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Abstract
Semi-structured data emerge in many domains, especially in
web analytics and business intelligence. However, querying
such data is inherently sequential due to the nested structure
of input data. Existing solutions pessimistically enumerate
all execution paths to circumvent dependencies, yielding
sub-optimal performance and limited scalability.

This paper presents GAP, a parallelization scheme that,
for the first time, leverages the grammar of the input data
to boost the parallelization efficiency. GAP leverages static
analysis to infer feasible execution paths for specific con-
texts based on the grammar of the semi-structured data. It
can eliminate unnecessary paths without compromising the
correctness. In the absence of a pre-defined grammar, GAP
switches into a speculative execution mode and takes poten-
tially incomplete grammar extracted either from prior inputs.
Together, the dual-mode GAP reduces the execution paths
from all paths to a minimum, therefore maximizing the par-
allelization efficiency and scalability. The benefits of path
elimination go beyond reducing extra computation – it also
enables the use of more efficient data structures, which fur-
ther improves the efficiency. An evaluation on a large set of
standard benchmarks with diverse queries shows that GAP
yields significant efficiency increase and boosts the speedup
of the state-of-the-art from 2.9X to 17.6X on a 20-core ma-
chine for a set of 200 queries.
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1. Introduction
Semi-structured data, like XML and JSON, is widely used
in many application domains, such as web analytics [42], fi-
nancial data processing [31], pub/sub applications [27], en-
terprise data exchanges [8], sensor networks [12], and smart
buildings [38]. The volume of semi-structured data grows
rapidly. Take Twitter as an example, it produces tweets in
semi-structured format at a rate of 600 million per day [20].
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<?xml version=“” encoding=“”?> 
<!DOCTYPE feed[ 
  <!ELEMENT feed (entry+, id)> 
  <!ELEMENT entry (id, title)> 
  <!ELEMENT id (#PCDATA)> 
  <!ELEMENT title (#PCDATA)> 
]>  
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<feed> 
 <entry> 
   <title>a post</title> 
 </entry> 
 <id>feed-id</id> 
 <entry> 
   <id>entry-id-2</id> 
 </entry> 
</feed> DTD file (Grammar) 

Figure 1. An illustration example (Facebook feed data 1)

To cope with fast data growth, users need efficient querying
methods to extract information.

In comparison, the increase of modern CPU frequency
has reached a plateau. Hence, exploiting parallelism is key
to efficient query processing for semi-structured data. In this
work, we focus on XPath queries for their basic roles in
semi-structured data processing [1, 18, 23, 30].

However, parallelizing such queries is challenging due to
the inherent nested structure of input data. Consider Face-
book feed data [13] in Figure 1. Suppose using two threads
to process a path query feed/entry/id, which aims to find
the IDs of entries in the feed. Without examining the tags in
the first half of the input, the second thread cannot determine
if the id at line 5 is a match or not. Because it lacks the “con-
text” of determining the answers to the query. As we will see
later, such inherent dependence clearly manifests when the
queries are formalized as pushdown transducers – a basic
computation model for processing data that are defined by
context-free grammars (Section 2).
State of The Art. Great efforts have been made on making
parallel parsing possible for semi-structured data. With the
parsing results, a DOM (Document Object Model) tree, the
queries can be easily evaluated by traversing the tree. A
practical issue with such methods is that the data could be
too large to parse due to the huge memory consumption
caused by constructing the parse tree. In addition, the query
evaluation after parsing compromises data locality.

In comparison, Odgen and others [30] directly target the
parallelization of XPath queries with a novel parallel push-
down transducer. By breaking the input into chunks and
enumerating all execution paths for each chunk (except the
first one), pushdown transducers are able to process different
chunks in parallel. This method shows promising results for
single-query processing and processing a small set of con-

1 For illustration purpose, the data is simplified and slightly reordered.
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Figure 2. Scalability Comparison

current queries. However, as the query becomes more com-
plex or the number of concurrent queries increases, the total
number of execution paths also raises, resulting in a dramatic
increase of parallelization cost. Consequently, the speedup
quickly drops from 11.1X to merely 2.9X on a 20-core Intel
Xeon server, as shown in Figure 2.

In this work, we raise and address some fundamental
questions in the parallelization of pushdown transducers: is
it necessary to enumerate all execution paths? If not, how to
know which execution paths are unnecessary?

The key to answering the questions lies in the special
properties of input data – they are defined by (context-free)
grammar, either explicitly or implicitly. For example, XML
data are defined by document type definition (DTD) or
XML schema. Similar ways are used to define JSON data
as well [15]. The grammar not only defines the valid struc-
ture of the data, but also adds constraints on the possible
execution paths under a specific context. Consider the ex-
ample in Figure 1. By checking the first element <id>, the
second thread would be able to infer that it may be under the
<feed> or an <entry>, but definitely not under a <title>,
as the grammar does not specify an ID for the title.

To leverage these insights, we propose a grammar-aware
parallelization (GAP) for querying semi-structured data,
which can substantially reduce the amount of execution
paths up to 200X according to our experiments. It brings
in two major benefits. First, a thread only needs to keep
a small number of execution paths (typically < 5), hence
runs more swiftly. Second, when the number of execution
paths drops to one, which happens quite often based on our
experiments, it becomes possible to switch to more effi-
cient data structures (from trees to stacks) to execute the
pushdown transducers. Together, they dramatically reduce
the parallelization cost, making efficient parallelization of
larger-scale query processing possible, as shown in Figure 2.

Specifically, depending on the availability of an explicit
grammar, GAP works in two modes: non-speculative mode
and speculative mode. In non-speculative mode (Section 4),
GAP extracts a static syntax tree from the given grammar file
(e.g., a DTD file), and symbolically executes the pushdown
transducer over the syntax tree to infer feasible execution
paths under a specific context (e.g., a token <id>). With such
knowledge, a parallel pushdown transducer only maintains a
set of feasible execution paths and automatically switches

to a stack when it detects a unique feasible execution path
is left. In certain scenarios, an explicit grammar may not
be available. In such cases, GAP enters into the specula-
tive mode, where it first collects some partial grammar from
prior runs. As the grammar is partial, the inferred feasible
paths might be incomplete. Hence, a pushdown transducer
runs speculatively with chances that the correct execution is
left uncovered. To guarantee the correctness and reduce the
penalty of misspeculation, a pair of validation and selective
reprocessing mechanisms are proposed. With the dual-mode
GAP, our approach is able to process semi-structured data
either with or without a grammar file. Our evaluation re-
sults show that both non-speculative GAP and speculative
GAP provide sustainable speedup, about 17.6X on a 20-core
server, up to a set of 200 concurrent queries.
Contributions. This work makes several contributions:

• To our best knowledge, this work, for the first time,
unveils the potential of leveraging input grammar to
improve the efficiency of parallelization.

