
Parallelizing a Discrete Event Simulation Application Using
the Habanero-Java Multicore Library

Wei-Cheng Xiao
Department of Computer
Science, Rice University

6100 Main St.,
Houston, TX, USA
garry@rice.edu

Jisheng Zhao
Department of Computer
Science, Rice University

6100 Main St.,
Houston, TX, USA

jisheng.zhao@rice.edu

Vivek Sarkar
Department of Computer
Science, Rice University

6100 Main St.,
Houston, TX, USA

vsarkar@rice.edu

ABSTRACT
Discrete event simulation (DES) has been widely adopted
for simulating communication systems such as computer net-
works. As the network size and complexity of communica-
tion patterns increases, the complexity of simulation tools
and the execution time of DES also increases. Parallelizing
DES programs using multiple processing units reduces the
overall execution time; however, unlike regular programs,
data dependencies in DES are usually determined at run-
time, which makes exploiting potential parallelism in the
program very challenging. In this paper, we build a par-
allel version of a DES program written in Java using the
Habanero-Java library (HJlib), which is a lightweight and
programmer-friendly parallel Java 8 library. While the DES
problem benefits greatly from HJlib’s support for lightweight
tasks and efficient parallelism based on work stealing, it also
pushed the boundaries of the standard primitives available
in HJlib. In particular, our study motivated the addition
of fine-grained locking to the Habanero execution model, in
a manner that still preserves Habanero’s deadlock freedom
guarantees. This extension in turn led to additional opti-
mizations of the DES implementation relative to the original
Galois implementation. Our initial results are encouraging,
and point to further opportunities for exploiting parallelism
in challenging applications like DES on manycore hardware
platforms in the future, especially as the system being sim-
ulated increases in size and complexity.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming – Parallel Programming

General Terms
Parallel programming, Java, Simulation, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PMAM ’15, February 7-8, 2015, San Francisco Bay Area, USA
Copyright 2015 ACM 978-1-4503-3404-4/15/02 ...$15.00
http://dx.doi.org/10.1145/2712386.2712402

Keywords
Habanero Java, irregular program, discrete event simulation

1. INTRODUCTION
In the real world, constructing, evaluating, and analyzing

communication systems, such as computer networks, electric
circuits, etc, usually consumes lots of time and resources,
including preparing the hardware, setting up the environ-
ment, and performing experiments. Discrete event simu-
lation (DES) offers a cheaper and faster way to build and
test such communication systems in the simulated world by
leveraging the flexibility of simulation software and the avail-
ability of powerful computers. DES simulates message pass-
ing and processing in communication systems on an event-
by-event basis. For each entity in a communication system,
new events can be generated from the initial states of the
system or upon receiving messages from other entities in
the system. An event can cause state changes in some enti-
ties, which may generate new events or messages and further
change the states of other entities in the system. Each event
is associated with a timestamp, which is usually the logical
time at which the event is generated. When the simulation
is running, the simulated time proceeds as events are gener-
ated and processed, and with the constraint that events are
processed in a manner that is consistent with their times-
tamp order.

Although DES saves time and effort in testing and an-
alyzing communication systems compared with real-world
experiments, running simulations of large and complicated
systems still takes a long time. One opportunity to speed
up these simulations is to use parallel computing, especially
with the increased availability of multicore and manycore
processors. Since multiple events might be generated and
processed by different entities in the system and independent
of each other, this is where parallelism could be exploited.
However, it is well known that parallelization of an applica-
tion like DES can be very challenging, compared to applica-
tions in other domains. Improper parallelization of the sim-
ulation may create livelock, deadlock, or starvation, or even
violate the dependency of events and lead to incorrect simu-
lation results. Unlike regular programs, data dependency in
parallel DES is usually determined at runtime, which makes
exploiting potential parallelism in the program more chal-
lenging. Due to the challenges mentioned above, designing
a correct and efficient parallel version of a sequential DES
program may be complicated and thus not programmer-
friendly. In this paper, we adapted a DES program that

86

modeled logic circuit simulation in the Java version of the
Galois system [1, 12] and parallelized the simulation pro-
gram using the Habanero-Java library (HJlib) [13], which
is a lightweight and programmer-friendly parallel Java 8 li-
brary implementation. HJlib allows programmers with basic
Java knowledge to convert sequential programs, either reg-
ular or irregular, into parallel programs without worrying
about the details of internal task or thread management.
We used the async/finish model provided in HJlib to spawn
and synchronize tasks in our implementation, in which each
new task is created to process events for one logic gate at a
time. The work-stealing and load balancing features inside
HJlib provided efficient task scheduling and resource man-
agement, which simplified the task of creating a parallel im-
plementation of the logic circuit simulation. While the DES
problem benefits greatly from HJlib’s support for lightweight
tasks and efficient parallelism based on work stealing, it also
pushed the boundaries of the standard primitives available
in HJlib. In particular, our study motivated the addition
of fine-grained locking to the Habanero execution model, in
a manner that still preserves Habanero’s deadlock freedom
guarantees. This extension in turn led to additional opti-
mizations of the DES implementation relative to the original
Galois implementation.
Our initial results are encouraging, and point to further

opportunities for exploiting parallelism in challenging appli-
cations like DES on manycore hardware platforms in the
future, especially as the system being simulated increases in
size and complexity.
We ran the logic circuit simulation with three different cir-

cuit and initial event settings on a POWER7 multiprocessor
with up to 32 cores. Compared with Galois, our HJlib ver-
sion reduced the execution time by 44.5-79.7%. We believe
that HJlib could also be used to parallelize DES for com-
munication systems with larger scale and higher complexity,
such as network simulators [2], in the future.
The rest of this paper is organized as follows. In Section 2,

we discuss related work in approaches to implementing DES
in parallel. Section 3 presents the background on HJlib, in-
cluding the work-stealing and load balancing features. We
describe the detailed implementation of our HJlib version of
parallel logic circuit simulation, including how we exploit po-
tential parallelism in the program, in Section 4. Performance
evaluation results for both Galois and our HJlib versions of
parallel logic circuit simulation are shown in Section 5. Fi-
nally, we conclude this paper and describe our future work
in Section 6.

