Patty: A Pattern-based Parallelization
Tool for the Multicore Age

Korbinian Molitorisz

Tobias Miiller

Walter F. Tichy

Institute for Programming Structures and Data Organization
Karlsruhe Institute of Technology (KIT)

molitorisz@kit.edu, tobias.mueller@student.kit.edu, walter.tichy@kit.edu

Abstract

The free lunch of ever increasing clock frequencies is over. Perfor-
mance-critical sequential software must be parallelized, and this
is tedious, hard, buggy, knowledge-intensive, and time-consuming.
In order to assist software engineers appropriately, parallelization
tools need to consider detection, transformation, correctness, and
performance all together.

This paper introduces a pattern-based process model that as-
sists in all four parallelization tasks and hence facilitates transform-
ing legacy software that had not been developed with multicore in
mind. Our approach uses optimistic parallelization and generates
a semantic model with static and dynamic information. With this
information we detect parallelizable regions and runtime-relevant
tuning parameters. The regions are then transformed to tunable par-
allel patterns. The process model covers the detection of paralleliz-
able regions, the identification of appropriate parallelization strate-
gies, and enhances traditional parallelization processes with cor-
rectness and performance validations. We implemented the pattern-
based process model in Patty, a tool that actively assists engineers
in the tedious and error-prone software parallelization tasks.

This paper also contains a user study that compares the effec-
tivity of optimistic pattern-based parallelization as implemented in
Patty to 1) a popular commercial parallelization tool and 2) pure
manual parallelization. We demonstrate that our approach receives
the best average scores from its users while delivering the best re-
sults within the least amount of time. In our user study Patty out-
performs both control groups in subjective and objective measure-
ments. Patty achieves parallel performance comparable to a skilled
parallel software engineer within minutes rather than days of work.
This makes our approach attractive for experts and inexperienced
software engineers alike.

1. Why we need integrated parallelization

Modern multicore processors require parallel source code, but a
large amount of performance-critical software is still sequential.
From studies like [1] we know that the development overhead for
parallel software is up to 2.4 times higher than for serial software.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

PMAM ’15, February 7-11, 2015, San Francisco, CA, USA.

Copyright © 2015 ACM 978-1-4503-3404-4/15/02. .. $15.00.
http://dx.doi.org/10.1145/2712386.2712392

153

Even worse, the increased complexity has to be considered as
lower bound for the effective overhead: The referenced study only
accounts for the complexity that comes from using parallel libraries
and language constructs, other vital aspects like identifying parallel
potential, tuning parallel performance and parallel correctness are
not covered. So, developing parallel software is hard, and we need
to provide adequate means to assist engineers during these tasks.

Articles like [2] clearly point out the urgent need for a better tool
support to avoid even the next software crisis, and several research
activities like [3-8] and commercial tools like [9, 10] recently
addressed this issue. We show that all current works exhibit certain
deficits making them rather special solutions for specific problems,
only applicable by software engineers familiar with the pitfalls of
multicore software engineering, or impractical for general purpose
applications. This paper has the following three main contributions:

1) It introduces a general process model for transforming se-
quential to parallel software. For widespread applicability our pro-
cess model is geared to object-oriented code. It relies on the detec-
tion of commonly known parallel patterns via predefined source
patterns. For each source pattern we insert an equivalent paral-
lel pattern that contains defined parameters with runtime impact.
We support a better program understanding by explicitly annotat-
ing each parallel pattern in the source code. These annotations are
then transformed into parallel source code by instantiating a paral-
lel runtime library. For performance aspects we generate a file with
all tuning parameters and values. This file is processed by an auto
tuning algorithm to determine the ideal parameter value configura-
tion for a given target multicore platform. For correctness aspects
we generate parallel unit tests and adapt a dynamic race detector
to evoke exhaustive thread interleavings. As a result, our process
actively assists all parallelization steps and generates parallel soft-
ware that is automatically tunable and validatable.