• It offers a rigorous inference of feasible execution paths
from input grammar and an adaptive data structure
switching mechanism to boost the efficiency of the ba-
sic computation model – pushdown transducers.

• It proposes a practical speculation scheme to cover the
scenarios where the input grammar is unavailable.

• It, for the first time, enables a scalable parallelization of
query processing that yields sustainable speedup as the
query complexity increases.

In the following, we will first give the background and
motivation (Section 2), then present an overview of GAP
(Section 3), followed by the details of GAP in non-speculative
mode (Section 4) and speculative mode (Section 5). We
show our evaluation results in Section 6, related work in
Section 7, and conclusion of this work in Section 8.

2. Background
In this section, we first present some basic concepts for
querying semi-structured data. Then we introduce the com-
putation model for processing queries – pushdown trans-
ducer and its parallelization challenges.

2.1 Querying Semi-Structured Data
Querying semi-structured data is a routine operation in
stream processing and many database systems that sup-
ports semi-structured data. For instance, YFilter [10] and
XMLTK [2] leverage automata to simultaneously process
a large number of XPath queries against an XML stream
with a constant memory requirement. These studies focus on
improving the expressiveness of queries, instead of exploit-
ing data parallelism. On the other hand, database engines,
like Microsoft SQL Server [32] and MonetDB [3] provide
task-level parallelization for querying XML data, but require
pre-computed index to accelerate query processing, which
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Figure 3. A Diagram of The Pushdown Transducer

becomes unsuitable for single-pass processing model due to
the substantial cost of index construction.
Pre-parsing v.s. On-the-fly Querying. There are two basic
strategies to process queries: (i) first parse the semi-structure
data into a parse tree (i.e., DOM tree in XML context), then
answer the queries by searching the tree. (ii) Process the
queries on-the-fly without constructing any tree structure.
There are three limitations with the first strategy. First, pars-
ing the semi-structured data requires a large memory foot-
print due to the construction of DOM tree, which is almost
infeasible for large semi-structured data or streaming data.
Second, parallel parsing itself is quite challenging, exist-
ing solutions suffer from either load imbalance or sequential
bottleneck caused by a sequential preprocessing. At last, it
needs to traverse the data again after the parsing, compro-
mising the data locality. For the above reasons, we choose
the second strategy in this work. To enable on-the-fly query
processing, queries are implemented using stack-based com-
putation model – pushdown transducers [18, 30], which run
over the semi-structured data stream and report matches as
it proceeds. We next describe such a computation model.

2.2 Pushdown Transducers
Informally, a pushdown transducer is a finite automaton agu-
mented with a stack and an output tape, as illustrated by Fig-
ure 3. With the stack, the pushdown transducer is able to
memorize prior states (i.e., history). Such memorization is
the essential for processing semi-structured data where cer-
tain “context” is needed. A pushdown transducer consumes
the input stream by moving a pointer forward along the in-
put tape one by one. Based on the input symbol, the control
logic (defined as transitions) examines the current state and
the status of the stack, then makes adjustments to the state
and stack, and write symbols to the output tape.

A generic pushdown transducer can be defined as follows.

Definition 1. A pushdown transducer is a 6-tuple (Σ, Γ, ∆,
Q, q0, δ) where Σ is the input alphabet,Q is the set of states,
q0 ∈ Q is the initial state, Γ is the stack alphabet – a set
of symbols that can be pushed onto stack, ∆ is the output
alphabet, and δ is a mapping δ : Q× Γ× Σ→ Q× Γ×∆
which is also called the transition function.

There are three factors that may affect the moving of a
pushdown transducer: (i) current input symbol c ∈ Σ from
the input tape, (ii) current state s ∈ Q, and (iii) the element
e ∈ Γ on top of the stack. As a response, the pushdown
transducer may take three actions: (i) move the current state

to the next, (ii) update the top of the stack either by push or
pop, and (iii) write a symbol c′ ∈ ∆ to the output tape. Note
that, depending on the definition of transitions, the three
factors may not always take effects at every transition, and
the same is true for the actions.

We next describe the specific pushdown transducers for
query processing using the running example in Figure 4. It
contains a grammar with recursion (between elements a and
b) to demonstrate its generality.
States Q. For any give path query, a corresponding finite au-
tomaton can be created based on a simple automaton con-
struction algorithm [18]. The states in the finite automaton
are exactly the states in the pushdown transducer. The ac-
cept state(s) correspond to the matches of the query. In the
running example, a path query a/b/c is converted to a finite
automaton of five states, as shown in Figure 4-c. state 4

corresponds to the match of query.
Alphabets Σ , ∆ , and Γ. In the context of XPath querying,
the input alphabet Σ is the set of valid tokens (e.g., XML
tags) resulted from a lexer. The output alphabet is actually
the same as the input alphabet (i.e., ∆ = Σ) since the queries
only return some parts of the input data stream. As to the
stack alphabet, it can be either the state set Q or input
alphabet Σ. Based on the convention [30], we set Γ = Q.
Transitions δplain , δpush , and δpop. There are three types
of transitions in XPath querying pushdown transducers.

1. Plain transitions δplain: Q × Σ → Q × ∆. They do
not influence the stack. For example, the transition after
reading a text token x is a plain transition.

2. Push transitions δpush:Q×Σ→Q× Γ×∆. When an
start tag (e.g., <a>) is read, the transducer first pushes
the current state onto the stack, then transition to the
next state based on the finite automaton.

3. Pop transitions δpop: Q × Σ × Γ → Q × ∆. When a
close tag (e.g., </d>) is met, the transducer pops the
stack and sets the current state to the popped state.

