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Abstract
Developing highly scalable algorithms for global atmospheric
modeling is becoming increasingly important as scientists inquire
to understand behaviors of the global atmosphere at extreme scales.
Nowadays, heterogeneous architecture based on both processors
and accelerators is becoming an important solution for large-scale
computing. However, large-scale simulation of the global atmo-
sphere brings a severe challenge to the development of highly
scalable algorithms that fit well into state-of-the-art heterogeneous
systems. Although successes have been made on GPU-accelerated
computing in some top-level applications, studies on fully exploit-
ing heterogeneous architectures in global atmospheric modeling
are still very less to be seen, due in large part to both the computa-
tional difficulties of the mathematical models and the requirement
of high accuracy for long term simulations.

In this paper, we propose a peta-scalable hybrid algorithm that
is successfully applied in a cubed-sphere shallow-water model for
global atmospheric simulations. We employ an adjustable parti-
tion between CPUs and GPUs to achieve a balanced utilization of
the entire hybrid system, and present a pipe-flow scheme to con-
duct conflict-free inter-node communication on the cubed-sphere
geometry and to maximize communication-computation overlap.
Systematic optimizations for multithreading on both GPU and
CPU sides are performed to enhance computing throughput and
improve memory efficiency. Our experiments demonstrate nearly
ideal strong and weak scalabilities on up to 3,750 nodes of the
Tianhe-1A. The largest run sustains a performance of 0.8 Pflops
in double precision (32% of the peak performance), using 45,000
CPU cores and 3,750 GPUs.

Categories and Subject Descriptors D.1.3 [Programing Tech-
niques]: Concurrent programming; J.2 [Physical Sciences and En-
gineering]: Earth and atmospheric sciences; F.2.1 [Analysis of Al-

gorithms and Problem Complexity]: Numerical Algorithms and
Problems

Keywords parallel algorithm; atmospheric modeling; GPU; het-
erogeneous system; communication-computation overlap; scalabil-
ity

1. Introduction
Numerical simulation of the global atmosphere, as a key compo-
nent in climate modeling, is one of the most computationally chal-
lenging problems in scientific computing. As scientists inquire to
understand dynamic behaviors of the global atmosphere at increas-
ingly fine resolutions [9, 16, 19, 27], the development of highly
scalable algorithms for global atmospheric modeling is becoming
an urgent demand. Scalable atmospheric solvers not only enable
high-fidelity simulation of realistic problems but also lead to dra-
matic reduction in time-to-solution and substantial increase in ac-
curacy.

Nowadays, heterogeneous architecture based on both CPUs and
GPUs is becoming an important solution for large-scale computing.
Successes have been made in applying efficient hybrid algorithms
to some top-level applications, such as N-body simulations [7, 8,
11], biofluidics simulations [3] and phase-field simulations [26].
Although some promising approaches have been proposed to take
advantage of GPU accelerations in regional weather predictions
(e.g., [10, 14, 24, 25]), studies on fully exploiting heterogeneous
architectures in global atmospheric modeling are still undergoing.

There are several difficulties in efficiently running a global
atmospheric model on a petascale heterogeneous supercomputer.
One comes from the reality that the global atmosphere is defined
on a large computational area (i.e., the Earth) and exhibits a broad
range of different spatial and temporal scales. These characteristics
of the atmosphere require a global or stencil-based method instead
of a particle-based method which is favorable on reducing the
coupling of the system (e.g., [8]).

As a success in GPU-accelerated stencil computing, a petaflop
performance in single precision has been achieved by Shimokawabe
et al. [26] for phase-field simulations on the TSUBAME 2.0 su-
percomputer (2011 Gordon Bell Prize); but the double-precision
performance (260 Tflops) in the same work, which is essential
for atmospheric modeling, is relatively low. In order to conduct
large-scale global atmospheric modeling on modern heterogeneous
systems, we propose a scalable algorithm that works well for a
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global shallow-water model and sustains promising petascale per-
formance in double precision. In the new algorithm, we apply an
adjustable partition between CPUs and GPUs to achieve a balanced
utilization of the entire system. And based on that, systematic op-
timizations for multithreading on both GPU and CPU sides are
performed to enhance double-precision computing throughput as
well as to improve memory efficiency.

Another difficulty in petascale simulation of the global atmo-
sphere is the selection of the computational mesh for the Earth.
The traditional latitude-longitude (Lat-Lon) mesh has been serv-
ing the atmospheric community for several decades. However, as
the resolution becomes finer, the Lat-Lon mesh becomes unable to
maintain satisfying load-balance due to the non-uniformity. For ex-
ample, it has been claimed by Putman [18] that the Lat-Lon mesh
may only scales to a few thousand processors at 0.1◦ horizontal res-
olution. In this study we use the cubed-sphere mesh among several
choices [13, 22, 23, 28] primarily because: (1) it provides a good
load-balance even when the number of processors is substantially
large; and (2) each patch of the partition helps improve the overall
performance in aligned memory access.