2) This paper introduces Patty, a tool that implements pattern-
based parallelization and integrates directly into a development en-
vironment. It uses static and dynamic analyses to generate a seman-
tic model from sequential software and to derive the parallelization
candidates and tuning parameters. Patty can either process source
code or code annotations for parallelization, or it can process par-
allel source code for performance and correctness validation. Sev-
eral other tools aim at assisting engineers during parallelization, but
practically none of them achieved widespread applicability. In our
view, this is due to three reasons:

e Lack of tool integration: Parallelization support is often not in-
tegrated into an IDE, so parallelization and software engineer-
ing tasks stay separate and too far away from each other.

e Lack of comprehensible input and visualization: Apart from
timing constraints, engineers need assistance in parallelization
because they have too little knowledge about multicore software

&

Tunable
Architecture

H

Sequential

mtl

Parallel

Source Pattern Detection Target Pattern Transformation

SOUree 6008 | | 1 Model 2. Pattern | | Descriptions | | 3 1ynaple 4.Code || Source code
_ ! —>
Creation Analysis Architecture Transform

B

Pattern Catalog

H

Runtime Library

Figure 1. Process Model for Pattern-based Parallelization

engineering in general or about the software to be parallelized.
Black box approaches are transparent and hide their inner func-
tioning, whereas it is vital to know what a process does to build
up confidence and lead to tool acceptance.

e Lack of universality: Today, tools are either built for specific use
cases that are by design rather rare in practice, or generalized in
a way that they come down to pure runtime profilers. We see
the necessity to deliver a holistic approach that covers all tasks
in parallelization.

3) This paper presents a user study that researched the potential
of tool-assisted parallelization. In theory, the community did a lot
to reveal the stumbling blocks of multicore software engineering
[11-13]. Recent works [14, 15] compare manual parallelization to
implicit parallelization using parallel libraries, but to the best of
our knowledge there is currently no user study that reveals actual
needs and problems that engineers experience when parallelizing.
We therefore conducted an empirical user study with engineers
of different skill levels in software and multicore engineering and
monitored their performance and actions.

This paper is structured as follows: In section 2 we present
the pattern-based parallelization process. It detects parallelizable
regions and maps them onto parallel target patterns. Apart from
transforming software, it identifies tuning information and creates
a tuning configuration and parallel unit tests. With pipeline, we
present one common parallel pattern for data stream processing.
Section 3 presents Patty, a tool that integrates with Microsoft Vi-
sual Studio as IDE and bridges the gap between software engineer-
ing and parallelization activities. In section 4 we introduce a user
study with software engineers of different skill levels. This study
clearly shows the pitfalls of manual parallelization and the benefits
of tool-assisted parallelization. Comparing Patty to a commercial
parallelization tool, the study shows that our approach returns bet-
ter results with higher user satisfaction in less time.

2. Pattern-based Parallelization

Parallelization assistance needs to cut down complexity and remain
comprehensible. According to the psychological studies in [16] re-
curring patterns that are clearly defined help people to understand
complex matters. Applying this principle to multicore software en-
gineering, T. Mattson introduces a process model and classification
schema for parallel programming in [17, 18]. Several other works
like [19] exist that also cover parallel design patterns to assist in
parallel programming. All these works focus on giving hints on
how to parallelize a given location. The questions how to reveal
this location, how to optimize parallel performance, and how to as-
sure parallel correctness is mostly not seen as an integral part of
parallelization.

In subsection 2.1, we define the pattern-based parallelization
process for software transformation depicted in figure 1. It focuses
on the four relevant questions where to parallelize, how to par-
allelize, whether the result is correct, and under what conditions
it executes faster on the target platform. Our current implementa-
tion contains the three parallel patterns master/worker, data-parallel

154

Source
iteration

Target
Pipeline

>’mﬁ<—g<—| cropFilt LEH hiSTOFi 1t Jrrreeei

histoFilter

\

Figure 2. Source and Target Pattern for Pipelines

loops and pipeline. Subsection 2.2 deals with the latter of which and
presents source patterns, target patterns, and tuning parameters.

2.1 Process Model for Pattern-based Parallelization

As the diagram in 1 shows, our process model handles regular
source code and gradually transforms it to parallel source code.
Additionally to the creation of parallel source code, our process
reveals runtime-relevant tuning parameters and correctness-related
parallel unit tests.