Example. Figure 4-d illustrates the transitions of the push-
down transducer for processing query a/b/a/c. Among the
ten steps, five of them are push transitions and the others are
pop transitions. When the pushdown transducer moves to the
accept state (state 5), it reports a match to the query and
outputs the match to its output tape.
Inherent Dependence. Based on the definition of pushdown
transducers, it is obvious to notice two types of dependence
in its execution depending on the variables: (i) At every step
of the transition, the next state depends on either the imme-
diate prior state or the element on top the stack (which is
actually an even earlier state). We refer to such dependence
as state dependence. (ii) Similarly, at each step of the transi-
tion, the content of stack depends on stack before the transi-
tion and sometimes also depends on the prior state. We refer
to this type of dependence as stack dependence. In general,
a tight dependence chain is formed from the first step to the
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(d) Execution of Pushdown Transducer

query: a/b/a/c

state dependence stack dependence<?xml version=“” …?>
<!DOCTYPE a[

<!ELEMENT a(b+, c)>
<!ELEMENT b(a+)>
<!ELEMENT c(#PCDATA)>

]> 

2
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0
other start
tags

<b> <a> <c> </c></a>

2
3 3

4

2
3

</b></a>
1

Figure 4. A running example with a recursive grammar. ‘*’ after state 5 means a match.

current step, making the parallelization of such computation
model quite challenging, as illustrated by Figure 4-d.

2.3 Parallel Pushdown Transducers
To circumvent the inherent dependence in pushdown trans-
ducers, Ogden and others [30] propose a parallel pushdown
transducer. Basically, it works in three major phases:

• Split phase. It first cuts the input data into equal-sized
chunks, each of which may contain some broken tags.

• Parallel phase. For each chunk, except the first one,
it enumerates all execution paths, each starting from a
different state with an empty stack. A mapping m is
maintained from each pair of starting state and stack
(qs, zs) to a 3-tuple of finishing state, stack and output
tape (qf , zf , o), that is m = (qs, zs, qf , zf , o), where
m ∈ M = Q × Γ∗ × Q × Γ∗ × ∆∗. In our running
example (Figure 4), it needs to enumerate all the six
states (paths) and keeps a mapping for each of them.
During the processing of a chunk, different execution
paths may lead to the same finishing state and stack
(called path convergence). To improve the efficiency,
a double-tree data structure is employed to compress
the mapping and reduce some redundant computations
when path convergence occurs.
For a chunk with missing start tags (due to partitioning),
it is possible that a pop operation is needed while the
stack is empty. In this case, it also has to enumerate
every possible element that could be popped out from
the stack (i.e. Γ). In such cases, a single path diverges
to multiple ones, referred to as path divergence. In our
running example, if the second thread starts from Line
5, when it processes the end tag </a> at Line 6, it
encounters a path divergence, similarly to the end tags
</b> and </a> at Lines 7 and 8.

• Join phase. Finally, mappings from different chunks are
linked by matching the finishing state and stack in a
chunk with the starting state and stack of its following.

An additional filtering phase may be added to enhance the
expressiveness of the transducers (e.g., to handle predicates
in XPath queries). Though the split, join and filter phases
are sequential, they carry much less computations than the
parallel phase and incur marginal cost [30].

Parallel pushdown transducers show promising results for
single query or a small set of concurrent queries. However,
as the query becomes more complex and as the number of
queries increases, enumerating all execution paths tends to
be less practical due to large amount of extra computation.
To address this question, we propose a new scheme of paral-
lelization, grammar-aware parallelization (GAP), that lever-
ages the grammar of the semi-structured data to guide the
design of parallelization. In the following, we first give an
overview of GAP before elaborating its major components.

3. Overview of GAP
In this section, we give the high-level design of GAP, a new
parallelization scheme that leverages input grammar to boost
the efficiency of parallelization.
Grammar Availability and Dual-mode GAP. The key of
GAP is the awareness of semi-structured data grammars. A
substantial amount of semi-structured data come with gram-
mars, such as the auction data from ebay developer API [9]
and the publication data from DBLP [7]. Actually, six out of
ten datasets from UW’s XML data repository [40] contain
some DTD file(s). On the other hand, it is not uncommon
that the grammar of some semi-structured data is unavail-
able, either because there does not exist a pre-defined gram-
mar, or because the access to the DTD or XSD is not granted.

To cover both scenarios, GAP can run in two modes: non-
speculative mode and speculative mode. When the grammar
of the semi-structured data is available (e.g., in the form of
DTD), GAP enters into non-speculative mode, where the ex-
ecution correctness is always guaranteed, thanks to the rig-
orous feasible path inference from a complete grammar (as
explained shortly). In another word, there is no speculation
or prediction involved in this mode. On the other hand, when
the grammar is unavailable, GAP switches into speculative
mode. In this mode, GAP first collects some partial grammar
by inferring it from previous runs (of the same data corpus).
This part is illustrated as the first step of GAP in Figure 5.
Feasible Path Inference. After determining the execution
mode, GAP obtains either a complete grammar or a partial
grammar. With the grammar, GAP aims to infer which paths
are feasible given a specific context, that is, a symbol from
the input alphabet Q (e.g., a tag <c> in Figure 4-b).

To achieve this, GAP follows two steps: static parse tree
generation and symbolic execution of pushdown transducer.
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Figure 5. Overview of GAP. Labeled numbers show the major steps when predefined input grammar is available (e.g., DTD
or Schema). Blue lines show the speculative execution flow in the absence of a pre-defined grammar.

In the first step, it takes the input grammar G as input and
generates a static syntax tree T , which embodies the legal
nesting structures of the input data. For example, element b
has to be an immediate child of element a (see Figures 4-a
and 4-b). In the second step, it executes the pushdown trans-
ducer symbolically by executing on every path of the static
syntax tree to infer the feasible starting states when meeting
a specific input symbol (i.e., the context). The results of the
second step is a hash table, called feasible path table, where
the key is input symbol and the value is the set of feasible
paths, as shown in Table 1. Since the syntax tree is static and

Input symbol Feasible paths/states
<a> {1, 3}
</a> {2, 4}
<b> {2}
· · · · · ·

Table 1. Feasible Paths Table

typically small, a full traversal is affordable. When the gram-
mar is available beforehand, both steps can be done offline.
GAP Pushdown Transducers. To leverage the results from
feasible path inference, we design a new type of parallel
pushdown transducer – GAP pushdown transducers. First,
when it is needed, a GAP pushdown transducer can inquire
the feasible path table to determine and remove unnecessary
paths, which is referred to as dynamic path elimination.