Due to the intrinsic curvilinear nature of the sphere, mes-
sage passing pattern on the cubed-sphere is complicated com-
pared to structured stencil computations such as the work of
Shimokawabe et al. [26] in which the computational domain is
a three-dimensional cube. To that end, we propose a “pipe-flow”
communication scheme for the rearrangement of send/receive pairs
across sub-block boundaries in order to maximize communication-
computation overlap for the cubed-sphere geometry and to dramat-
ically reduce communication overhead.

The rest of this paper is organized as follows. In Section 2, we
introduce the mathematical model and numerical methods used in
our global atmospheric simulation. Major algorithms proposed in
this paper are presented in Section 3 in detail, after which some
key implementation and optimization strategies on the Tianhe-1A
are given in Section 4. We then show by several large-scale numer-
ical tests in Section 5 that the proposed hybrid algorithm is peta-
scalable on the Tianhe-1A. The paper is concluded in Section 6.

2. Equations and Discretizations
Among several equation sets that can be used to model the global
atmosphere, shallow-water equations (SWEs) exhibit most of the
essential characteristics of the atmosphere, thus can be used as a
test bed for the development of new algorithms. The SWEs on a
rotating sphere can be written as a system of conservation laws:

∂h

∂t
+∇ · (hv) = 0,

∂(hv)

∂t
+∇ · (hv ⊗ v) = ΨC + ΨG,

(1)

where h is the thickness of the atmosphere, v is the velocity
vector defined on the surface of the sphere. The two source terms
ΨC = −fh(k̂ × v) and ΨG = −gh∇(h + b) are due to the
Coriolis force and the gravity force, respectively. Here k̂ is the unit
outward normal on the sphere, f is a Coriolis parameter, g is the
gravitational constant and b is the height of the spherical surface
describing a variable bottom topography (e.g., mountains).

In this study, we employ a cubed-sphere mesh that is defined by
mapping an inscribed cube of the sphere to the surface, as shown
in Fig. 1. The computational domain is the six faces of the cube,
corresponding to the six patches on the sphere. An advantage of
the cubed-sphere geometry is that the SWEs, when written in local
coordinates, have an identical expression on the six patches; that is

∂Q

∂t
+

1

Λ

∂(ΛF 1)

∂x1
+

1

Λ

∂(ΛF 1)

∂x2
+ S = 0, (2)

Figure 1. A cubed-sphere mesh on the sphere. The cubed-sphere is
obtained by mapping an inscribed cube of the sphere to the surface.
Mesh lines on the cubed-sphere coincide with great circles.

where (x1, x2) ∈ [−π/4, π/4] are the local coordinates of a patch,
Q = (h, hu1, hu2)T is the prognostic variable, F i = uiQ (i =
1, 2) are the convective fluxes and S = (0, S1, S2)T is the source
term. Note that the two contravariant components of the velocity,
u1 and u2, are non-orthogonal. The source term becomes more
complicated due to the non-orthogonality of the cubed-sphere, e.g.,

S1 = − f
Λ

2∑
i=1

(
g2ihu

i
)

+gh

2∑
i=1

(
g1i

∂Z

∂xi

)
+

2∑
i,j=1

Γ1
ij(hu

iuj),

where Z = h + b is the surface level of the atmosphere. Variable
coefficients found therein such as Λ, Γk

ij , gij and gij all have fixed
expressions that only depend on their geometric positions; details
can be found in, e.g., [20, 21].

Figure 2. The computational domain of a cubed-sphere consists
of six patches that are mapped from the six faces of a cube. Each
patch is covered by a uniform rectangular mesh.

Suppose the cubed-sphere is equal-distantly meshed in the com-
putational domain, with N × N mesh cells in each patch, as seen
in Fig. 2. Then we may spatially discretize the SWEs (2) by using,
for instance, a cell-centered finite volume method. All prognostic
variables h, hu1 and hu2 are simultaneously approximated within
each mesh cell as a single vector variable

Qk
ij(t) =

1

Λk
i,j

∫
C(i,j,k)

Q(t)dσ, Λk
i,j =

∫
C(i,j,k)

dσ,

where C(i, j, k) is a mesh cell with index (i, j) in patch k and
dσ = Λdx1dx2. Then a solution vector is composed as X(t) =
[Qk

ij(t)] at time frame t. Integrating (2) over each mesh cell leads
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to a semi-discrete system:

∂X(t)

∂t
+ L(X(t)) = 0, (3)

where L(X(t)) = [Lk
ij(t)] and

Lk
ij(t) =

4N

Λk
ijπ

∫
∂Ci,j,k

(F 1(t), F 2(t)) · nds+ Sk
ij(t), (4)

with n being the outward unit normal.

Figure 3. Left: State reconstruction in cell (i, j), values in the
adjacent four cells are needed. Right: The 13-point stencil exhibits
a diamond shape. Each dot represents a mesh cell on which the
three prognostic variables are evaluated.

Cell edge integrations of F i in (4) are done in a two-step man-
ner. The first step is to reconstruct Q on each cell edge from both
limit sides using the value of Qk

ij on several adjacent neighbors.
For example, as shown in the left panel of Fig. 3, two reconstructed
states of q in the x1 direction are obtained via

q+i−1/2,j = 16
24
qi,j + 1

24
(qi,j−1 + qi,j+1 + 3qi−1,j − qi+1,j),

q−i+1/2,j = 16
24
qi,j + 1

24
(qi,j−1 + qi,j+1 + 3qi+1,j − qi−1,j).

