUT0,dpe2.AUTO); 
dpc.LAST = dpel.LAST v dpe2.LAST; 

I 

t”” 
el >*9 

dpe’.PRED = dpc.PRED- 
dpe.AUTO = repeat(dpei.AUTO); 
dpe.LAST = dpel.LAST v E; 

1 
1 dpe’ ‘&’ dpc 2 
1 
dpe’.PRED = dpe.PRED; 
dpe’.PRED = dpe.PRED; 
dpe.AUTO = compose(dpe’.AUTO,dpe’.AUTO); 
dpe.LAST = last-events(dpe.AUTO); 

1 

Figure 4-7: Attribute Grammar for DPEs 

The function last-events, with a PA as an input parameter, 
obtains the last events that might occur in the PA. The return 
value has the same form as LAST and PRED. The function 
new PA creates a new automaton with two input parameters, an 
evenre and its predecessors p. The new automaton has one start 
state p, one final state 9 and one transition 6(p (e PRED(e))) = q. 
The attribute grammar evaluation is started by setting the PRED 
attribute of the root to E; every node will eventually be visited a 
few times, as changes are propagated around the tree. The root is 
the first node visited, since its PRED is changed. For each node e 
visited, if e is a leaf, AUTO is assigned a new PA and LAST is 
set to e. Since the values of PRED and AUTO are changed, its 
parent node will be visited again according to the semantic rules 
associated with the parent. If the node is not a leaf, it propagates 
the value of PRED down to its child nodes, and when the node is 
eventually visited again, it constructs a new PA from its 
children’s PAS according to the operators and properly sets the 
value of its LAST attribute. The functions concat is to 
concatenate two PAS, union is the union of two PAS, and 

repeat is the Kleene closure of a PA. These fuctions are the 
same as those for FSAs. The function compose concurrently 
composes two PAS into one, as explained in the next section. 
When the evaluation is complete, the AUTO attribute of the root 
contains the PA for the given DPE. 

4.4. Concurrent Composition 
The concurrent composition of two PAS creates a new PA that 
preserves all possible states and all possible transitions as if the 
two original automata operate concurrently. As explained above, 
the concurrent composition of two finite state automata will lose 
the concurrency information, while the concurrent composition of 
two PAS will not. An example is shown in Fig. 4-8. 

I 

FSAl 

FSA2 

FSAl&FSAZ 

Figure 4-8: Concurrent composition of two FSAs 

Figure 4-9: Concurrent composition of two PAS 

Composition of two PAS can be divided into two cases, those that 
do and do not involve synchronization. Synchronization occurs 
when two automata have common events (or reflect components 
of synchronization events). Assume the first automaton has n 
states, so, sl, . . . . snel, so is the initial state, and the second 
automaton has m states, zo, zt, . . . . z,,,t, z. is the initial state. In 
the case that two PAS have no synchronization, the composed 
automaton will have n xm states, 9r r, q1 2, . . . . qnmel, qn m. The . I 
state qij is the combined state of the state si in the first automaton 
and the state zj in the second automaton. The transitions from qIj 

to qkj in the composed automaton are the transitions from si to sk 
in the first automaton, and the transitions from si j to qi, in the 
composed automaton are the transitions from zj to zi in the second 
automaton. There exist no transition between 9ij and 9t.,K i # h 
and j # k. In the case where two PAS do have synchronization, 
there must exist a transition (ei pi) in the first automaton and 
transition (ej pj) in the second automaton, such that ei = ej. 
Assume sk and s1 are the pre-state and the post-state for transition 
(ei pi) in the first automaton, and zs and z,, for (ej pj) in the 
second. The composed PA will have a combined state qk g of sk 
and z g, a combined state 91 ,, of s1 and zh, and a transition 
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behavior to be replayed by re-execution or simulation over and 
over again until the bugs are located. We assume this is possible, 
but do not address the mechanism here. 