Second, whenever a unique feasible path is left, either
caused by path elimination or path convergence, the GAP
pushdown transducer switches from the default double-tree
data structure to a stack and executes exactly like a sequen-
tial pushdown transducer. This makes the GAP pushdown
transducer run swiftly without any house-keeping work. This
feature is referred to as runtime data structure switching.
Speculative GAP. As explained earlier in this section, when
a pre-defined grammar is unavailable, only a partial gram-
mar might be collected. Inferring feasible paths from such an
incomplete grammar may result in some feasible paths miss-
ing. Consequently, feeding such incomplete information to a
GAP pushdown transducer may cause the correct execution
path being excluded. This scheme is generally referred to
as speculative execution. There are two basic requirements
for effective speculative execution. First, it has to ensure
the correctness. GAP pushdown transducers ensure this in
the join phase. When no match of mappings is found dur-

a

c

c

b

a

(a) traditional syntax tree      (b) static syntax tree

a a

b c

a

b c

(c) static syntax tree generation

cycle

a

b c

cycle

child cycle

Figure 6. Static Syntax Tree

ing the linking of two consecutive chunks, a misspeculation
is reported. Under this situation, a reprocessing is initiated
immediately on the missepculated chunk to ensure the cor-
rectness. Second, the misspeculation penalty should be low
enough so that it will not cancel out the benefits of specula-
tion. To achieve this, GAP pushdown transducers carefully
divide chunks into even smaller pieces such that reprocess-
ing is done selectively.

Figure 5 illustrates both the basic and speculative GAP
pushdown transducers. We next elaborate the two modes of
GAP in the following two sections.

4. Non-Speculative GAP
When the grammar of the semi-structured data is available,
GAP runs in non-speculative mode. In this section, we first
describe the two steps to infer feasible paths: static syntax
tree generation and symbolic pushdown transducer execu-
tion, then present more details about the new features of
GAP pushdown transducers.

4.1 Static Syntax Tree Generation
Grammars written in textual rules are hard to interpret di-
rectly. To effectively leverage the grammar, we need a data
structure to capture all the nesting relations among different
input symbols/elements in a concise form.

In fact, the nesting relations can be naturally represented
as a tree structure. A traditional syntax tree (or parse tree)
indicates the derivation of a concrete sentence based on its
(context-free) grammar. Figure 6-a shows the syntax tree of
the running example ( Figure 4-b). Note that such a syntax
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Algorithm 1 Construction of Static Syntax Tree
1: procedure STATIC SYNTAX TREE CONSTRUCTION(DTD)
2: for each element el in DTD do
3: if el is the first element then
4: root = create node(el); //assume the 1st is root
5: root.cycle = null; // represent recursion if exists
6: nodes = root;
7: else/* search el in tree root */
8: nodes = tree search(root, el);
9: for node in nodes do

10: for each subelement sub of el do
11: if sub.is ancestor(node) then // recursion
12: node.cycle=sub; // set a backward pointer
13: else
14: child = create node(sub);
15: child.cycle=null;
16: node.add child(child);
17: return root;

tree can grow to very large size as the input gets longer,
meanwhile it may not capture all the possible derivation of
its context-free grammar.

To represent all the derivation relations in the grammar
with a concise format, we introduce static syntax tree – a
tree generated purely based on the input grammar. As shown
in Figure 6-b, in a static syntax tree, each child element must
appear and only appear once. The size of a static syntax tree
depends on the input grammar, rather than input data, hence
will not increase as data grows.

The construction of a static syntax tree is straightforward.
Basically, a construction algorithm scans the grammar file,
identifies the root element and its child/descendant elements
iteratively until all leaf elements (elements without any child
elements) are included, as shown in Algorithm 1. For recur-
sive grammars, the algorithm labels nodes that refer to an
ancestor by setting the field cycle. Figure 6-c illustrates the
major steps of executing the algorithm on the running exam-
ple. The time complexity of this algorithm is O(n2) where
n is the number of elements in the DTD file.

4.2 Symbolic Execution of Pushdown Transducer
The goal of symbolic execution is to find out feasible exe-
cution paths for each input symbol. Formally, we define the
feasible execution path as follows.

Definition 2. Given an input symbol c ∈ Σ, for any syntac-
tically correct inputs, if there exists an input such that the
pushdown transducer can transition to state s ∈ Q right be-
fore it reads c, then we call the execution path that starts
from state s as a feasible execution path for symbol c.

According to the definition, to infer the feasible paths for
an input symbol, it needs to test all the possible inputs of syn-
tactically correct semi-structured data, which is impossible.
We address this by running the pushdown transducer sym-
bolically on the static syntax tree. Basically, the transducer
walks on every path of the static syntax tree and records the
state right before meeting the start tag and end tag of a node
on the path. For example, if the current state is s and the cur-
rent node is n, then it adds a key:value pair of <n>:s and

Algorithm 2 Feasible Paths Inference
1: procedure PATH INFERENCE(root, init state)
2: current = init state; /* current state in automaton */
3: node = root; /* current node in static syntax tree */
4: stack.push(root); /* for depth-first traversal */
5: while stack is not empty do
6: node = stack.pop();
7: /* handle a cycle in a recursive grammar */
8: if node.cycle != null and node.done == false then
9: /* current state and node in the cycle */

10: current′ = next state(current, node.start);
11: n = node.cycle;
12: /* pushdown transducer moves to next state */
13: next = next state(current′, n.start);
14: if next != null then
15: queue.add(n);
16: while queue is not empty do
17: n = queue.remove();
18: next = next state(current′, n.start);
19: hash.add(n.start, current′);
20: hash.add(n.end, next);
21: current′ = next;
22: nodes = DEF CHILDREN(n, current′);
23: if nodes is not empty then
24: queue.add(nodes);
25: node.done = true; /* done with this cycle */
26: if node.visited == false then
27: next = next state(current, node.start);
28: hash.add(node.start, current);
29: hash.add(node.end, next);
30: current = next;
31: node.visited = true;
32: for each child of node do
33: if child.visited == false then
34: stack.push(child);
35: if node is a leaf then
36: current = next state(current, node.end);
37: return hash;
38:
39: /* get node’s children whose start tags are defined in state */
40: procedure DEF CHILDREN(node, state)
41: defined children[];
42: for each child of node do
43: if next state(state, node.start) != null then
44: defined children.add(node);
45: return defined children;

</n>:s’ into the hash table, where s’ is the next state after
consuming symbol <n>.
Recursion Handling. For a grammar with recursion, the
static syntax tree contains one or more cycle(s). In this case,
the algorithm unfolds the cycles. However, a naive unfolding
would result in dead loops. To address this, we use the finite
automaton to guide the unfolding and only unfold it to the
extent that is necessary for revealing feasible states.