The second step is to calculate F i on any cell edge using a modified
Osher’s Riemann solver ([17]) as∫

∂Ci,j,k

(F 1, F 2) · nds ≈

(∫
∂Ci,j,k

ds

)
(F 1, F 2)

∣∣
Q∗ · n, (5)

where Q∗ is calculated from a nonlinear combination [31] of Q−

andQ+ on the same edge. Putting the two steps together, the stencil
used in the calculation of (4) exhibits a diamond shape, with 13
points in total, as shown in the right panel in Fig. 3. Due to the
hyperbolic nature of the SWEs, the computation of Q∗ could not
be done without a proper upwinding mechanism; that is, “if-else”
statements are used in the code to calculate stencils. This type of
dependency complicates the problem studied here from those in
other applications (e.g., [26]).

To properly pass information between neighboring patches, a
two-point linear interpolation is used to calculate corrected values
on halos (i.e., ghost cells) across patch interfaces. Velocity compo-
nents are transformed into a same coordinates system on each patch
interface in the calculation of the numerical fluxes to maintain mass
conservation, which is important for long-term integrations in cli-
mate modeling.

We integrate the SWEs using a second-order accurate total
variation-diminishing Runge-Kutta method [6] that reads

X(t(m)) = X(t(m−1))−∆tL(X(t(m−1))),

X(t(m)) =
1

2

{
X(t(m−1)) + X(t(m))

}
−

1

2
∆tL(X(t(m))),

(6)

in which there are two stencil evaluations at each time step.

3. Algorithms
Before describing the algorithms, we first decompose each patch of
the cubed-sphere into small sub-blocks along both dimensions in a
same way. Each sub-block is managed by an MPI process that cor-
responds to a computing node in a CPU-GPU cluster. Halo infor-
mation from neighboring sub-blocks is updated before computing
the stencils in each sub-block, as shown in Fig. 4.

Figure 4. The halo updating pattern for a sub-block that is ob-
tained by decomposing a patch of the cubed-sphere. Mesh cells in
a sub-block are shown as solid dots and halo cells required by the
sub-block are shown as empty dots.

3.1 CPU-only algorithm
In the CPU-only algorithm, the two stencil operations in (6) are
carried out in a same procedure, which is described in Algorithm 1.
MPI processes are utilized to manage all sub-blocks in the algo-
rithm. In addition to that, by employing multi-threading techniques
such as OpenMP, another level of parallelism can be added within
each sub-block in order to further exploit the multi-core CPUs in
each computing node.

Algorithm 1 CPU-only algorithm for each stencil cycle.
1: for all six patches do
2: for all sub-blocks in each patch do
3: Update halo information
4: Interpolation on halos when necessary
5: for all mesh cells in each sub-block do
6: Compute stencil for the h component
7: Compute stencil for the hu1 component
8: Compute stencil for the hu2 component
9: end for

10: end for
11: end for

The workflow of Algorithm 1 for each stencil cycle is shown
in Fig. 5, which consists of four stages: 1© halo updating, 2© data
copying, 3© halo interpolating, and 4© stencil computing. Based on
the framework of PETSc (Portable Extensible Toolkit for Scientific
computation [2]), we make use of a pair of neighboring communi-
cation functions (VecScatterBegin/End) to update halo informa-
tion. Right after that, an extra data copy is required to fill the buffer
for later use. Then a linear interpolation is carried out on the halos
across patch interfaces to prepare proper ghost-cell information for
stencil computations. Since halo updating needs to be done before
the stencil computation part, the communication can not be hidden
and will eventually degrade the scalability when the number of MPI
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Figure 5. A CPU-only algorithm for the stencil computations. Halo updates are performed with MPI. An extra data copy is needed to prepare
data for this stencil cycle before the stencil computations.

Figure 6. A hybrid CPU-GPU algorithm for the stencil computations. In the figure, “interp.” refers to the interpolation on halos; “halo-
top/bottom/left/right” refer to the stencil computations for the four halo areas in the outer part of the sub-block; “G2C” refers to the data
movement from GPU to CPU and “C2G” refers to the data movement from CPU to GPU.

Figure 7. An optimized hybrid CPU-GPU algorithm for the stencil computations. The partition between CPUs and GPUs is adjusted to
balance different computing resources and communication-computation overlap is applied in the optimized algorithm. In the figure, “halo-
1/2/3/4” refer to stencil computations inside the four halo areas of the outer part.
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Figure 8. Each sub-block can be decomposed into an inner part
that does not need halo information and a 2-layer outer part that is
close to the four boundaries of the sub-block.

processes becomes large. Besides, the CPU-only approach does not
benefit from the GPU resources in a hybrid CPU-GPU system.

3.2 Hybrid CPU-GPU algorithm
In this subsection, we present a hybrid algorithm that is similar
to the one employed by Shimokawabe et al. [26] in phase-field
simulations. After decomposing the whole domain into sub-blocks,
we separate each sub-block into an inner part that does not require
halo information and an outer part that contains two layers of halos
needed by neighboring sub-blocks, as seen in Fig. 8. Then for each
computing node, we assign the GPUs to process the inner part and
the CPUs to the outer part. To efficiently process the outer part
with multi-threading, we divide it into four areas spanned along the
four boundaries of the sub-block, as shown in the same figure. The
values computed in the four areas of the outer part are halos needed
by neighboring sub-blocks.