This process is ongoing work. Early results have previously
been published in [20-22]. At the moment of writing, the process
model defines the following two phases:

¢ Source Pattern Detection: At first, we create a semantic model
from the input source code. Therefore, we build the cross prod-
uct from the control flow graph, the data dependencies, the call
graph, and runtime information. It has to be mentioned that our
process is geared to reveal a high amount of parallel potential,
so we use optimistic parallelization analyses. As a side effect
of optimistic parallelization, we are unable to give correctness
guarantees for the resulting parallel version. Because of this,
our process needs to take care of parallel errors. We will deal
with this aspect later in this section.
In a second step, we iterate over the semantic model in order
to find source pattern instances. This step is based on a catalog
of predefined pairs of sequential source and parallel target pat-
terns. For each target pattern we specified equivalent sequential
representations and formalized the mappings as pairs of source
and target patterns. An example for the sequential version of a
parallel pipeline is shown in figure 3 a). We will evolve this ex-
ample during the course of thie paper.
The semantic model contains runtime information. This enables
us to reveal runtime-relevant parameters, so-called funing pa-
rameters. Changing their values has implications on the runtime
behavior of a parallel application, but not on its correct seman-
tics. With tuning parameters, we extend traditional parallel pat-
terns to so-called runable parallel patterns. In order to be able
to express tunable parallel patterns and generate an architecture
description with tuning parameters we adapted the Tunable Ar-
chitecture Description Language TADL [23] to our needs. Us-
ing TADL as interface, we draw a sharp boundary between the
distinct tasks detection and transformation. This enables us to
change, extend, or alter both steps independently. Figure 3 b)
shows the resulting TADL annotation for the pipeline example.

Target Pattern Transformation: We implemented TADL as a
code annotation using preprocessor directives. This way we can
add semantic information to plain source code that is visible to
compilers capable of processing TADL, and that is transpar-
ent to incapable ones. Hence, the third step needs to process
source code and identify TADL annotations and the architec-
ture description. We insert the code annotations at the exact
location where they have been found during pattern detection
for the reason of program comprehensibility: We familiarize in-

@1 AviStream Process(AviStream aviIn)
02 {
03 AviStream aviOut = new AviStream();
04 foreach(Image i in aviIn.Images)
05
06 Image crop = cropFilter.Apply(i);
07 Image histo = histogramFilter.Apply(i);
08 Image oil = oilFilter.Apply(i);
09 Image res = ConvTo32bpp.Apply(crop, histo, oil);
10 aviOut.Images.Add(res);
1}
12 return aviOut;
13
a) Sequential Source Code

<?xml version="1.0" encoding="UTF-8"2>
- <TuningParams>
+ <ForkJoinFusion>
+ <SequencialExecution>
+ <OrderPreservation>
+ <StepSize>
+ <Buffersize>
- <PipelineFusion>
<ID>Pipeline2</ID>
<value>false</value>
<value>false</value>
<Value>false</value>
<Value>false</Value>
<TADL-Expression> (A+ => B+ => C+) => D => E</TADL-Expression>
<Project>ImageProcessing </Project>
<Document>ImageProcessing.cs</Documents
<Position>4406 </Position>
</pipelineFusion>
+ <Replication>
+ <Replication>
+ <Replication>
+ <Replication>
+ <Replication>
+ <Replication>
+ <Replication>
+ <Replication>
+ <Replication>
+ <SequencialExecution>
</TuningpParams>

c) Tuning Parameter Configuration

@1 AviStream Process(AviStream aviIn)

02

@3 AviStream aviOut = new AviStream();
04 #region TADL: (A || B || C+) => D => E
85 foreach(Image i in aviIn.Images)

06

o7 #region A: Image c = cropFilter.Apply(i); #endregion
08 #region B: Image h = histogramFilter.Apply(i); #endregion
09 #region C: Image o = oilFilter.Apply(i); #endregion
10 #region D: Image r = Conv32bpp.Apply(c, h, o); #endregion
11 #region E: aviOut.Images.Add(r); #endregion

12

13 #endregion

14 return aviOut;
15}

b) Annotated Sequential Source Code

@1 AviStream Process(AviStream aviIn)

02 {

03 Item pl = new Item (cropFilter.Apply());

04 Item p2 = new Item (histogramFilter.Apply());
@4 Item p3 = new Item (oilFilter.Apply());

5 Item p4 = new Item (ConvTo32bpp.Apply());

@6 Item p5 = new Item (aviOut.Images.Add());