Algorithm 2 shows the pseudocode of the symbolic exe-
cution. It takes the query automaton and static syntax tree as
inputs and outputs feasible path hash table. The time com-
plexity of symbolic execution is O(n + g · |query|), where
n is the number of nodes in the syntax tree, g is the number
of cycles in the syntax tree, and |query| is the length of the
query. The time complexity of dealing with cycles depends
on the length the query.

376



Example. Figure 7 illustrates an execution of Algorithm 2 on
the running example with the finite automaton in Figure 4-
c and the static syntax tree in Figure 6-c. Note that though
there is a cycle in the static syntax tree (labeled at node b),
the algorithm terminates quickly after it finds that b is not
defined at state 4.

/* H: hash table, S: stack, Q: queue */
node=a current=1 S{a} H{}   // line 2-4
node=a current=2 S{b,c} H{<a>:1, </a>:2}   // line 26-34
node=c current=0 S{b} H{<a>:1, </a>:2, <c>:2, </c>:0}   // line 26-34
since c is a leaf node, current=2 (i.e., the next state after </c>)   // line 35-36
node=b (b has a cycle) current’=3 n=a Q{a}   // line 6-15
current’=4, Q{c} H{<a>:{1,3}, </a>:{2,4}, <c>:2, </c>:0}   // line 16-24
/* since b is not defined at state 4, only c added to queue Q{c} */
current’=5 Q{} H{<a>:{1,3}, </a>:{2,4}, <c>:{2,4}), </c>:{0,5}}   // cycle is done
node=b current=2, since b is still unvisited, process b  // line 26
S{} H{<a>:{1,3}, </a>:{2,4}, <b>:2, </b>:3, <c>:{2,4}, </c>:{0,5}}   // finish

Figure 7. Algorithm 2 execution on the running example.

4.3 GAP Pushdown Transducers
GAP pushdown transducers are based on the basic parallel
pushdown transducers (Section 2.3) with two novel features:

• Dynamic path elimination: GAP pushdown transducers
leverage feasible path inference to dynamically elim-
inate impossible execution paths at runtime, based on
specific local context.

• Runtime data structure switching: Benefited from path
elimination and path convergence, GAP pushdown
transducers switch between a stack and a double-tree
data structure at runtime to maximize the efficiency.

At high-level, GAP pushdown transducers follow the
same flow as basic parallel pushdown transducers: (i) split
phase, (ii) parallel phase, and (iii) join phase. The main
differences between GAP pushdown transducers and basic
parallel pushdown transducers lie in the parallel phase. In
this phase, each transducer processes an input chunk while
maintaining a set of possible execution paths through a set
of mappings M . A mapping is defined as follows:

Definition 3. Given an input chunk i, a mapping mi for i is
a 5-tuple mi = (qs, zs, qf , zf , o), mi ∈ M = Q× Γ∗ × Q
× Γ∗ × ∆∗ where qs and zs are the starting state and stack
right before processing i, qf , zf , and o are the finishing state,
stack, and output tape after processing i.

Basically, a mapping embodies the basic information of
an execution path. For example, a mapping (1, ε, 4, 1:2:3, 1)
says that if the transducer starts from state 1 with an empty
stack, then after processing the input chunk, it will end at
state 4 with a stack of 1:2:3 (“:” separates items in a stack)
and an output tape containing a match. Such information is
used later for joining the results of different transducers.

Maintaining the mappings brings a significant amount of
cost, comparing to a single path execution in a sequential
transducer [30]. To reduce such parallelization cost, GAP

transducers feature two new optimizations: dynamic path
elimination and runtime data structure switching. Both of
them happen in the parallel phase.
Dynamic Path Elimination. A GAP transducer leverages
feasible path inference to prune impossible paths in three
situations on the fly:

(1) At the beginning of a chunk (except the first one), a
GAP transducer uses the first symbol of the chunk as the key
to look up the feasible path hash table. In return, it obtains a
list of feasible execution paths Qhash, which is often a strict
subset of all execution paths Q (i.e., Qhash ⊆ Q). Then it
processes the chunk with only the paths from Qhash. For
example, a GAP transducer that starts at Line 5 of the XML
data in Figure 4-b would look up <c> in the hash table (the
last line of Figure 7), and keeps only paths {2, 4}.

(2) During the processing of a chunk, path divergences
might happen – when a pop operation is needed while the
stack is empty, the parallel transducer has to enumerate all
possible states that could be popped out from the stack.
Prior work [30] extends the finite automaton by defining
the transitions for all end tags, and only includes states that
have a defined transition for the given end tag (denoted as
Qfa). Since the inference is only based on the finite au-
tomaton (i.e., query), regardless the input grammar, the state
amount of reduction is limited 2. In comparison, when a path
divergence occurs, a GAP transducer inquires the feasible
path hash table that is built based on both the query and
the input grammar. Using the given end tag as the key, it
can obtain a potentially smaller set of possible states (i.e.,
Qhash ⊆ Qfa). Since the path divergence may happen mul-
tiple times during the processing of a chunk, the feasible path
inference-based elimination has great potential to reduce the
path maintenance cost. Following the example in situation
(1), when the GAP transducer processes Line 6, it looks up
</a> in the hash table and chooses paths {2, 4}, instead of
{2, 4, 0} – the choice of prior work [30].

(3) When processing the first start tag right after a path
divergence (e.g., the tag <b> in </d></c><b>, supposing
that path divergence happened at both </d> and </c>), a
GAP transducer also inquires the feasible path table with
the first tag (<b>). The purpose is to further reduce the
number of execution paths. This is achieved the taking the
intersection between the set of execution paths before the
first start tag Qold and the returned path set from feasible
path table inquiry Qhash (i.e., Qold ∩ Qhash).
Runtime Data Structure Switching. To reduce the cost of
mapping maintenance, basic parallel pushdown transducers
use a double-tree data structure [30], which compresses the
mapping and reduces redundant computation in mapping
updates. While being more efficient than maintaining each
mapping separately, it is much slower than the stack-based
execution of a sequential pushdown transducer.

2 In evaluation, we found it often fails to reduce the possibilities of popped-
out states due to the inclusion of a special state that handles unrelated tags
(e.g., state 0 in the running example).