A workflow of the hybrid CPU-GPU algorithm for each stencil
cycle is given in Fig 6. In the hybrid approach, the CPU code and
the GPU code are executed concurrently in two OpenMP sections.
While the inner part is processed by the GPUs, the CPUs perform:
1© halo updating, 2© data copying, 3© halo interpolating, and 4©

stencil computing in the outer part. At 5©, when the calculations
on both sides are finished, data exchanging across the interior
boundaries between CPUs and GPUs are carried out. The stencil
computations for the outer part can be parallelized by utilizing
OpenMP threads according to the four divided areas along the
boundaries.

3.3 Adjustable partition between CPUs and GPUs
As shown in Fig. 8, when the GPUs are handling the inner part,
which is a very large portion of the sub-block, the CPUs process
a 2-layer outer part that only contains a very small portion of the
sub-block (less than 1% for a 1,024×1,024 mesh). To make better
use of the CPU resources and to improve the overall computing ef-
ficiency, we further propose an adjustable partition between CPUs
and GPUs.

In the new algorithm, we increase the number of mesh layers
in the outer part assigned to the CPUs, and decrease the size
of the inner part correspondingly. In addition to the four areas
that the original outer part owns, there is an extra interior area
in the extended outer part, as shown in Fig. 9. This area is now
processed by the CPUs instead of the GPUs to better balance the
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Figure 9. An adjustable partitioning of a sub-block between the
CPUs and the GPUs. Compared to the original two-layer outer
part, an interior area is introduced in the extended outer part. Ac-
cordingly, the size of the inner part assigned to the GPU becomes
smaller.

computational loads on the two sides. There are several advantages
to divide the outer part into an interior area and four two-layer
halo areas. Firstly, after stencil computations inside a halo area are
finished, the newly calculated values in this halo area can be sent
to the neighboring sub-block, which can be done in parallel with
stencil computations inside the next halo area. Secondly, stencil
computations in the interior area can be performed in parallel with
any unfinished halo updating, right after stencil computations in the
four halo areas are done. Thirdly, the code to compute stencils for
the interior area is more efficient since no judgments are needed to
deal with the sub-block boundaries.

Fig. 7 illustrates the workflow of the optimized hybrid algorithm
for each stencil cycle. In the new algorithm, because communica-
tions and computations are overlapped, proper halo information is
already available at the beginning of the stencil cycle. So while the
GPUs are processing the inner part, the CPUs: 1© do halo interpola-
tion (if necessary); 2© conduct stencil computations for halo area-1;
3© conduct stencil computations for halo area-2 and send the com-

puted results to the neighbor sub-block at the same time (similar for
4© and 5©); 6© perform stencil computations in the interior of the

outer part after finishing computing halo area-4; 7© copy necessary
data to the buffer. At 8©, when the calculations on both sides are
finished, data are exchanged between GPUs and CPUs by the end
of the stencil cycle.

In the new algorithm, all communications for updating halos
are overlapped by the computations on CPU side, which leads to
good scalability as well as efficient use of the CPU computing
capacity. In addition to that, we can dynamically adjust the partition
of a sub-block to achieve a balanced utilization of both CPUs and
GPUs. The optimal ratio to partition the sub-blocks is searched
automatically by analyzing the critical path in order to minimize
the elapsed time.

3.4 “Pipe-flow” scheme for the cubed-sphere
The six patches of the cubed-sphere have different communication
patterns that require a carefully designed communication strategy
to conduct a conflict-free message passing. For example, as seen in
Fig. 2, we should avoid concurrent sending of data from patches 0-3
to patch 4; otherwise both the number of message and the volume
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of data received by patch 4 are much larger other patches, which
results in an imbalanced usage of the network.

Therefore, it is important to specify an optimized sequence of
communications for the cubed-sphere. For that purpose, we pro-
pose a new “pipe-flow” scheme as shown in Fig. 10. In the “pipe-

Figure 10. A “pipe-flow scheme to handle the complicated com-
munication pattern of the cubed-sphere. There are four different
steps in the arrangement of communications, shown as four panels
in the figure. The arrows indicate the directions that data enter and
exit the six patches like a flow.

flow” scheme, there are four different steps in the arrangement of
communications. Communications are done like a flow going along
a closed loop covering the six patches of the cubed-sphere, with in-
let/outlet directions of the flow on each patch showing in the figure.

The direction of the “pipe-flow” inside each patch is decided by
the inlet and outlet directions. The flow goes straight if the inlet
and outlet of the flow are on opposite sides of the patch. Otherwise,
directions of the flow are more complicated, as shown in Fig. 11.

Figure 11. Directions of the “pipe-flow” inside a specific patch of
the cubed-sphere. The square shaded regions represent the inner
parts of sub-blocks, and the narrow shade regions represent the
halos to be sent.