2. RELATED WORK

2.1 Parallel discrete event simulation
There has been much research on the area of parallel dis-

crete event simulation (PDES) for over two decades. In a
DES, parallelism can be exploited in various ways [23,26], in-
cluding 1) applying a parallelizing compiler to the sequential
simulation implementation, 2) separating independent simu-
lation runs on multiple processors [4], 3) running subroutine
calls in the simulation on different processors, 4) maintain-
ing a global event list and having multiple processes access
and process the events in the list simultaneously [17], and
5) decomposing the simulation into multiple components in
time or space domain and running the components on mul-
tiple processors at the same time [6, 21]. In this paper, we

parallelize the simulation program using the last approach,
dividing events in the system in the space domain, through
which we may have the greatest potential of exploiting par-
allelism as the system being simulated increases in size and
complexity.

To ensure correctness in a PDES, event processing algo-
rithms must obey the causality constraint : For two events
e1 and e2, if e2 depends on e1, then e1 must be executed be-
fore e2; otherwise an error may occur. As shown in [11,21],
a PDES obeys the causality constraints if and only if every
logical process (LP) executes their local events in timestamp
order, which is called the local causality constraint. Algo-
rithms that obey the local causality constraint fall into two
categories–conservative and optimistic.

The development of conservative simulation algorithms
starts from the work by Chandy, Misra, and Bryant [5,6,21].
In conservative algorithms [9, 10, 25], each LP processes its
local events strictly in timestamp order. Each time an LP
runs, it is allowed to process only safe events, which are lo-
cal events that have timestamps smaller than any events the
LP may receive in the future; otherwise, the LP must block
itself, which may cause deadlocks in the system. Deadlock
avoidance using null messages [21] as well as deadlock de-
tection and recovery [7] mechanisms were proposed to solve
the problem of possible deadlocks. In this paper, we fo-
cus on demonstrating the efficiency and simplicity of using
the high-level parallel programming primitives available in
HJlib. Although we use conservative algorithms and mecha-
nisms similar to the null messages in the simulation program,
the simulation program we choose to study is simple, and
LPs (tasks) in our simulation do not need to block them-
selves. Also, we do not need null messages in the middle of
event processing but only after each node finishes processing
all its local events.

On the other hand, in optimistic algorithms [3,24,27], an
LP may process its local events out of the timestamp order,
which may reduce the amount of time the LP spends on
idling or blocking. This mechanism, however, could cause
incorrect results. Jefferson and Sowizral [15, 16] proposed a
Time Warp mechanism, in which the LP performed a roll-
back when an out-of-order events was detected, to solve this
problem. When performing the rollback, the LP restores the
simulation from a saved state of simulation time no later
than current local clock and restarts the simulation from
that state.

2.2 Galois
Galois [1, 22] is an object-based optimistic parallelization

system built for efficiently running irregular applications.
There are three main aspects in this system:

• library constructs called optimistic iterators for pack-
aging optimistic parallelism as Iteration over sets;

• runtime scheme for detecting the conflicting shared
data accesses and recovering from those unsafe ac-
cesses;

• assertions about methods in class libraries.

Its optimistic iterators include: set iterator (i.e. unordered)
and ordered-set iterator. In both of these two iterators,
the set elements are executed as activities that are running
in parallel.

87

Galois offers a sequential, object-oriented programming
model which is closed to sequential Java programming model,
and Galois runtime is in charge of managing conflict detect-
ing and recovering for those speculatively parallelized ac-
tivities. Thus, users can use Galois class library to build
parallel applications, and the code pattern is like the sim-
ple workset based approach. Based on the evaluation shown
in [19, 22], the parallel applications written in Galois ap-
proach presented good scalability on state-of-art multicore
system. However, to use Galois, users still have to learn
the Galois program pattern, i.e., how to build the workset
with optimistic iterators and how to judge the granularity
of workset elements (i.e. the parallel activities) and adapt
to the Galois model. While in the approach we presented in
this paper, we used a Java-based lightweight task-parallel li-
brary, which provides language constructs that enables users
to easily manipulate task creation and synchronization de-
signs.

The Galois project has undertaken a deep analysis of avail-
able parallelism for many irregular programs including DES.
Figure 1 shows the available parallelism that they observed
in the DES algorithm for an input circuit of a 6x6 tree mul-
tiplier [1]. Initially the parallelism is limited because of the
small number of input ports. Then the parallelism builds
up due to large fanouts in the middle of the circuit. Finally,
the parallelism decreases again due to the small number of
output ports. This insight sets expectations for the lim-
ited speedups that we will see later in the paper, while also
offering hope that larger speedups may be observed when
simulating larger circuits.

Figure 1: An example of available parallelism in DES
(source: Galois website [1])

3. HABANERO JAVA LIBRARY
Habanero-Java library (HJlib) [13] is a library implemen-

tation of the pedagogic Habanero task-parallel programming
model. HJlib is built using lambda expressions and can run
on any Java 8 VM without any other dependencies. This
library supports a series of parallel programming constructs
that allow users to write task parallel Java program using

different parallel programming patterns, including data par-
allelism, pipeline parallelism, stream parallelism, and divide-
and-conquer parallelism.