07 MasterWorker mw = new MasterWorker (pl, p2, p3);
08 mw.Item(p3).replicable = true;
10 Pipeline p = new Pipeline (mw, p4, p5);

11 p.Input = aviln.Images;
12 p.Run();

13 return p.Output;

14 }

d) Parallel Source Code

Figure 3. Phase Artifacts from Pattern-based Parallelization in Patty

experienced engineers with the notion of parallel patterns and
enable experienced engineers to bypass automatic pattern de-
tection and manually write code annotations like in OpenMP.
The last step produces parallel source code like the one shown
in figure 3 d). For the purpose of standardization, we imple-
mented a runtime library that contains data types for parallel
patterns and that is capable of handling tuning parameters. If
common parallel libraries like TBB, OpenMP or CILK++ can
handle tuning parameters in the future, we can easily change
our process to use them instead. As the process diagram points
out, this last stage does not only produce parallel source code.
The tuning configuration file contains all identified tuning pa-
rameters, their current values and code location. Whenever the
parallel application is executed, it initializes the parallel pat-
terns with the specified values and executes as expected. An
example tuning file is shown in figure 3 c). After program ter-
mination, all values in the configuration file can be changed,
making the parallel applications automatically tunable on the
target hardware without the need to recompile.

As we employ optimistic analyses, we cannot guarantee correct
semantics in the parallelized version. To assist engineers in lo-
cating potential parallel errors like data races, we automatically
generate parallel unit tests for each tunable parallel pattern. Af-
ter this, we perform a path coverage analysis to generate a set
of input data for each unit test. All unit tests are then executed
on the dynamic data race detector CHESS [24]. For each par-
allel unit test and input data, CHESS computes and provokes
all possible thread interleavings. As unit tests are rather small
portions of a whole program, we can keep the search space for
parallel errors also rather small which makes our approach to
error detection very handy. As we previously showed in [22],
we can locate parallel errors with a high detection accuracy at
within several minutes.

155

2.2 Software Pipelining

The process model is currently implemented for the detection and
transformation of master/worker, data-parallel loops, and pipelines.
In this section, we will explain the algorithm for pipelines. As
literature reveals, pipelines are heavily used in scheduling theory
[25, 26]and stream-oriented applications such as signal, image,
or video processing [18, 23, 27, 28]. Pipelines are characterized
by distinct stages organized in a processing chain. A continuous
flow of data stream elements gradually passes through the pipeline
stages. Pipelines can either bind threads to stages or to data stream
elements. We implement stage binding and use buffers to connect
predecessor and successor stages. As Tournavitis and Franke show
in [7], pipelines achieve the highest efficiency, when the execution
times for all stage are evenly distributed, because this avoids idle
stages and overfull buffers.

Stage binding pipelines imply the following preconditions for
control and data dependencies: 1) A pipeline is defined on a con-
tinuous data flow. 2) The processing chain is fixed, so each stream
element has to be processed in the identical order. 3) Data depen-
dencies to former stages may not affect any other stream element.
We consider locations in sequential source code as suitable for soft-
ware pipelines that preserve these restrictions. As for all target pat-
terns in our pattern catalog, we assembled source patterns as a set
of dependency rules and runtime conditions for the tuning param-
eters. For pipelines, these rules are:

e PLp: Pipeline logic. As depicted, a stream typically flows
continuously. We consider all sequential program loops in the
source code as a first indication for pipelines. Each loop iter-
ation executes the same statements and in the same sequence
on different elements. Next, we process the loop header, incre-
ment and termination condition. This represents the generation
of continuous stream elements. In a pipeline, this logic is not
explicitly visible, but as it has to be retained, we transform the
loop header to an implicit first stage called StreamGenerator.

Initially, we transform each statement in the loop body to a sep-
arate pipeline stage. Depending on data and control dependen-
cies, stages are subsequently combined.

PL pp: Data Dependencies. Pipelines have a fixed processing
order for all stream elements. For any given element, a single
pipeline iteration and a single loop iteration must have the same
semantic. Loop-interior data dependencies are preserved by the
fixed processing order, so we do not have to consider them.
Loop-carried data dependencies, such as from a statement s;
in iteration j to a statement sy in a previous iteration, can
change the semantics when executed in parallel. To solve this
dependency and retain the correct semantics, we subsume s;,
sk, and all statements in between in one pipeline stage.