At any step of the “pipe-flow” scheme, each process only has
one “send” and one “receive” to communicate with other processes.
In this way, balanced and efficient message exchange steps are
achieved for inter-process communication, leading to substantial
improvement of the parallel performance when the number of pro-
cesses is large.

4. Implementation & Optimization on Tianhe-1A
4.1 The Tianhe-1A supercomputer
As a petascale supercomputer, Tianhe-1A [32] features an MPP ar-
chitecture of hybrid CPU-GPU computing. Unlike GPU-rich petas-
cale systems such as the TSUBAME 2.0 [26], the deployment of
CPUs and GPUs is different in the design of the Tianhe-1A super-
computer. In the system, there are totally 7,168 computing nodes,
each of which consists of two six-core Intel X5670 CPUs with
32GB local memory and one NVIDIA M2050 GPU with 3GB on-
board memory. The peak performance of the whole system is 4.7
Pflops in which the 100,352 GPU cores (i.e., 3,211,264 CUDA
cores) provide around 3.7 Pflops and the other 1.0 Pflops are pro-
vided by the 86,016 CPU cores.

A proprietary high-speed interconnection network, the TH-net
[30], is designed and implemented to enhance the communication
capabilities of the system. The topology of the TH-net is an opto-
electronic hybrid, hierarchical fat tree. The MPI implementation on
the Tianhe-1A is customized to achieve high-bandwidth and low-
latency data transfers, and the inter-node bandwidth of point-to-
point unidirectional MPI operations is as high as 6,340 MB/s.

4.2 Optimization of the GPU stencil code
In the Tianhe-1A, each node is equipped with an NVIDIA Fermi
M2050 GPU consisting of 14 streaming multiprocessors (SM) and
3 GB onboard memory. Each SM contains 32 streaming proces-
sors that can compute concurrently in a similar flavor to vector pro-
cessors. Meanwhile, each SM also provides 64 KB local storage
that can be configured as either 48-KB shared memory plus 16-KB
L1 cache (the default mode) or 16-KB shared memory plus 48-KB
L1 cache. To exploit the computing capacity of the GPUs in the
Tianhe-1A, we employ CUDA version 4.0 for GPU programming.

According to (6), for each time step, there are two stages of
stencil calculations that can be performed in a similar way. The
only differences are the input/output vectors and their coefficients.
The output vector of the first stencil calculation is used as the
input vector of the second stencil calculation. Therefore, instead
of copying the result back to the host (CPU) memory after the
first stage is done, the data can remain in the GPU memory for the
later use in the second stage. Only the information across interior
boundaries needs to be exchanged with the host in between of the
two stages. For that purpose, we map the two stages of stencil
calculations in (6) into two CUDA kernel functions on the GPU
in order to reduce the cost of data transfer. In addition to that, we
implement another two kernels to reorder and transpose the interior
boundary data that are needed by the CPUs.

On the GPU side, the two stencil kernels are clearly the most
time-consuming part. A systematic optimization is performed on
both the computation and memory operations to maximize the
throughput for the stencil kernels. To provide a detailed description
about different optimization techniques that we have considered,
we go through a number of different versions of the CUDA codes
in what follows.

4.2.1 Baseline
As a starting point, a baseline GPU code can be directly imple-
mented by parallelizing the stencil computations inside the in-
ner part of the sub-block. As shown in Fig. 12, for a NX by
NY sub-block, we employ a thread grid that contains BX by BY
thread blocks. Each thread block consists of TX by TY different
threads. The configuration of the grid and block should satisfy that
TX·BX=NX and TY·BY=NY. In this way, each point in the mesh is
processed with a GPU thread. Note that for the GPU side, we do not
need to compute the stencils for the mesh cells that are in the halo
(shown as empty dots in Fig. 12). Therefore we can store all mesh
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Figure 12. Strategy to compute stencils for the inner part of a
sub-block using concurrent GPU threads. Mesh cells in the inner
part are drawn as solid dots. And mesh cells in the halo which are
needed by the inner part are drawn as empty dots.

cells of a sub-block in the GPU memory but only perform stencil
calculations for the mesh cells owned by the inner part (shown as
solid dots in Fig. 12).

Choosing the right size for the thread block is important for
achieving a high parallel performance on the GPU platform. A gen-
eral rule is to keep both TX and TY as multiples of 16. This is
mainly because, on the NVIDIA M2050 GPU, threads are sched-
uled and executed in the unit of half-warp (16 threads). Therefore,
by grouping and aligning both the arithmetic operations and mem-
ory accesses in the multiples of 16, we can generally achieve a more
efficient utilization of both the 32 cores in each SM and the 16
memory banks of the shared memory.

For our specific kernels of computing nonlinear stencil terms,
our experiments show that 16 by 16 is a proper thread block con-
figuration (one thread per each point) that provides a good balance
among different resources. As shown in the first point of Fig. 13,
our baseline code processes a 1,024×1,024 sub-block in 117 ms.

4.2.2 Computing auxiliary vectors in run time
Several variable coefficients such as the tensor terms, the Coriolis
source term and the topographic term, are needed in the evaluation
of the nonlinear stencils. Note that those coefficients are only de-
pendent of their geometry positions and remain unchanged during
the whole calculation. Therefore it is a standard practice to compute
and store them as auxiliary vectors for reuse. However, on the GPU
side, the kernel functions need to read in up to 20 different auxil-
iary vectors, which is a large bandwidth requirement to the system.
As a result, in the baseline implementation, only around 11% of the
GPU computing capacity is utilized.