3.1 Task spawning and synchronization
async: The statement“async (()-><stmt>)”causes the

parent task to create a new child task to execute <stmt>
, asynchronously (i.e. before, after, or in parallel) with the
remainder of the parent task (see Figure 2).

//Task T0(Parent)

finish { //Begin finish

 async

 STMT1; //T1(Child)

 //Continuation

 STMT2; //T0

} //Continuation //End finish

STMT3; //T0

STMT2

async

STMT1

terminate
wait

T1 T0

STMT3

Figure 2: Async/Finish Model

finish: is a generalized join operation (i.e. task synchro-
nization). The statement “finish (()-> <stmt>)” causes
the parent task to execute <stmt> and then wait until all
async tasks created within <stmt> have completed, includ-
ing transitively spawned async tasks. Each dynamic in-
stance TA of an async task has an unique Immediately En-
closing Finish (IEF) instance F of a finish statement during
program execution.

In an HJlib program, the user can create an unbounded
number of dynamic tasks and leave the responsibility of
scheduling these tasks on a fixed number of processors to
the HJlib runtime work-stealing mechanisms.

3.2 Mutual exclusion
HJlib also provides an isolated construct that supports

weak isolation, which means that any dynamic instance of
an isolated statement is guaranteed to be performed in mu-
tual exclusion with respect to all other potentially paral-
lel dynamic instances of isolated statement. The statement
“isolated (var1, var2 ... vari, ()-> <stmt1>)” guarantees
that each instance of <stmt1> will be performed in mutual
exclusion with all other potentially parallel interfering in-
stance of“isolated (varj , varj+1 ... varni, ()-><stmt2>)”,
if the intersection between two sets var1, var2 ... varii and
varj , varj+1 ... varn is not empty. The statement “isolated
(()-> <stmt>)” guarantees mutual exclusion between each
instance of <stmt> with all other isolated statements (i.e.
this implies that all objects are involved in mutual exclusion
for <stmt>). A key semantic property for HJlib is the dead-
lock freedom property, which states that no HJlib program
written using async, finish, and isolated constructs can
deadlock. (This property holds with some additional HJlib
constructs as well, including futures, barriers, phasers, and
actors.)

Based on our experience gained with the DES application,
we propose allowing the two lock APIs to be used in HJlib
programs:

• TryLock(var): tries to acquire a runtime managed
lock for the given object (i.e. var), and returns true if
the acquisition is successful and false otherwise;

• ReleaseAllLocks(): releases all of the locks held by
the current async task.

The implementation of these APIs is flexible. In this pa-
per, we chose Compare-And-Swap (CAS) objects provided
from Java Utility of Concurrency (JUC) as the low level
implementation. For each lock object, we create a corre-
sponding AtomicBoolean object with initial value false,
and the boolean value of the object indicates whether the
lock is currently held by some node or not. TryLock() calls
AtomicBoolean’s member function compareAndSet() to
atomically check and set the value to true. For the func-
tion ReleaseAllLocks(), it calls another member func-
tion set() to set the values of all the AtomicBoolean
objects that are currently held by a node to false to release
the locks. Though these lock APIs are lower-level concur-
rency constructs than other HJlib primitives, they are im-
portant for exploiting parallelism in the DES application.
Further, these two specific APIs are guaranteed to not cre-
ate a deadlock either. Livelock is a possibility, however, and
we will later discuss how livelock is avoided in our imple-
mentation. Besides, we believe that the use of TryLock()
and ReleaseAllLocks() APIs incurs less overhead in Java
programs, compared to two-phase locking protocols.

4. LOGIC CIRCUIT SIMULATION
In this paper, we choose a logic circuit simulation imple-

mentation and parallelize it using HJlib as a case study for
DES applications. We obtained the sequential version of
logic circuit simulation implementation from the Java ver-
sion of the Galois system [1], removed the dependencies on
the Galois library, restructured the code for easier and more
efficient parallelization, and applied HJlib to parallelize the
simulation program. Detailed scenarios and algorithms for
the logic circuit simulation are presented in Section 4.1. Sec-
tion 4.2 describes the sequential version of the DES simu-
lation, and Section 4.3 presents the details of implementing
DES using HJlib. Section 4.4 discusses the similarities and
differences between the HJlib and Galois implementations.
In Section 4.5, some parallel DES-specific optimizations are
introduced.

4.1 Logic circuit simulation using DES
In the simulation, a logic circuit is represented as a di-

rected graph. Each logic gate in the circuit is a node in the
graph, and the connections of the input and output ports of
neighboring logic gates are represented as directed edges in
the graph. A logic gate has one output port and one or two
input ports, depending on the type of the gate. Beside the
logic gates, each input and output of the circuit is also repre-
sented as an input node and output node respectively in the
graph. In the simulation, we assume that each input port
of a logic gate is connected to one and only one neighboring
gate’s output port, whereas the output port of a logic gate
may connect to the input ports of one or more neighboring
gates (fanout). An input node only has outgoing edge(s),
and an output node only has an incoming edge. We also
assume that there is no loop in the circuit/graph. Figure 3
shows an example of a logic circuit and its corresponding
graph representation.
Every electric signal in the circuit is represented as an

event in the simulation, and signal propagation is simulated
as message passing between neighboring nodes in the graph.