4.5. Related Work 
EBBA [Bates 88b] employs ~shufle automata [Bates 871 as a 
formal model for event recognition in distributed systems. 
Shuffle automata recognize concurrent events based on the 
interleaving semantics. That- is, shuffle automata cannot 
distinguish two causally independent events interleaving with 
each other from two causally dependent events. 

Shuffle automata are an FSA-like formalism that consist of a set 
of states and a finite state control that effects transitions from an 
initial state to some final state. An important difference between 
the shuffle automaton and an FSA is that in order to make 
transitions in the shuffle automaton, the finite state control 
examines sets of input symbols, rather than individual symbols. 
At run-time, the recognizer will accumulate the incoming events 
in a set. Whenever a subset of the accumulated event set becomes 
sufficient to make a transition, the finite control then goes from 
the current state to another state. 

5. Debugging Concurrent Programs 
Most concurrency-related bugs involve problems with 
synchronization among multiple threads, which may share 
information in a number of different ways, including shared 
memory, message passing, files and devices, and human 
interaction. In this section, we demonstrate that DPEs are useful 
for aiding detection and correction of three typical kinds of 
synchronization errors: race conditions, deadlocks and 
starvations. 

A race condition happens when two or more concurrent threads 
interact with some common resources without properly 
constraining the ordering of interactions, resulting in a 
computation that is nondeterministic and incorrect. To eliminate 
the race conditions, appropriate synchronization must be added to 
the program so that the crucial interactions are properly ordered. 
Two types of synchronization mechanisms are frequently 
adopted: (1) wait-resume and (2) rollback-retry. Wait-resume 
constrains the ordering of interactions by blocking threads from 
competing for resources, but may lead to a deadlock situation 
when two or more threads wait for each other indefinitely due to 
lack of knowledge of the global situation. In the rollback-retry 
type of synchronization, a thread constrains the ordering of 
interactions by expecting other threads to complete their crucial 
interactions while temporarily releasing its resources. This may 
lead to a starvation situation where one or more threads repeats 
the rollback-retry cycle indefinitely. In the dining philosophers 
example, there is a deadlock when every philosopher has a fork in 
his right hand and is waiting for the fork on his Ieft-hand side; 
there is starvation when a philosopher repeatedly picks up the 
forks on his right-hand side and then puts down the fork because 
the fork on his left-hand side is always unavailable. 

It is difficult to debug programs with race conditions, deadlocks 
or starvations, where bugs may be embedded in (1) the 
synchronization primitives and/or (2) the program units that apply 
the synchronization primitives. It is also difficult for 
programmers to detect, by observing the external program 
behavior, whether the error is caused by buggy synchronization 
primitives or buggy program units. We assume in this paper that 
synchronization primitives are always correct, and are thus 
concerned only with (2). One concern in debugging is 
reproducibility, since it is desirable for the identical program 

5.1. Debugging Race Conditions 
There are two necessary conditions for race conditions: (1) 
concurrent threads share common resources, and (2) the particular 
events within these threads that compete for the common 
resources are causally independent. Therefore, debugging a 
program with race conditions can be treated as a process of 
establishing relations of causal dependence and detecting whether 
the critical events that access the common resources occur 
causally independently. 

program producer-consumer; 
var 

s: semaphore := 1; 
deposited: semaphore := 0; 

procedure producer; 
var next: integer; 
begin 
while true do 
begin 
next = calculate(); 
P(s); - ----------------------, (1) 
enqueue(next); ----------> (2) 
V(s); 
V(deposited); 

end; 
end; 

procedure consumer; 
var next: integer; 
begin 
while true do 
begin 
P(deposited); 
P(s); 
next = dequeue(); 
VW; 
print(next); 

end; 
end; 

begin 
para-do 
producer(); 
consumcr(); 

para-end 
end 

Figure S-l: Producer-Consumer Program 

For example, Fig. 5-1 shows a producer-consumer program, 
where the producer thread puts numbers in a queue, and the 
consumer thread gets and prints the numbers from the queue 
when the queue is not empty. A semaphore s and its operations 
P ( s ) and v ( S) are used for synchronization. Assume the P(s) 
at point (1) is missing from the program. During execution, the 
queue data structure may become inconsistent. In order to debug 
the program, the first step is to define, using DPEs, the 
synchronization events in the program (see section 3.1). 