Therefore, in the new implementation, we adopt the strategy of
computing 18 out of the 20 auxiliary vectors in run time rather than
accessing them in global memory. Only the Coriolis force and the
topographic data are stored as auxiliary vectors. Although the total
computing amount is increased significantly, the actual processing
time for a 1,024×1,024 sub-block is reduced from 117 ms to 48 ms,
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Figure 13. Comparison among different optimization techniques
applied in the GPU stencil kernels.

shown as the second point in Fig. 13. Computing most auxiliary
vectors in run time leads to great improvement of performance due
to the substantial reduction of memory bandwidth requirements on
the GPU side.

4.2.3 Increasing L1 cache
To further reduce the cost of the memory access, we can choose
either to increase the size of the L1 cache or to use the shared
memory. By increasing the size of the L1 cache from the default
16 KB to 48 KB, we further reduce the computation time from 48
ms to 45 ms, shown as the third point in Fig. 13.

4.2.4 Using shared memory
We can also move some of the frequently-used (especially the ones
used by different threads in the same block) data into the shared
memory to further improve data reuse. Due to the memory hier-
archy of CUDA, shared memory can be accessible to all threads
in the same block and temporarily store data during the lifetime
of corresponding thread block. Compared with the global memory,
the shared memory provides a much higher memory bandwidth and
enables data reuse among all the threads in the same block. Apply-
ing a similar idea to the 3D stencil work by P. Micikevicius [15],
we can load all the points in a thread block and the corresponding
halos into the shared memory at the beginning of the computation,
so that all the threads can reuse the neighboring points in the com-
putation afterwards. For computing the 13-point stencil as shown
in Fig. 3, each point in the middle of the block can be reused by 8
threads on average.

However, by adding the technique for using shared memory into
our previous version, instead of achieving a better performance,
the computation time for a 1,024×1,024 sub-block increases to 62
ms, shown as the forth point in Fig. 13. This is later found out to
be a result of a low occupancy of the SM. In a 16 by 16 thread
block, we need 12 KB shared memory to store all the points of the
thread block and the halos. As the SM is under the configuration of
48-KB L1 cache and 16-KB shared memory, we can only support
one thread block in one SM. By switching to the configuration of
16-KB L1 cache and 48-KB shared memory, we lose some cache
hits but can then support more thread blocks in one SM. After
switching the configuration, the shared memory version provides
a computation time of 40 ms, shown as the fifth point in Fig. 13.

4.3 Optimization of the CPU stencil code
As shown in Fig. 7, a number of operations including halo updating,
data copying, halo interpolating, stencil computing and data trans-
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Figure 14. Comparison among different threading optimization
techniques applied in the CPU stencil kernels.

ferring between CPUs and GPUs need to be performed on the CPU
side. Among them, the most time-consuming part is to compute the
stencils for the outer part within each sub-block. To improve the
performance of stencil computation on the CPU side, we follow
the idea from Datta et al. [5] by using array padding and in-loop
vectorization techniques that help increase the in-core computing
efficiency. In addition to that, we investigate several threading opti-
mization techniques to maximize the computing throughput of the
multi-core CPUs in each computing node.

As a starting point, we divide the interior area of the outer parts
into four chunks along the four boundaries of the sub-block and
parallelize them with separate parallel regions. To avoid false shar-
ing and to reduce scheduling overhead, the OpenMP for workshar-
ing construct is invoked at the outer loop of the stencil computation
with static scheduling strategy over 12 threads. In addition to that,
thread affinity is introduced to minimize the overhead of context
switching. As mentioned in 4.2.2, instead of accessing the 20 aux-
iliary vectors, we compute 18 of them in run time so that the mem-
ory bandwidth requirement is substantially reduced. For our base-
line CPU code, 74ms are needed to process the steps from 1© to 8©
in Fig. 7 for each stencil cycle, shown as the first point in Fig. 14.
In the test, the sub-block size is 1,156×1,156 and the width of the
outer part is adjusted to 66.

In the baseline implementation of the optimized hybrid algo-
rithm, there are four barriers after processing each of the four in-
terior chunks of the outer part, as seen in Fig. 7. The first three
barriers are responsible for unexpected synchronization overhead,
and can be eliminated by using the OpenMP nowait clause. Shown
in Fig. 14 as the second point, by eliminating the three implicit
synchronizations, the time cost is reduced from 74ms to 72ms.

Although most auxiliary vectors are calculated in run time in
stead of being accessed from memory, there are still thirteen 3-
component variables and two auxiliary coefficients needed during
each 13-point stencil calculation, which may lower the computing
throughput. To effectively hide the memory access latency, we
increase the number of threads to twice as the number of CPU cores
and the time cost is further reduced to 62ms, shown in Fig. 14 as
the third point.