(a) Logic circuit

(b) The graph representation

Figure 3: An example of a logic circuit and its graph repre-
sentation

Signals generated at circuit inputs are called initial events
in the simulation. At the beginning of a simulation, a logic
circuit in its graph representation along with a list of initial
events for each input node are given as the input to the sim-
ulation. During the simulation, each initial event generated
by the input nodes will cause new messages and additional
events to be generated, processed, and propagated through
the edges in the graph to the output nodes. The simulation
ends after all the events, including initial events and events
generated during the simulation, are processed. Every event
has a timestamp associated with it. The timestamp is the
time when an event should be processed by the node which is
holding that event. A delay is applied between the time the
node processes an event and the time the node’s neighbors
receive the processing result. This simulates signal process-
ing time of a logic gate and signal propagation time between
gates in the real world. In the simulation, the signal prop-
agation time is assumed to be constant, and for each type
of logic gate, a constant processing delay is assigned in the
program.

During the simulation, there might be multiple events that
have been generated and queued but not yet processed. In
order to correctly simulate the behavior of a logic circuit,
events must be processed in their timestamp order. Process-
ing all the events globally in the system in order is sufficient
but not necessary to guarantee correctness of the simula-
tion, and that limits the room for parallelism. Chandy and
Misra [6] proposed a distributed algorithm for DES, which
provides us more opportunities to parallelize the logic circuit
simulation. Their simulation algorithm removes the require-
ment of global event controlling and allows every individual
station (node) to process its local events independently and
simultaneously; however, nodes must follow certain rules to
guarantee the correctness of the simulation. For example,
every node must process its local events in the timestamp
order, and it can process events only after having received
events from all its inputs. By applying their solution to the
logic circuit simulation, each node maintains its own local
clock and event queue. A node’s local clock is defined as the
minimum of the timestamps of the last event the node has
received on all its input ports. All the events in the node’s

89

Algorithm 1 Pseudocode for the sequential implementa-
tion of the logic circuit simulation

Input: G: the graph representation of the input circuit, I:
the set of input nodes in graph G, I ⊂ G, and initial
events of each node in I

1: WS ← I � WS is the workset.

2: for node n in WS do
3: WS ← WS − n

4: Simulate(n)

5: for node m in n ∪ n.neighbors do
6: if isActive(m) then
7: WS ← WS ∪m
8: end if
9: end for
10: end for
11: � Simulation terminates here

12: function Simulate(n)
13: for event e in n.readyEvents do
14: newEvent ← e.process()
15: for node m in n.neighbors do
16: m.addEvent(newEvent)
17: end for
18: n.readyEvents ← n.readyEvents− e
19: end for
20: end function

21: function isActive(n)
22: n.updateLocalClock()
23: n.updateReadyEvents()
24: return n.readyEvents �= φ
25: end function

event queue with timestamp smaller than or equal to the
node’s local clock are called ready events. Ready events are
safe to be removed from the queue and processed in their
timestamp order to generate new events for the neighboring
nodes in the fanout. Since ready events are processed in
the timestamp order, new events will also be generated and
stamped in the order of time, which means, for any input
port of any node in the graph, events come in the order of
time. Thus, for any node, any new event coming from any
input port of the node will have a timestamp greater than
or equal to the timestamps of all current ready events of the
node. This proves that by processing ready events only, each
node is guaranteed to process all events it ever receives in
the timestamp order throughout the whole simulation. Note
that two ready events with the same timestamp can be pro-
cessed in any order, and that does not affect the correctness
of the final results.
In the simulation, due to the absence of global control,

we need a mechanism for each node to know whether there
will be additional events coming from the input port(s) or
not. By applying Chandy and Misra’s algorithm [6], af-
ter an input node sends out all its initial events, it sends
a NULL message with timestamp infinity to inform all its
neighboring nodes in the fanout that there will be no new
events anymore. Similarly, after a normal node has received

Algorithm 2 Pseudocode for parallel logic circuit simula-
tion using HJlib

Input: G: the graph representation of the input circuit, I:
the set of input nodes in graph G, I ⊂ G, and initial
events of each node in I

� Simulate() and isActive() are shared from Algo-
rithm 1.

1: finish Run() � Simulation terminates here.

2: function Run()
3: for node n in I do
4: async RunNode(n)
5: end for
6: end function

7: function RunNode(n)
8: for node m in n ∪ n.neighbors do
9: if TryLock(m) �= successful then
10: ReleaseAllLocks()
11: if m �= n then
12: async RunNode(n) � try n again later
13: end if
14: return
15: end if
16: end for

17: Simulate(n)

18: RN ← φ
19: for node m in n ∪ n.neighbors do
20: if isActive(m) then
21: RN ← RN ∪m
22: end if
23: end for
24: ReleaseAllLocks()
25: for node m in RN do
26: async RunNode(m)
27: end for
28: end function

NULL messages from all its input ports, it sends out a NULL
message via its outgoing edges. After all the output nodes
receive a NULL message, the simulation terminates.

4.2 The sequential implementation
Algorithm 1 shows the pseudocode of the sequential im-

plementation of the logic circuit simulation application. The
algorithm is adapted from the DES benchmark implemen-
tation in the Galois system [12]. In the implementation, a
workset (WS) is maintained to contain current active nodes
in the system. An active node is defined as a node which
has one or more ready events in its event queue. All initial
events in the input nodes are ready events. Active nodes
in the workset can be pulled out from the workset and run
in any order. When an active node is running, its ready
events are removed from the event queue and processed
(by calling process()) one-by-one in their timestamp or-
der, and newly generated events are then “sent” (through
addEvent()) to the event queues of the neighbors in the
fanout. The call e.process() simulates the operation of a

90

logic gate upon event e and adds the signal processing and
propagation delay to the timestamp of e as the timestamp
of the new event newEvent. Since the neighboring nodes
have received new events after the ready event processing,
their local clocks may need to be advanced, and new local
clocks may cause some existing events in their queues to be-
come ready events. Functions updateLocalClock() and
updateReadyEvents() are called to update the local clock
and ready events of a node respectively. If any node is found
to become active in this run, the node is then added to the
workset. Since active nodes in the workset are independent
of each other and can be run in any order, it is possible to
run different active nodes in parallel. Next, we will describe
our parallel implementation using HJlib.