PL¢ p: Control Dependencies. Statements like break, return,
or continue affect the control flow, because they decide
whether to execute the succeeding statements or where to
branch to. A fixed processing order for all stream elements
only permits control flow conditions that have no side effects
on other stream elements. A conditional statement s; in itera-
tion i is therefore not allowed to affect the control flow in any
other iteration.

PL ps: Data stream. We construct the pipeline data stream by
analyzing read and write sets for all loop body statements. From
this information we construct the data flow graph. It defines
what data is being read and written in what pipeline stage. As
a result, the pipeline logic will pass this data along the pipeline
stages via buffers.

PL 7 p: Tuning Parameters. As we mentioned in section 2, our
analysis captures static and dynamic information. This enables
to derive tuning parameters for a given parallel architecture. We
currently derive the following tuning parameters for pipelines:
StageReplication: If the runtime distribution of all pipeline
stages is highly imbalanced, the frequencies at which stages
consume and produce elements are also highly imbalanced.
This leads to a situation in which some stages wait and run
idle, while others execute permanently and overfill their output
buffers. We solve this by inserting hierarchical parallelism: We
locate the stage with the highest runtime share and analyze its
dependencies. If this stage has no side effects on other stages,
we execute this stage in parallel to itself on the next available
stream element. As we found out, this is a likely use case for
stream-oriented applications. A stage replication value of two
effectively doubles the frequency at which this stage is capable
of receiving and producing elements.

The optimal degree of parallelism depends on the runtime im-
balance and on the number of available cores, so we define
replicability as tuning parameter and postpone the determina-
tion of the optimal parameter value to the performance valida-
tion phase.

OrderPreservation: When executing a replicated stage, the
pipeline loses its order guarantee for stream elements. If the
stream element e;1 is processed faster than its predecessor e;
it will be added to the output buffer before e;, resulting in a
wrong data element order. Obviously it is undecidable whether
an order violation compromises the correct semantics, so we
generate this as a tuning parameter and test it during correct-
ness testing. If OrderPreservation is set to true for a given
replicated pipeline stage, the pipeline logic will restore the cor-
rect order before the stream elements are passed on to the next
stage.

StageFusion: Pipelines have a fixed stage processing order. If
the runtime share of a pipeline stage is rather low, the thread
and buffer management overhead will outweigh the advantage
of parallel processing. In this case, it can be beneficial to ex-

156

ecute neighboring stages within the same thread, because this
saves the mentioned thread creation and buffer overhead. For
each pair of adjacent pipeline stages, we generate the tuning
parameter StageFusion that specifies whether to execute them
within the same thread or not.

SequentialExecution: Parallel software speeds up an ap-
plication, because certain computations effectively happens at
the same time. This comes at the cost of initializing parallel
constructs and explicit synchronization. The longer executions
can run in parallel, the higher are efficiency and speedup gain.
Pipelines maximize parallel computations by runtime-balanced
stages and long data streams. We deal with the first aspect by
providing stage replication. For long data streams, pipelines as
such are well-suited. In case of a data stream that is too short
to compensate for the threading overhead, we provide a mech-
anism to execute the pipeline sequentially. With this parameter
we ensure that pipeline execution never leads to a slowdown in
comparison to the former sequential version.

3. Pattern-based Parallelization in Patty

In this subsection we introduce Patty, a tool that assists in different
parallelization tasks. It is geared to the pattern-based process model
shown in section 2. We implemented Patty as plugin for Microsoft
Visual Studio and defined the following requirements:

¢ R;: Comprehensible parallelization. The fundamental goal of
Patty is to assist engineers in parallelization and automate sev-
eral or all tasks. As we will see in section 6, it is crucial for the
acceptance of any assistance tool that the engineer understands
what the tool performs and that the results are reproducible. In
order to keep software development and parallelization assis-
tance close together, we decided to implement Patty on top of
the widespread integrated development environment (IDE) Mi-
crosoft Visual Studio. We chose to provide both, a graphical
representation of the process model and a graphical wizard for
each phase. Both snippets are shown in figure 1 and figure 4
a). The process chart always highlights the current state of pro-
cessing, its input and output data. The wizard is used to trigger
the parallelization and for user input, such as the file path to the
source code, or input data for the dynamic analysis.
In contrast to some related work, our IDE integration helps
to reflect the parallelization results back to the corresponding
source code. We use color marks to draw overlays over the code
annotations. With this notion, the engineer’s attention is directly
drawn to the detected parallel architecture. The code snippet
in figure 4 b) shows the overlay. It shows a pipeline with two
replicable stages. For the purpose of simplicity, we collapse the
source code statements. At this stage, the parallelization process
is in the interface state between detection and transformation:
The target parallel architecture has been identified and is anno-
tated to the source location, but has not yet been transformed to
parallel software.
As we have shown in section 2, we define correctness and per-
formance validation as key elements in our parallelization pro-
cess. With the parallel unit tests and the tuning configuration,
we bridge the gap to data race detection and auto tuning. We re-
lay the parallel software to these tools and integrate their results
in the IDE. Figure 4 c¢) shows the snapshot of an auto tuning cy-
cle: The auto tuner initializes the program with parameter val-
ues, executes it, measures and visualizes the runtime, and com-
putes new parameter values. At the time of writing, we employ
a basic tuning algorithm that explores the search space linearly
in each dimension. For the future, we want to evaluate smarter
algorithms like [29-31].

1. Specify Source Code Solution:

Path to source solution...

| Browse

] #region TADL: S1+

2. Define Program Arguments: @ for (int y = @; y < screenHeight; y++)
{
= #region TADL: S1+ => S2+
=) #region S1
ES: Pipeline
3. Select Architecture Pattern: G I
+
©® Prefer Pipeline On Patter Collision frendregion|
#endregion
O Prefer Master/Worker On Pattern Collision ¥
4. Select Processing Mode: #endregion
® Automatic
O Step By Step
Start
a) Processing Steps b) Vvisual Pattern Overlay

035

0.2
015
01
0.05

c) Runtime Tuning

Figure 4. Pattern-based Parallelization in Patty

R: Adequate amount of information. We see the necessity
to visualize the phase artifacts after each step, and not only fo-
cus on the current processing step, as stated in R;. Section 2
shows that each phase has distinct input and output artifacts:
The analysis phase creates a semantic model from source code,
the pattern matching phase derives parallelizable locations and
produces architecture descriptions, the third phase processes the
descriptions, and the code generation creates parallel architec-
tures, parallel unit tests, and a tuning configuration. We make
this information available to the engineer, if desired. Some of
the artifacts are shown in figure 3. For each, we provide a visu-
alization integrated into the IDE.

R3: Flexible parallelization. Currently, parallelization ap-
proaches dictate one way how to work with them. In our view,
this does not take into account the variety of engineers’ skill
levels. We want to be able to support experienced and inexpe-
rienced software engineers alike. Patty therefore supports four
different operation modes.

1) Automatic parallelization: This operation mode requires no
action from the user. The graphical process chart gradually
progresses through the stages and indicates the current and pre-
viously completed stages. At the end, the parallel source code
is available for compilation.

2) Architecture-based parallel programming: More experienced
engineers that already know where to parallelize can bypass the
automatic detection. They can write parallel code by adding
source code annotations in TADL syntax. The transformation

3) Library-based parallel programming: As we mentioned ear-
lier, we provide a parallel library that contains data types for
parallel architectures. Skilled engineers can bypass the TADL-
based transformation step and explicitly develop parallel ap-
plications on a low abstraction level. Engineers can instantiate
parallel data types and develop parallel code that is more flex-
ible than in the other two operation modes. At the same time,
explicit parallel programming causes the highest development
overhead, because it does not offer automatic performance or
correctness assistance. It enables parallel programming at the
lowest level and is comparable to explicit parallel programming
like PThreads. However, as we provide parallel data types and
architectures, engineers do not have to deal with thread syn-
chronization.