377



An interesting observation we found is that the number
of feasible execution paths often drops to one, thanks to the
dynamic path elimination and path convergence. To leverage
this insight, we allow GAP transducers switch back to stack-
based execution once a single feasible path is left.

More specifically, when a path elimination is performed,
the GAP transducer checks the number of feasible execu-
tion paths. If the transducer finds only one path is left, then
it switches to use a stack to continue its execution until the
next path elimination check; otherwise it uses a double-tree
data structure to maintain multiple execution paths. As dis-
cussed earlier, a path may diverge into multiple ones under
certain circumstances (see Section 2.3). In such cases, the
GAP transducers switch to a double-tree data structure right
after the divergence. Since path elimination can happen mul-
tiple times for a GAP transducer depending on the contents
in the chunk, the data structure switching can also occur mul-
tiple times. We hence refer to it as runtime data structure
switching. Note that the switching cost is usually negligible
as the switching typically occurs less than 5 times in millions
of transitions, according to our experiments.

Finally, once each GAP pushdown transducer finishes its
chunk, the mappings from different transducers are joint pair
by pair using the same rules as basic parallel pushdown
transducers [30]. Basically, to join a pair of mappings m1

and m2, it requires their states and stacks are matched ap-
propriately (e.g., m1(qf ) = m2(qs)).

In sum, GAP pushdown transducers are based on basic
parallel pushdown transducers and work in three phases.
With the two novel features, dynamic path elimination and
runtime data structure switching, their execution cost can be
potentially reduced.

5. Speculative GAP
In certain scenarios, a pre-defined grammar may not be
available. For example, the grammar has not been explic-
itly defined or its access is not granted. GAP addresses this
challenge with speculative execution. In this section, we first
describe a method for extracting partial grammars from in-
put data, then introduce the speculative execution of GAP
pushdown transducers, including a local reprocessing tech-
nique to reduce the misspeculation penalty.

5.1 Partial Grammar Extraction
In the absence of a pre-defined grammar, we leverage the
insight that input data implicitly dictate the grammar to a
certain extent, though may not cover the entire grammar.
Specifically, we design a method that automatically extracts
a partial static syntax tree from prior inputs.

Many applications process semi-structured data from the
same source repetitively. For example, web analytics that
receive semi-structured data from a specific social network
website or data exchanges between two enterprises. In such
scenarios, the input data from run to run tend to follow a
similar structure as they are all defined by the same “hid-

den” grammar. Hence, it provides an opportunity to “learn”
grammar from earlier runs.

Algorithm 3 shows a straightforward way to extract a
(partial) static syntax tree directly from an input stream.
More sophisticated grammar learning algorithms are also
available from prior studies [35, 36].

Algorithm 3 Static Syntax Tree Extraction from Input Data
1: procedure STATIC SYNTAX TREE EXTRACTION(stream)
2: while stream has next tag t do
3: if t is the first element then /* root node */
4: root = create node(t);
5: stack.push(root);
6: else if t is a start tag then
7: parent = stack.top();
8: /* find a child of parent with tag t */
9: child = find child by tag(parent, t);

10: if child != null then
11: stack.push(child);
12: else /* create a new child for parent */
13: node = create node(t);
14: parent.add child(node);
15: stack.push(node);
16: else if t is an end tag and t == stack.top().end then
17: stack.pop();
18: else
19: print(“errors in inputs”);
20: return root;

5.2 Speculative GAP Pushdown Transducers
Speculative GAP pushdown transducers are augmented with
the capabilities of validating the speculative execution paths
and initiating appropriate reprocessing when speculation
fails. Since Section 4.3 already describes the basics of GAP
pushdown transducers, here we focus on the aspects of spec-
ulative execution.
Speculative Execution. With the extracted grammar, GAP
can infer feasible paths in the same way as inferring from
a pre-defined grammar. The difference lies in the results –
the feasible paths may be incomplete due to missing parts
of the extracted grammar. Consequently, GAP transducers
run speculatively, with the potential of missing the true path.
Similarly to other speculation schemes, speculative GAP
transducers first run with speculated data (i.e., feasible paths
from extracted grammar), then rely on the validation and
reprocessing to guarantee the correctness.

Note that when a speculative GAP transducer looks up
an incomplete feasible path table, it may not even find any
corresponding feasible paths for the inquired input symbol,
simply because the symbol does not appear in the extracted
grammar. In such situations, the GAP transducers degrade
themselves to basic parallel pushdown transducers and enu-
merate all execution paths.

Another difference with the non-speculative transducers
is about the third scenario of dynamic path elimination (see
Section 4.3). When processing the first start tag after a path
divergence, it does not take the intersection between two
path sets Qold and Qhash. Instead, it simply uses Qhash

to replace Qold, for two reasons: first, this creates chances
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to correct an earlier misspeculation; second, it allows the
reprocessing to be performed selectively (as explained next).
Validation and Reprocessing. Once every GAP transducer
finishes its chunk (speculatively), they enter into the join
phase, where the validation and reprocessing are performed.

According to Section 4.3, the feasible path table is used in
three scenarios: (1) at the beginning a chunk (except the first
one); (2) in the occurrence of a path divergence; (3) when
processing the first start tag after a path divergence. Since
the feasible path table is extracted from a partial grammar,
it might miss the true execution path. Hence, a validation is
required for each of the above three scenarios, respectively.
For example, during the joining of a pair of mappings from
two consecutive chunks, if the starting states of the latter
chunk do not include the correct finishing state of the earlier
chunk, a misspeculation is detected. In either case, when a
validation fails, a GAP transducer would reprocess the failed
part with the corresponding correct starting state. Note that a
misspeculation at the beginning of of a chunk does not nec-
essarily mean that the whole chunk needs to be reprocessed.
Thanks to the other two dynamic path elimination scenarios,
an earlier misspeculation might be corrected by a latter path
elimination operation. Hence, the reprocessing of a chunk is
usually performed selectively.