4.3 The parallel implementation using HJlib
We slightly modified the structure of the sequential im-

plementation and parallelized it using HJlib. Algorithm 2
shows the pseudocode of our parallel implementation. In our
implementation, we used the async/finish model in HJlib to
spawn and synchronize tasks that are created during the
simulation. When the simulation starts, a new task is cre-
ated for each input node in the graph via the async state-
ment. Similarly, during the simulation, every time a node
is found to be active, a new task is also created in the same
way for that node to be run later. Upon the creation of
a task, the task is pushed into a deque and waits for fu-
ture execution. When a task is ready to be executed, it is
popped out from the deque it is currently located at and
executed on a thread. When the task is running, the func-
tion RunNode() is called to process the ready events of
the corresponding node. HJlib manages tasks, task deques,
and threads internally, delegating each task to an available
worker thread (typically one per core) through work-stealing
and load balancing to minimize overheads and maximize the
overall efficiency. Note that in our implementation, task de-
ques replace the workset in the sequential implementation
to the queue active nodes that are ready to run.
If multiple active nodes are running in parallel without

any control, data races may exist since multiple nodes may
be adding new events to the event queue of the same neigh-
bor simultaneously. To avoid data races, we use locks to
prevent concurrent access to the same node. Each node is
associated with a lock, and each lock can be held by at most
one node at the same time. When an active node is ready
to run on a thread, it first tries to acquire the locks of itself
and all its neighboring nodes in the fanout. If any of the tri-
als fails, it releases all the locks it has successfully acquired
and tries again later by spawning a new task on itself via
the async statement; otherwise, it goes ahead to process
the ready events in its event queue, generates new events
based on the processing results, and adds the new events to
its neighbors’ event queues. After that, the node releases all
the locks it has acquired in this run. Note that we can choose
to have each node maintain a concurrent priority queue to
store local events and not to use any locks in the user’s
implementation, which may increase the parallelism at run-
time. However, this may lead to too high overhead especially
when the number of events is large. This is because every
time a concurrent priority queue is accessed, some locking
mechanism is still required internally. Compared with the
concurrent priority queue-based scenario, locking the entire
queue throughout the whole run of event processing, i.e.,

one RunNode() call, saves us lots of overhead and achieves
better performance.

In our implementation, all the tasks spawned via async
during the simulation are synchronized at the end of the
finish statement, and then the simulation terminates. In
HJlib, the finish statement determines the scope in which
all the tasks spawned via the async statement need to be
synchronized, and it has to wait for all descendant tasks to
terminate before it can proceed.

Our implementation (Algorithm 2) is guaranteed to be
deadlock-free for the following reasons.

• One possible situation of deadlock is that all nodes in
the system are waiting for new events and none of them
can proceed to process local events, however; this has
been proved to be impossible in Chandy and Misra’s
algorithm [6], which our implementation is based on.

• We use the async/finish model in HJlib, which is proven
to be free of deadlocks [8].

• When an active node is trying to acquire locks of itself
and all its neighbors in the fanout, it never blocks on
any TryLock() call. If it fails on any lock acquisition,
it immediately releases all the locks it has successful
held in the current run; otherwise, it releases all the
locks after the Simulate() call. Therefore, no active
node will be blocked when it is running, and every ac-
tive node in the task deque will eventually get a chance
to run.

When multiple active nodes are trying to acquire locks of the
same or similar set of neighbors without a specific order, live-
locks may occur, since each of them may have successfully
acquired some but not all locks and then release the locks
it has acquired and try again, and this process may keep
repeating. To avoid livelocks, in our implementation, each
node is assigned a unique node ID. When an active node is
trying to acquire locks of itself and its neighbors, it acquires
the locks in the ascending order of the node IDs. This guar-
antees that one of the active nodes which are competing on
the locks of the same or similar set of neighbors simultane-
ously will win and go on to process its ready events, thereby
guaranteeing livelock avoidance.

4.4 Comparison with Galois Approach
As mentioned in Section 2, following the Galois approach

to parallelization requires the use of Galois operators and li-
brary APIs. This makes it harder to perform domain-specific
optimizations on the parallelism structure, compared to per-
forming these optimizations in an HJlib version of the ap-
plication.

Algorithm 3 gives the simplified Galois representation of
logic circuit simulation [1], which is also similar to Algo-
rithm 1. The key difference with the HJlib approach lies
in the Galois for each operator that executes each loop
iteration (line 3-15) in parallel and performs the conflict de-
tection, recovering and re-execution. In this case, the user
can not check the ownership of the objects that are going to
be acquired and decide if the execution should be performed
or not, thus the cautious optimization [20], e.g., Algorithm 2
line 9-15, cannot be applied to this Galois implementation
in a convenient manner.

91

Algorithm 3 Pseudocode for the Galois implementation of
the logic circuit simulation

Input: G: the graph representation of the input circuit,
initEventNodes: the graph nodes that contain initial
events and need to be used for initializing work set.

1: WS ← new workset � WS is the workset.
2: WS.addAll(initEventNodes)

3: foreach node n in WS do
4: Simulate(n)

5: for node m in n ∪ n.neighbors do
6: if isActive(m) then
7: WS ← WS ∪m
8: end if
9: end for
10: end for
11: � Simulation terminates here

4.5 Optimizations
We optimized our logic circuit simulation implementation

in a few ways. Those optimizations increased the successful
rates of lock acquisition for active nodes and reduced the
overall execution time and parallelism overheads. The op-
timizations are summarized below. We observe that these
optimizations are harder to perform in user code for a Ga-
lois application compared with an HJlib application, though
they can be performed by modifying the internals of the Ga-
lois library.
Note that in order to make the pseudocode as simple and

clear as possible, we do not show the optimizations in Algo-
rithm 2.