4) Program validation: Parallel applications that have been de-
veloped using our approach consist of parallel unit tests and
a tuning configuration. This enables an operation mode that
addresses performance and correctness validation. For perfor-
mance validation, the parallel application is repeatedly executed
with different tuning parameter values. This enables to adjust
the tuning configuration to the target multicore platform. For
correctness validation, data race detection is repeatedly exe-
cuted on the existing parallel unit tests and on the identified
input data. This operation mode can be executed in the course
of integration tests on and does not require source code insight
from the engineer.

step processes the TADL annotations and create the equival.ent 4. User Research Study for Patty

parallel architecture. This approach is comparable to compiler) o
extensions like OpenMP. Here, engineers add annotations to In theory we know that parallel software engineering is hard and
sequential loops that are mapped on to parallel loops on compi- studies like [1, 14, 15] indicate that implicit parallel program on
lation. In contrast to OpenMP, our approach as implemented in an abstract level improves the development efficiency. To evaluate
Patty automatically creates correctness and performance tests the real pitfalls and the benefits of an integrated pattern-based
from a given TADL annotation. parallelization process, we performed a user study with software

engineers. In this study, we gave answers to these question:

157

1. What are the problematic tasks in parallelization?
2. How can tools adequately assist in these tasks?

3. How much performance gain can be generated in an automatic
approach and in what time?

In the remainder of this section we describe the experiment setup
and present the results.

4.1 Experimental setup

The parallelization time for a project varies from hours to days of
work, depending on the size of the project, the number of engi-
neers, and their skill level. We wanted to gather participants from
different skill levels and assemble a task that is manageable in rea-
sonable time for all participants. We therefore decided to focus on
detecting parallel potential. When transforming a location to par-
allel code, skilled engineers inseparably deal with aspects like cor-
rectness and performance, while inexperienced engineers deal with
the basics of multicore programming. We will compare engineers’
transformation performance in a future study.

For this study we collected ten participants with different ex-
periences in general and multicore software engineering. We re-
trieved their skill level in both categories in interviews before we
performed the actual study. From this score we composed three
groups with an equal average experience level. Also we classified
all group members from inexperienced in software engineering, ex-
perienced in software engineering, but inexperienced in multicore
engineering to experienced in multicore engineering. Group 1 used
Patty for their task, group 2 used the intel Parallel Studio, a promi-
nent commercial tool that serves the same purpose as Patty. Group
3 was a control group that did not work with a parallelization tool.
This group had to identify parallel potential using the standard tools
available in Visual Studio.

We selected RayTracing as single benchmark program. The
implementation consisted of 13 classes and 173 lines of code.
We manually analyzed this program before to identify all loca-
tions that could profit from parallelization. The task for all three
groups was: “Find all source code locations that are
appropriate candidates for parallel execution.”. Be-
fore the study, none of the participants knew the task and their
group.

When the study began, we gave all participants the full source
code in print. Each participant sat in front of a dedicated machine
and had 15 minutes to get used to the working environment and
familiarize with the source code. The maximum time to accomplish
the given task was one hour. We informed all participants that their
screen was recorded and later evaluated by us.

We prepared a questionnaire that was given to all participants
after the study and interviewed them separately in case some as-
pects have not been covered by the questionnaire. We assembled
the questions and answers in the standardized questionnaire format
proposed in [32]. We created one questionnaire for the tool-based
groups one and two, and one for the manual control group 3. The
questions for groups 1 and 2 assessed the quality of the tool they
used whereas we asked group 3 what features could improve their
work, if they had to do this task again. After the study, we eval-
uated all questionnaires and screen recordings and assembled an
evaluation with these three quality indicators:

1. Objective result: Identified source code locations. How many
locations did the participants find? How many of these were
correct?

2. Objective result: Total working time. How long do the partici-
pants need to find the first correct location? What is their total
working time?

158

[Indicator [Group 1: Patty [Group 2: intel]

Clarity 2.00, 0.68 1.00, 1.75
Complexity 2.00, 1.42 0.75,0.95
Perceivability 2.33,0.83 1.00, 1.03
Learnability 2.33,0.58 1.25,1.59

[Total Comprehensibility | 2.17 [1.00 |

Table 1. Comprehensibility: Average Values, Standard Deviation.
[-3(worst) ; +3(best)].

[Indicator [Group 1: Patty [Group 2: intel |
Perceived tool support 2.00, 1.73 1.75, 0.96
Subjective satisfaction with result 0.67, 0.58 -0.25,2.75
Overall assessment 2.25 1.40

Table 2. Subjective Tool Assistance: Average Values, Standard
Deviation. [-3(worst) ; +3(best)].

3. Subjective experience: Questionnaire and interview. How do
the participants evaluate the tool support? What assistance do
the manual participants miss?