Since the four interior chunks of the outer part exhibit differ-
ent data layouts (i.e., vertical v.s. horizontal) which might lead to
load imbalance between threads, we try to schedule the threads
dynamically and to reduce task granularity for each thread in or-
der to maintain good load balance. However, no improvement has
been observed. We then employ the OpenMP task construct [1] to
achieve better scheduling efficiency. As a result, the time cost is

reduced to 47ms, shown as the fourth point in Fig. 14. To further
balance the trade-off between scheduling overhead and load imbal-
ance, we search for the best task granularity for different chunks
of the outer part and the time cost is eventually reduced to 41ms,
shown as the fifth point in Fig. 14. Here we find the optimal number
of threads is 12, which is equal to the number of CPU cores in each
computing node of the Tianhe-1A.

5. Parallel Performance and Analysis
In this section, we first present numerical results on a model prob-
lem to validate the code and then conduct a more realistic simu-
lation using real topographic data. Both strong and weak scaling
results on the Tianhe-1A are presented and comparisons among the
CPU-only and the hybrid approaches are provided.

To conduct an accurate performance measurement of our hybrid
application that uses both CPUs and GPUs, we count the number
of double-precision arithmetic operations in the code using three
different methods:

• A manual count of the double-precision arithmetic operations
in the code. We count “+,−,×,÷” as one flop, while counting
trigonometric computations as five.
• A direct measurement by running the CPU version of the code

(the GPU version uses identical code for computing) with Per-
formance API (PAPI) [4].
• An estimate of the double-precision arithmetic operations based

on analysis of the GPU assembly code generated from the
CUDA tool “cuobjdump”.

The second and the third methods provide almost identical flop
count of the application, while the result of the first method (man-
ually counting) is around 10% higher. This is possibly due to com-
piler optimizations. In our study, we employ the second method
(measurement by PAPI) to analyze the performance of our code.

5.1 Model validation and simulation results
We start the numerical tests from a model problem, zonal flow over
an isolated mountain, which is taken from the benchmark test set
of Williamson et al. [29]. In this test, a geostrophically steady-state
flow impinges from west to east over a compactly supported moun-
tain of conical shape. Fig. 15 shows the surface level distribution of

Figure 15. Surface level distribution of the atmosphere at day
15 in the isolated mountain test. Results are obtained on a
10,240×10,240×6 cubed-sphere mesh using 1,536 nodes of the
Tianhe-1A. The conical mountain is outlined by the dotted circle
in the figure.

the atmosphere at day 15 using a 10,240×10,240×6 cubed-sphere
mesh (around 1-km resolution) on 1,536 nodes of the Tianhe-1A.
In the figure, a Rossby-type gravity wave propagates all around the
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Figure 16. Surface level distribution of the atmosphere at day 15 in the real-topography test. We compare results at a 40-km resolution (left
panel) and a 1-km resolution (right panel).

globe due to the presence of the mountain, which is in good agree-
ment to published results (e.g., [12]).

We then conduct a more realistic simulation of the global atmo-
sphere by inputing real topographic data of the Earth. The initial
condition in this test is similar to that of the isolated mountain ex-
cept that the surface level of the atmosphere is raised to avoid neg-
ative flow thickness due to the high elevations of some mountain
ranges such as the Himalayas. Comparisons between results at a
low-resolution of 40 km and a high-resolution of 1 km are given in
Fig. 16, which clearly shows that as the resolution becomes finer,
more details at small scales are discovered in the simulation.

5.2 Weak scaling results
In the weak scaling tests, we fix the mesh size on each sub-block
to be 1,024×1,024 and then run the tests with different numbers
of computing nodes (MPI processes). Configurations of the mesh
size and the peak performance of available CPUs and GPUs in the
Tianhe-1A are listed in Table 1. As the number of computing nodes
increases from 6 to 3,750, the total number of unknowns is raised
from 18.8 millions to nearly 12 billions.

Table 1. Configurations for the weak scaling tests.

Number of nodes Mesh size Peak of (CPU, GPU)

6 = 6× 1× 1 6× 1024× 1024 (0.8, 3.1) Tflops
24 = 6× 2× 2 6× 2048× 2048 (3.3, 12) Tflops
96 = 6× 4× 4 6× 4096× 4096 (14, 49) Tflops
384 = 6× 8× 8 6× 8192× 8192 (54, 198) Tflops
864 = 6× 12× 12 6× 12288× 12288 (121, 445) Tflops
1536 = 6× 16× 16 6× 16384× 16384 (216, 791) Tflops
2400 = 6× 20× 20 6× 20480× 20480 (337, 1236) Tflops
2904 = 6× 22× 22 6× 22528× 22528 (408, 1496) Tflops
3750 = 6× 25× 25 6× 25600× 25600 (527, 1931) Tflops

In Fig. 17, we show the weak scaling performance of the pro-
posed algorithms tested on the Tianhe-1A. In the tests, we com-
pare four different algorithms, namely: the single-core CPU-only
approach, the CPU-only approach with multi-threading, the hy-
brid CPU-GPU approach, and the optimized hybrid CPU-GPU ap-
proach with the adjustable partition between CPUs/GPUs and the
“pipe-flow” scheme for communication-computation overlap. Ex-
cept for the first approach in which there is no multi-threading, all
the 12 CPU cores in each computing nodes are utilized in the tests.