4.5.1 Separated deque for each input port
Instead of maintaining a single queue for each node, we

create a queue for each input port of a node. Although
this increased the number of queues in the system, it ac-
tually reduces the overhead of queue maintenance. For a
node, events coming into each input port arrive in the times-
tamp order, as explained previously; however, events from
different input ports may arrive at any order. Since ev-
ery node needs to process its local events in the times-
tamp order, maintaining a single event queue for each node
requires either 1) the event queue to be a priority queue
(java.util.PriorityQueue), or 2) events to be sorted
each time we check whether the node is active or not; both
approaches have significant overheads. Instead, if a sepa-
rated queue is maintained for each input port, we can use
more lightweight array deques (java.util.ArrayDeque)
for queue maintenance. When checking whether a node is
active and finding out ready events from the deques, all we
need to do is pop out events with timestamps smaller than
or equal to the local clock from the heads of the deques in
the order of their timestamps.
Another benefit of separating the deque is the increase

of parallelism. To realize that, we maintain a lock for each
input port for every node in the system, where each lock
is no longer a per-node lock but a per-port lock. When a
node A is trying to lock one of its neighbors B (by calling
TryLock()), A does not need to lock the entire node B.

Instead, A only needs to lock the input port with which B
is connected to A. Thus, it allows two different nodes to
successfully acquire locks of the two input ports of the same
neighbor and adding new events to the two event deques of
the neighbor simultaneously. This increases the successful
rate of locking neighbors and therefore the overall paral-
lelism increases. Note that an active node must acquire the
locks of all its input ports before it can process its ready
events, since its ready events may come from all its event
deques. If all the input ports of the active node keep be-
ing locked throughout the current run of event processing,
none of the active node’s upstream neighbors can add new
events to it. To remove this constraint and further increase
parallelism, we create an additional queue for each node to
temporarily store ready events. When an active node starts
to run, it first acquires the locks of all its input ports, moves
ready events from the per-port event deques to the tempo-
rary queue in their timestamp order, then releases all the
locks of its input ports. When the active node is processing
ready events later, it takes events out only from the tempo-
rary queue and does not touch any of its events deques, and
its upstream neighbors can add new events to it at the same
time.

4.5.2 Simple AtomicBoolean locks
To implement the per-port lock, we choose the lightweight

AtomicBoolean in the Java library instead of using more
complicated lock implementations, such as ReentrantLock.
The AtomicBoolean implementation allows us to check
and set the value of a boolean variable atomically when mul-
tiple processes or threads are trying to access the variable
concurrently. We create an AtomicBoolean variable for
each lock in our implementation, and the value of the vari-
able indicates whether the lock is currently held by some
node or not. The methods compareAndSet() and set() in
the AtomicBoolean class provide us a lightweight and sim-
ple way to implement the functions ReleaseAllLocks()
and TryLock() used in the simulation.

4.5.3 Avoiding unnecessary async statements
In Algorithm 2, we use the async statement to create

new tasks and increase parallelism. If we do not treat task
creation carefully, we may create redundant tasks or spawn
tasks earlier than necessary; doing so does not affect the
correctness of the simulation, but doing so can add extra
overheads to the program execution. Therefore, it is impor-
tant to avoid unnecessary async statements in the program.
When an active node is trying to acquire all locks of its own
input ports, if it fails on any of them, it does not need to
spawn a new task for itself to try again later (line 11). This
is because failing to acquire a lock of the node itself means
that at least one of its upstream neighbors is holding the
lock and will spawn a new task for the node after the neigh-
bor finishes its current run of event processing. Similar to
the workset implementation in the sequential version, we do
not need redundant nodes in the task deques inside HJlib.
Also, for each node which the active node is trying to spawn
a new task for (line 18- 27), if the node has one or more locks
held by others at the same time, the new task does not need
to be spawn for the node (line 26 does not executed in this
case). One of the nodes that are still holding a lock of the
node will spawn a new task for the node later.

92

Circuit Multiplier
12 bits

Kogge-Stone
adder, 64 bits

Kogge-Stone
adder, 128 bits

nodes 2,731 1,306 2,973

edges 5,100 2,289 5,303

initial
events

49 128,258 66,050

total
events

56,035,581 89,683,016 102,591,960

Table 1: Profiles of the input circuits used in the simulation

Multiplier
12 bits

Kogge-Stone
adder, 64 bits

Kogge-Stone
adder, 128 bits

HJlib 31934 49004 66363

Galois
(Java)