6. Evaluation
We evaluate GAP on a set of real-world XML benchmarks
and examine its efficiency and scalability on a variety of path
queries, including a set of 200 queries.
Implementation. We prototyped GAP in C language. It in-
cludes four major components: a static syntax tree genera-
tor that takes a DTD/XSD grammar as input and outputs a
static syntax tree; a symbolic pushdown transducer execu-
tor that runs symbolically over a given static syntax tree; a
multi-threaded GAP pushdown transducer implemented us-
ing Pthread and can be tuned into either speculative mode
or non-speculative mode (by default, it is set to speculative
mode), as well as a grammar extractor that can be enabled ei-
ther online (for streaming data) or offline (for storage data).
Methodology. We compare GAP with the state-of-the-art
parallel pushdown transducers [30], which has shown com-
parable performance to PugiXML [22], a popular C++ XML
processing library and much better performance than Ex-
pat [6]. Table 2 summarizes the versions used in our com-
parison. For speculative GAP versions, we randomly choose
a portion of the complete grammar 3.

All experiments run on a 20-core machine equipped with
two Intel 2.13 GHz Xeon E7-L8867 processors. The ma-
chine runs openSUSE Leap 42.1 and has GCC 4.8.5. All pro-
grams are compiled with “-O3” optimization flag. The tim-
ing results reported are the average of 10 repetitive runs. We
do not report 95% confidence interval of the average when
the variation is not significant.

3 To ensure the partial grammar is meaningful, we randomly and recursively
remove leaf elements from the original grammar.

Method Versions Abbreviation
Parallel pushdown transducer [30] PP-Transducer
Non-speculative GAP GAP-NonSpec
Speculative GAP with 20% grammar GAP-Spec(20%)
Speculative GAP with 40% grammar GAP-Spec(40%)
Speculative GAP with 80% grammar GAP-Spec(80%)

Table 2. Method Versions in Evaluation

Benchmarks. Table 3 lists datasets used in our experiments
as well as their statistics. Except XMark, all the datasets
are from a commonly used UW XML data repository [40],
which covers a variety of XML applications. To make a fair
comparison with prior work [30], we also use a scaling factor
that replicates the datasets, resulting in sizes from 600MB to
6GB. We do not report results for larger datasets because the
measurements are stable due to the large amount of repetitive
computations involved in semi-structured query processing.

Dataset #tags dmax davg Dataset #tags dmax davg

Lineitem 34,781,152 3 2.94 DBLP 33,321,292 6 2.9
SwissProt 29,770,302 5 3.55 NASA 237,230,520 8 5.58
Protein 42,597,466 7 5.15 XMark 23,328,398 13 5.55

Table 3. XML datasets (d means depth)

We use queries from XPathMark[14] for its designated
purpose of XPath query evaluation and its realistic query
structures. As listed in Table 4, the query set covers the
whole set of A-type queries as well as two B-type queries in
XPathMark. When predicates, parents or ancestors are used,
the queries are translated into subqueries or rewritten, such
that they can be merged into a single pushdown transducer.
The right-most two columns show the number of subqueries
and number of matches in the datasets.
Single-Query Performance. The speedup for single-query
processing is shown in Figure 8 (left). The baseline is the
sequential pushdown transducer.

Among the five versions, GAP-NonSpec yields the best
speedup on all tested queries, leading to an average of
15X speedup. In comparison, PP-Transducer achieves least
speedup except for benchmarks XM1 and XM2, in which
cases the GAP-Spec(20%) performs the worst. It is easy to
notice the clear trend among the three speculative versions.
As the extracted syntax tree becomes more complete, the
performance improves. However, the trend varies across dif-
ferent benchmarks, implying that the performance of spec-
ulative versions are less predictable. It is worth to note that
even with 20% syntax tree, the GAP-Spec still yields better
performance than PP-Transducer (13.2X v.s. 11.6X).

To better understand the performance results, we profiled
the average number of starting execution paths, as shown in
Table 5. The last row of single query block shows the geo-
metrical mean of the number of starting execution paths for
each version. It clearly shows a big discrepancy between PP-
Transducer and GAP-NonSpec. The discrepancy confirms
the effectiveness of the proposed dynamic path elimination
and demonstrates its benefits in improving the performance.

379



Query Dataset Query structure #sub #matches
NS1 NASA /ds/d/tb/ts/tl/tit 1 2,119,760
NS2 NASA //ds/d/tit 1 3,395,250
PT1 Protein /pd/pe/r/ri/xs/x/u 1 279,402
PT2 Protein /p/pe//u 1 1,949,416

Query Dataset Query structure #sub #matches
DP1 DBLP /dp/ar/au 1 1,107,323
DP2 DBLP //dp//ed 1 31,940
DP4 DBLP /dp/ar[tit]/jn 3 558,046
XM3 XMark //k/ancestor::li/t/k 3 241,556

Query Dataset Query structure #sub # matches
NS3 NASA /ds/d[descendant::tit or descendant::na or descendant::kw]/an 5 1,826,250
NS4 NASA /ds/d[tit and al]/r/s/o/au/ln 4 191,250
PT3 Protein /pd/pe/r[aci/acs or at or ct or nt]/ri/ats/at 6 5,668,287
DP3 DBLP /dp[mt/au or mt/tit or mt/yr or pt/au or pt/tit or pt/yr or ...]/au 43 1,107,323
XM1 XMark /s/r/*/item/[parent::af ]/name 1 3,851
XM2 XMark //s[r/*/item[parent::au parent::af ... parent:: eu]/mb/m/t/k/ b or ...]/pp/ps/ name 18 178,500

Table 4. XPath queries. #sub shows the number of sub-queries in each query structure.
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Figure 8. Speedup of Single-Query and Multi-Query Processing on A 20-core Machine

PP- GAP- GAP-Spec
Query Set Trans. NonSpec 20% 40% 80%

si
ng

le
qu

er
y NS 7.7 1.0 5.7 4.8 1.1

LI 8.4 1.1 5.3 1.3 1.1
DP 9.0 1.7 3.1 3.1 1.6
XM 12.4 1.9 6.3 5.5 3.7
Geo 9.2 1.4 4.9 3.2 1.7

80
qu

er
ie

s NS 275.0 1.1 192.4 157.6 5.3
LI 166.0 1.0 60.6 51.4 28.5
DP 96.0 3.2 18.9 17.4 2.5
XM 285.0 5.4 119.8 75.2 33.4
Geo 188.0 2.1 71.7 57.0 10.6

Table 5. Average Number of Starting Execution Paths

Multi-Query Performance. To evaluate the performance of
multi-query processing, we use 12 groups of queries, with
three different sizes: 20 queries, 40 queries, and 80 queries.