Then, in the case where a race condition between producer and 
consumer is suspected, the second step is to describe, in DPEs, 



the expected misbehavior that enqueue and dequeue occur 
concurrently. The expression 
“enqueue & dequeue() ( print(s); break, )” instructs the 
debugger to print the value of semaphore s and stop the execution 
when enqueue and dequeue occur concurrently. The third 
step is to replay the program execution. The program execution 
will stop at (2) and the value of s is printed out. The debugger 
will detect the true concurrency of enqueue and dequeue, no 
matter how the event messages interleave with each other. Some 
interleavings might accidently produce correct results and others 
produce the wrong results; in both cases, the debugger will detect 
the race condition. 

5.2. Debugging Deadlocks 
There are four necessary conditions for deadlock [Coffman 711: 
(1) Threads claim exclusive control of the resources they require 
(mutual exclusion condition), (2) Threads hold resources already 
allocated to them while waiting for additional resources (wait for 
condition), (3) Resources cannot be removed from the threads 
holding them until completion (no preemption condition), and (4) 
A circular chain of threads exists in which each holds one or more 
resources that are requested by the next thread in the chain 
(circular wait condition). Debugging a program with deadlock 
requires the same description of synchronization events as in 
debugging a program with race conditions, but has a more 
complicated expected program behavior. 

One example is that lock and un 1 oc k are used to allocate 
resources before reference to the data. The first three conditions 
are determined by the synchronization primitives, and the fourth 
condition can be established by constructing a wait-for graph 
during debugging. The synchronization events can he described 
as “unlock(X).exit; lock(X).exit ( sync-event($l, $2); }“. The 
expected program behavior can then be described as “lock(X).exit 
(hoId($l .pid, X)); unlock(X).exit (unhold($2.pid, X)) ” and 
“lock(X).enter; wait0 [ wait-for($l.pid,X); check-deadlock()); 
resume(); lock(X).exit (release($4.pid,X)) “, where (1) the 
hold ( ) function informs the debugger that the thread of the 
event ($l.pid) holds the resource X, (2) unhold() tells the 
debugger that the associated thread ($3.pid) does not hold the 
resource X any more, (3) wait for ( ) means that the associated 
thread ($l.pid) waits for resource X, (4) release () that the 
associated thread no longer waits for the resource X, and (5) 
check deadlock asks the debugger to check whether a 
deadlock exists according to the information provided by the first 
four functions. 

5.3. Debugging Starvations 
Starvation is a special type of race condition where a set of 
causally independent events might repeat indefinitely. In the 
example of dining philosophers, every philosopher might repeat 
picking up the fork on his left-hand side and putting it down. One 
possibility for detecting this is to store the program state every 
time a philosopher picks up his right fork and compare it with the 
previous states. If there exists an identical previous state and 
between them no progress has been made, there may (or may not) 
be an error. Detecting starvation is probably more amenable to 
program verification than debugging, but DPEs can cheek the 
correctness of verification assertions during execution. 

6. Conclusions 
We have defined a formal notation, DPEs, for modeling 
concurrent behavior in the context of debugging parallel 
programs. There are five subclasses of DPEs. four equivalent in 
power to a member of a hierarchy of Petri net models and the fifth 
a subset of extended Petri nets. We have developed an efficient 
implementation vehicle for the third subclass of DPEs, which 
models safe concurrency. We have briefly described the 
application of DPEs to practical concurrent debugging problems, 
from a viewpoint of problem-oriented behavior. DPEs must be 
combined with conventional debugging mechanisms to observe 
program-oriented behavior, for example, to support single- 
stepping among statements and modification of the program state 
at a breakpoint. 
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