84077 134061 163643

Table 2: Minimum execution time (s) of the sequential sim-
ulation

5. PERFORMANCE EVALUATION
In this section, we present experimental results for logic

circuit simulation using the DES application. We compared
our HJlib version of the simulation implementation with the
Galois-Java version for three different input logic circuits – a
64-bit and 128-bit Kogge-Stone tree adder [18] and a 12-bit
tree multiplier. Detailed information of the input circuits
are shown in Table 1. The logic circuit simulation imple-
mentation of the Galois-Java version was kept unchanged
from the downloaded version throughout the experiments.
We ran the simulation on a single machine with 256 GB
of RAM and four eight-core IBM POWER7 64-bit proces-
sors (32 cores) running at 3.8 GHz. The operating system
was Linux with kernel version 2.6.32, and the Java environ-
ment was IBM J9 VM with JRE 1.8.0. The maximum Java
heap size was set to 16 GB for all runs. For each input
circuit and number of workers/threads, we ran the simula-
tion for 20 times. Figures 4, 5, and 6 show the minimum
execution times and corresponding speedups measured for
all three input circuits. In addition to the minimum exe-
cution times, we also evaluated the average execution times
and confidence intervals and showed the results for the 32-
worker case in Figure 7. The Concurrent Mark Sweep collec-
tor (-XX:+UseConcMarkSweepGC) was chosen for garbage
collection in JVM for execution time evaluation. In addi-
tion, we also ran the simulations of both Galois-Java and
our versions of sequential implementation using the serial
garbage collector (-XX:+UseSerialGC) and used the se-
quential execution times of the Galois-Java version as the
baselines for speedup calculation. Our sequential version
was implemented as Algorithm 1, whereas the sequential
version of Galois-Java was implemented without using the
Galois parallel runtime library. The execution times of the
sequential simulations are shown in Table 2. All the exe-
cution times include time spent on garbage collection and
other JVM services.
Compared with Galois, our HJlib version had shorter ex-

Circuit

E
xe

cu
tio

n
tim

e
(s

)

0
5

10
15

20
25

Multiplier
12 bits

Kogge−Stone
adder, 64 bits

Kogge−Stone
adder, 128 bits

Galois (Java)
HJlib

Figure 7: Average execution time of both Galois and HJlib
versions of the 32-worker case

ecution times—44.5-79.7% shorter than the execution times
of Galois, and differences were more obvious under small
number of workers. The reasons for the shorter execution
times are twofold. First, the runtime overhead of task man-
agement inside HJlib is lower than that in the Galois sys-
tem. Second, the optimizations in our logic circuit simula-
tion implementation mentioned in Section 4.5 lead to addi-
tional savings in execution time. Avoiding the necessity of
using priority queues,java.util.PriorityQueue, which
were used in the Galois-Java version, and replacing them
with java.util.ArrayDeque, the more lightweight ar-
ray deques, in the implementation of event queues on the
nodes helped reduce the execution time by nearly 50%. As
the number of workers increased, the synchronization and
communication overhead among different cores and physical
processors in the hardware contributed more and more to
the overall execution time, decreasing the parallel efficiency
and the differences in execution time between the two ver-
sions. Also, the synchronization/communication overhead
limited the increase of speedup when the number of workers
is greater than 14. Another factor that limits the increase
of parallel efficiency is the dynamics of the available paral-
lelism, which is mentioned in Section 2.2 and Figure 1. We
observe that different scalability results may be obtained for
different circuits, since some circuits lend themselves to cre-
ating more events in parallel than others.

6. CONCLUSIONS AND FUTURE WORK
In this work, we parallelized a DES program that modeled

logic circuit simulation using HJlib. We presented the ways
we applied the task creation and synchronization functions
in HJlib to the logic circuit simulation, showing the simplic-
ity of parallelizing sequential programs. Compared with Ga-
lois, HJlib brings more programmer friendliness since users
do not need to handle those performance oriented hints and
annotations regarding task scheduling policies which are man-
aged by HJlib’s runtime implicitly. The work-stealing and
load balancing features inside HJlib gave us efficient task
scheduling and resource management, which brought good
performance to our parallel implementation of the logic cir-
cuit simulation. In the performance evaluation, we com-
pared our HJlib version of parallel logic circuit simulation
with the Galois-Java version and demonstrated that our
HJlib version reduced the execution time by 44.5-79.7%.

93

0 5 10 15 20 25 30

20
40

60
80

Number of workers/threads

E
xe

cu
tio

n
tim

e
(s

)

Galois (Java)
HJlib

(a) Minimum execution time as a function of number of work-
ers for Galois and HJlib versions

0 5 10 15 20 25 30

0
5

10
15

20
25

30

Number of workers/threads

S
pe

ed
up

Galois (Java)
HJlib

(b) Speedup of Galois and HJlib versions, relative to sequen-
tial Galois implementation

Figure 4: Performance for the 12-bit tree multiplier circuit

0 5 10 15 20 25 30

20
40

60
80

10
0

14
0

Number of workers/threads

E
xe

cu
tio

n
tim

e
(s

)

Galois (Java)
HJlib

(a) Minimum execution time as a function of number of work-
ers for Galois and HJlib versions

0 5 10 15 20 25 30

0
5

10
15

20
25

30

Number of workers/threads

S
pe

ed
up

Galois (Java)
HJlib

(b) Speedup of Galois and HJlib versions, relative to sequen-
tial Galois implementation

Figure 5: Performance for the 64-bit Kogge-Stone tree adder circuit

We believe that exploring larger-scale DES application,
such as wireless mobile ad hoc network simulation, with Java
and HJlib is an interesting approach, and we will continue
on this direction in the future. In next step, we will break
down and study the impact of the HJlib runtime and the op-
timizations introduced in Section 4.5), and investigate the
generality. Another direction we are going to explore is the
use of HJlib actor model [14] for parallelizing DES applica-
tions.

7. REFERENCES
[1] Galois project website. http:

//iss.ices.utexas.edu/?p=projects/galois.
[2] ns-3. http://www.nsnam.org.
[3] D. Bauer and E. Page. Optimistic parallel discrete

event simulation of the event-based transmission line
matrix method. In Simulation Conference, 2007
Winter, pages 676–684, Dec 2007.

[4] W. E. Biles, C. M. Daniels, and T. J. O’Donnell.
Statistical considerations in simulation on a network of

microcomputers. In Proceedings of the 17th conference
on Winter simulation, pages 388–393. ACM, 1985.