Multi-query processing speedup is shown in Figure 8
(right). Overall, the results follow a similar pattern as single-
query processing. However, the performance differences
among different versions become larger, especially between
PP-Transducer and four GAP versions. Specifically, GAP-
NonSpec produces 15.1X, similarly to its single-query per-
formance, while PP-Transducer only yields 6.7X speedup.
The reason is that when processing multiple queries con-
currently, the pushdown transducers grow larger with more
number of states. As a result, PP-Transducer ends up enu-
merating more paths, causing higher parallelization cost.

Table 5 reports the number of starting paths for all five
versions. In single-query processing, the gap between PP-
Transducer and GAP-NonSpec is about 10X (9.2 vs. 1.4 on
average). While in multi-query processing, the gap quickly
increases up to hundreds of times (188 vs. 2.1 on average).

GAP-Spec(20%) GAP- Spec(40%)
Query (set) cost acc. cost acc.

si
ng

le
qu

er
y DP1 0.003% 94.12% 0.003% 94.12%

DP3 0.002% 94.12% 0.002% 94.12%
DP4 0.003% 94.12% 0.004% 94.12%
XM1 26.85% 62.50% 0% 100%
XM2 25.10% 47.83% 0% 100%

qu
er

y
se

t DP (20) 0.003% 88.24% 0.002% 88.24%
DP (40) 0.002% 94.12% 0.003% 94.12%
DP (80) 0.002% 96.43% 0.002% 96.43%
XM (20) 24.18% 56.52% 0% 100%
XM (40) 24.14% 56.52% 0% 100%
XM (80) 26.02% 54.17% 0% 100%

Table 6. Speculation Accuracy and Reprocessing Cost

Speculation Accuracy and Cost. Table 6 reports the spec-
ulation accuracy and the cost of misspeculation, including
both single queries and query sets. The ones that are not
listed do not have any misspeculation. The misspeculation
cost is typically a very tiny portion of the total execution
time, except queries to XM dataset which shows more than
24% misspeculation cost when using 20% grammar (GAP-
Spec(20%)). There are two main reasons causing such rel-
atively high cost: First, the speculation accuracy of these
queries are relatively low, slightly higher than 50%, resulting
in a substantial amount of reprocessing; Second, a few ele-
ments that appear quite often in the dataset are missing in the
20% partial grammar, in which cases, the speculative GAP
transducers degrade themselves to basic parallel transducers
and enumerate all execution paths.
Scalability. We measured the scalabilities in terms of both
the number of cores and the number of queries.
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Figure 9. Scalability over Number of Cores

0	  	  

5	  	  

10	  	  

15	  	  

20	  	  

0	   50	   100	   150	   200	  

Sp
ee
du

p	  
(2
0	  
co
re
s)
 

Number	  of	  Queries 

PP-‐Transducer	   GAP-‐NonSpec	   GAP-‐Spec(40%)	  

Figure 10. Scalability over Number of Queries

Figure 9 shows the scalability in terms of number of
cores. All three versions show good scalability – the speedup
linearly increases up to at least 20 cores. Meanwhile, it also
clearly shows the trend of their differences – as the number
of cores increases the performance gap among these three
versions will become even larger.

Figure 10 shows the scalability in terms of number of
queries. PP-Transducer shows a sharp decrease as the num-
ber of queries increases, which aligns well with the results
reported by prior work [30]. In comparison, the two GAP
versions show no degradation at all up to at least 200 queries,
thanks to the dynamic path elimination.

7. Related Work
There is a large amount of efforts on making parsing par-
allel for both context-free grammars and non-CFG gram-
mars [16, 17, 29, 37, 41]. They provide valuable insights to
this work. In particular, [16] leverages some rules extracted
from the input structure to facilitate the parallel expression
evaluation. Next, we will focus our discussions on XPath
querying and its parallelism exploitation.
XML querying. Many prior work study the expressiveness
of XPath querying and the execution of concurrent queries
efficiently, including automata-based techniques [2, 44],
array-based methods like TurboXPath [21] and stack-based
algorithms like Twig2Stack [5]. This work uses an approach
that combines a number of small queries into a single DFA
and evaluates them simultaneously [19]. Y-Filter [11] and
XMLTK [2] are based on this method and address state ex-
plosion with lazy DFA.

Some earlier work exploiting data parallelism in XPath
queries rewrite an XPath query with predicates into several
sub-queries, execute the sub-queries in parallel and merge
their results sequentially [4]. However, this approach de-
mands more hardware resources meanwhile exposes limited
parallelism. The work by Zhang and others [44] executes
multiple states in the NFA in parallel. Although each ac-
tive state is handled by a different thread, the XML data is
still processed sequentially. An alternative method proposed
by Liu and others [24] uses a parallel structured join algo-
rithm, where both query and join operations are paralleliz-
able. However, constructing the required data structures is
still a sequential step. This work is primarily based on the
PP-Transducer [30] which can operate on arbitrarily framed
XML chunks. More details are given in Section 1 and 2.3.
Parallel XML Parsing. There are two basic ways of data-
level parallel parsing for XML: the partition-oriented and the
merging-oriented [25, 33, 39, 43, 45]. The work by Lu and
others, for example, first extracts the high-level structure of
XML documents through a quick prescan [25], and parses
each part of the document in parallel. In comparison, Wu
and others [43]’s method cuts XML documents into chunks
directly, parses them and merges the result together.
Other Parallelization. Recent work on parallelizing finite
automata [28, 34, 46, 47] provides useful insights, but can-
not be applied directly to pushdown transducers, due to the
involvement of stack. Zhao and others design stack-based
automata that predict future function calls to enable par-
allel Just-in-Time compilation [48]. Saeed and others [26]
exploit the rank convergence in parallel dynamic program-
ming, sharing some of the high-level ideas of this work.

8. Conclusion
This paper presents GAP, a novel parallelization scheme that
leverages the grammar of semi-structured data to improve
the parallelization efficiency. Depending on the availability
of a pre-defined grammar, GAP can run in both speculative
mode and non-speculative mode. In either case, GAP is able
to infer feasible execution paths by generating a static syntax
tree and executing the pushdown transducer symbolically on
the tree. By feeding such information to the GAP pushdown
transducers, unnecessary execution paths can be eliminated
on the fly. In addition, GAP transducers feature a runtime
data structure switching to further take advantage of path
elimination and maximize the efficiency. Evaluation on real-
world datasets and queries confirm the benefits of grammar-
aware parallelization which yields consistent speedup to a
large number of concurrent queries.
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