As shown in the figure, not surprisingly, without using multi-
threading, the CPU-only approach provides the lowest aggregate
performance, which is improved by about 9.95 times when multi-
threading is turned on. The hybrid CPU-GPU approach sustains an
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Figure 17. Weak scaling results on the Tianhe-1A. Shown in the
figure are aggregate performances obtained by using: (◦) the single-
core CPU-only approach, (•) the multi-threaded CPU-only ap-
proach, (�) the hybrid CPU-GPU approach, and (�) the optimized
hybrid CPU-GPU approach.

aggregate performance of about 658 Tflops, which is around 56
times better than that of the single-core CPU-only approach. When
the optimized hybrid CPU-GPU approach is employed, thanks to
the adjustable partition between CPUs and GPUs and the “pipe-
flow” scheme for communication-computation overlap, the aggre-
gate performance is further improved to 809.7 Tflops, which is
around 32.8% of the peak performance.

The weak scalability of the CPU-only approach, no matter
whether multi-threading is turned on or off, slightly suffers from
higher communication overhead when larger number of nodes are
utilized. On the other hand, the hybrid CPU-GPU approaches are
able to achieve nearly ideal parallel efficiency even when the num-
ber of nodes is exceedingly large. This is because communications
are totally hidden behind computations on the GPU side in the two
hybrid approaches.

5.3 Strong scaling results
In the strong scaling tests, we fix the total problem size and increase
the number of computing nodes. The total compute time should
decrease as more computing nodes are utilized. However, because
the computation-communication ratio becomes smaller at a higher
node count, which will eventually affect the scalability, ideal strong
scaling results are hard to obtain. Even a small fluctuation in the
MPI communication will degrade the performance in the strong
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scaling tests. Therefore, successful communication-computation
overlap is a key to achieve expected scaling results.

Number of nodes 384 1536 2400 3750
Time (s) 56.9 14.4 9.4 5.9
Efficiency 1.00 0.99 0.97 0.98
Agg. Tflops 84.5 335.1 513.4 809.6
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Figure 18. Strong scaling performance of the optimized hybrid
CPU-GPU approach. The test results are obtained by running the
code for 100 time steps using a 25,200×25,200×6 mesh on the
Tianhe-1A. The upper table shows the parallel efficiency and the
aggregate performance in the strong scaling tests. The lower figure
provides a breakdown of elapsed time.

We run the strong scaling tests using a 25,200×25,200×6 mesh
on the Tianhe-1A. Fig. 18 shows the strong scaling performance
of the optimized hybrid CPU-GPU approach. For each node count,
we calculate the averaged mesh size on each computing node and
assign a proper portion of the outer layers to CPUs so that optimal
performance can be achieved. As indicated in the top table of
Fig. 18, nearly ideal strong scaling efficiency is sustained and an
aggregate performance of 809.6 Tflops is delivered when 3,750
nodes are utilized.

There is only a very slight loss of scalability in the strong scaling
tests, for which the reason is analyzed in the bottom figure of
Fig. 18. In the figure, we can see that the computations as well as
other operations (including interpolations and buffer preparations)
on the CPU side (marked as “2” and “3” respectively) are totally
hidden behind the computations on the GPU side (marked as “1”).
The only part in the algorithm that could not be overlapped is the
data transfer between CPUs and GPUs. Although this part only
takes a small portion (less than 5%) of the total computing time,
it still affects the parallel efficiency at larger node counts. We
would like to point out here that both the parallel efficiency and the
aggregate performance in the strong scaling results are superior to
those in [26], in which communications were not totally overlapped
with computations and the computing capacities from the CPUs
were not fully exploited.

6. Concluding remarks
In this paper, we present a peta-scalable CPU-GPU algorithm for
global atmospheric simulations. The major contributions of our
work include: (1) an adjustable partitioning method that makes
an equally-efficient utilization of both CPUs and GPUs in a het-
erogeneous system; (2) a “pipe-flow” communication scheme that
conducts balanced and conflict-free message passing on the cubed-
sphere geometry; and (3) systematic optimizations of the GPU and
CPU codes that provide excellent performance for double-precision
atmospheric simulation. With the above techniques combined, we
manage to achieve nearly-ideal strong and weak scalabilities (both

over 98%) on the Tianhe-1A. Our largest run sustains a perfor-
mance of 0.8 Pflops in double precision to solve 12-billion un-
knowns using 3,750 nodes (45,000 cores and 3,750 GPUs) of the
petascale system.

According to the strong and weak scaling results presented in
the paper, the communication is totally hidden by the computation
on CPUs and GPUs. Therefore, the proposed hybrid algorithm is
expected to maintain a similar level of scalability when running
with an even larger number of nodes on the Tianhe-1A. We also
remark here that: (1) the basic idea of the adjustable CPU-GPU
partition is not only applicable to other heterogeneous systems
with different processor/accelerator ratios, but also extendable to
a homogenous many-core system by redefining the partition; (2)
although the new “pipe-flow” communication scheme is specifi-
cally designed for the cubed-sphere for conflict-free communica-
tion, similar ideas can be applied to other semi-structured geodesic
meshes (e.g., [23, 28]) that are also becoming increasingly popular
in global atmospheric modeling.
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