[5] R. E. Bryant. A switch-level model and simulator for
mos digital systems. Computers, IEEE Transactions
on, 100(2):160–177, 1984.

[6] K. M. Chandy and J. Misra. Distributed simulation:
A case study in design and verification of distributed
programs. Software Engineering, IEEE Transactions
on, (5):440–452, 1979.

[7] K. M. Chandy and J. Misra. Asynchronous distributed
simulation via a sequence of parallel computations.
Communications of the ACM, 24(4):198–206, 1981.

[8] P. Charles, C. Grothoff, V. Saraswat, C. Donawa,
A. Kielstra, K. Ebcioglu, C. Von Praun, and
V. Sarkar. X10: an object-oriented approach to
non-uniform cluster computing. Acm Sigplan Notices,
40(10):519–538, 2005.

[9] W. Chen, X. Han, C.-W. Chang, G. Liu, and
R. Domer. Out-of-order parallel discrete event

94

0 5 10 15 20 25 30

50
10

0
15

0

Number of workers/threads

E
xe

cu
tio

n
tim

e
(s

)

Galois (Java)
HJlib

(a) Minimum execution time as a function of number of work-
ers for Galois and HJlib versions

0 5 10 15 20 25 30

0
5

10
15

20
25

30

Number of workers/threads

S
pe

ed
up

Galois (Java)
HJlib

(b) Speedup of Galois and HJlib versions, relative to sequen-
tial Galois implementation

Figure 6: Performance for the 128-bit Kogge-Stone tree adder circuit

simulation for transaction level models.
Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 33(12):1859–1872,
Dec 2014.

[10] R. Curry, C. Kiddle, R. Simmonds, and B. Unger.
Sequential performance of asynchronous conservative
pdes algorithms. In Proceedings of the 19th Workshop
on Principles of Advanced and Distributed Simulation,
PADS ’05, pages 217–226, Washington, DC, USA,
2005. IEEE Computer Society.

[11] R. M. Fujimoto. Parallel discrete event simulation.
Communications of the ACM, 33(10):30–53, 1990.

[12] M. A. Hassaan, M. Burtscher, and K. Pingali. Ordered
vs. unordered: a comparison of parallelism and
work-efficiency in irregular algorithms. ACM
SIGPLAN Notices, 46(8):3–12, 2011.

[13] S. Imam and V. Sarkar. Habanero-java library: A java
8 framework for multicore programming. In 11th
International Conference on the Principles and
Practice of Programming on the Java Platform, PPPJ,
volume 14, 2014.

[14] S. M. Imam and V. Sarkar. Integrating task
parallelism with actors. In ACM SIGPLAN Notices,
volume 47, pages 753–772. ACM, 2012.

[15] D. Jefferson and H. Sowizral. Fast Concurrent
Simulation Using the Time Warp Mechanism: Part I,
Local Control. Rand Corporation, 1982.

[16] D. R. Jefferson. Virtual time. ACM Transactions on
Programming Languages and Systems (TOPLAS),
7(3):404–425, 1985.

[17] D. W. Jones. Concurrent simulation: an alternative to
distributed simulation. In Proceedings of the 18th
conference on Winter simulation, pages 417–423.
ACM, 1986.

[18] P. M. Kogge and H. S. Stone. A parallel algorithm for
the efficient solution of a general class of recurrence
equations. Computers, IEEE Transactions on,
100(8):786–793, 1973.

[19] M. Kulkarni, K. Pingali, B. Walter,

G. Ramanarayanan, K. Bala, and L. P. Chew.
Optimistic parallelism requires abstractions. In ACM
SIGPLAN Notices, volume 42, pages 211–222. ACM,
2007.

[20] M. Méndez-Lojo, D. Nguyen, D. Prountzos, X. Sui,
M. A. Hassaan, M. Kulkarni, M. Burtscher, and
K. Pingali. Structure-driven optimizations for
amorphous data-parallel programs. In ACM Sigplan
Notices, volume 45, pages 3–14. ACM, 2010.

[21] J. Misra. Distributed discrete-event simulation. ACM
Computing Surveys (CSUR), 18(1):39–65, 1986.

[22] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher,
M. A. Hassaan, R. Kaleem, T.-H. Lee, A. Lenharth,
R. Manevich, M. Méndez-Lojo, et al. The tao of
parallelism in algorithms. ACM SIGPLAN Notices,
46(6):12–25, 2011.

[23] R. Righter and J. C. Walrand. Distributed simulation
of discrete event systems. Proceedings of the IEEE,
77(1):99–113, 1989.

[24] Y. Tang, K. S. Perumalla, R. M. Fujimoto,
H. Karimabadi, J. Driscoll, and Y. Omelchenko.
Optimistic simulations of physical systems using
reverse computation. Simulation, 82(1):61–73, 2006.

[25] S. Thulasidasan, S. P. Kasiviswanathan, S. Eidenbenz,
and P. Romero. Explicit spatial scattering for load
balancing in conservatively synchronized parallel
discrete event simulations. In Proceedings of the 2010
IEEE Workshop on Principles of Advanced and
Distributed Simulation, PADS ’10, pages 150–158,
Washington, DC, USA, 2010. IEEE Computer Society.

[26] V.-Y. Vee and W.-J. Hsu. Parallel discrete event
simulation: A survey. Technical report, Technical
report, Centre for Advanced Information Systems,
Nanyang Technological University, Singapore, 1999.

[27] G. Yaun, C. D. Carothers, and S. Kalyanaraman.
Large-scale tcp models using optimistic parallel
simulation. In Proceedings of the seventeenth workshop
on Parallel and distributed simulation, page 153. IEEE
Computer Society, 2003.

95