4.2 Study evaluation

¢ Subjective Experience: With the feedback questionnaire we
assessed the subjective impressions the engineers had when
they used the tools. For the manual control group, we deter-
mined what features were regarded suitable for parallelization
and should therefore be integrated in a tool. We divided the sub-
jective user experience into the following three aspects:
Comprehensibility: We defined this aspect as a combination of
the four indicators listed in table 1. We used a score from 0 to 7
in cross-value order. This means that on some questionnaire 0
was the best score and on others 7. For the evaluation, we nor-
malized all values to a score from -3 (worst) to +3 (best). We
can see that Patty receives better scores across all four compre-
hensibility indicators and an average score of 2.17 in compari-
son to 1.00 for intel’s Parallel Studio. For all average values, the
standard deviation is smaller for Patty, except for the indicator
complexity. This states that the scores across all participants are
closer together than for Parallel Studio which makes the results
more reliable.
Satisfaction: After the study ended, we assessed how satisfied
the engineers were with range of parallelization support in the
tool, and how satisfied they were with the results they achieved.
The results are shown in table 2. Across all three indicators,
Patty receives higher scores than intel’s Parallel Studio. Con-
cerning the subjective satisfaction, the intel group has a high
standard deviation, so we looked into the results for this group.
We found out that the participant with the highest skill in mul-
ticore engineering gave intel’s Parallel Studio excellent scores.
Then we compared his objective results to the ones achieved by
the most skilled engineer in the Patty group. Our finding is that
the subjective satisfaction with the intel tool is better than with
Patty, but our tool produces better objective results.
We were not able to conduct a blind study so that the intel group
did not know that they used an intel tool. Because of this, we
cannot exclude the possibility that the image of a brand has an
influence on scoring. However, as satisfaction is a pure sub-
jective metric, and the average score is still higher for Patty,
we tend to relinquish this aspect. We conclude that Patty sat-
isfied requirement Ry from section 3. Accuracy: This aspects
determines whether Patty displays an accurate amount of in-
formation to the engineer. We evaluated the questionnaires of
the manual control group that assessed what tool support would
help them in parallelization, if they had to do this task again.

Provide
parallel

Show data Show control
dependenciesdependencies

Visualize
runtime
distribution

Emphasize Model source Visualize call
source graph

a) Desired Features of Parallelization Tools

Support

validation performance
strategies

50

45

40

35

30

25

20

|
u
Time for first tool
usage

Time for first
identification

Support Total working time

optimization
M Patty M Parallel Studio ™ Manuell

b) Time Measurements (in minutes)

Figure 5. Study Evaluation Results

The results are given in figure 5 a). For the questionnaire we col-
lected different tool features and let the manual control group
decide, how helpful these feature would be to them. The fig-
ure plots the average values for all answers and their upper and
lower quantiles. Green marks features, Patty is already capable
of. We can see that Patty already provides three of the top five
features, while intel’s Parallel Studio provides only two features
out of nine. Furthermore, it provides just one of the top five fea-
tures (Visualize runtime distribution). We conclude that Patty
meets requirement Ro.

Objective Results:

Intuitivity and Efficiency: In order to assess the quality of both
tools, we manually evaluated all screen videos and measured
the time until the participants used the tools as intended. The
shorter it takes to start working with a tool implies a plausible
UI design, so we took this measure as an indicator for intu-
itivity. As we see in 5 b), the Patty group immediately started
parallelizing (Avg. 0.33 min). They identified their first code
location with an average of 6.66 minutes. The intel group took
more than twice as long (Avg. 13.5 minutes). The manual con-
trol group also identified their first code location in a short time,
even faster than Patty (Avg. 2.66 minutes). After reviewing the
videos we realized that almost all of the participants navigated
through Visual Studio during the introductory phase and found
the built-in profiling tool. When the study began, they directly
executed it. For our benchmark program, the profiler reveals
one code location with parallel potential. As we will see later,
the manual control group was unable to detect the other loca-
tions hidden in the benchmark. Another finding is that intel
has a fixed parallelization process that requires the engineers
to know an annotation language. This language is used for es-
timating the parallel potential and helps to select a paralleliza-
tion schema for a given location. In comparison to Patty we
use TADL as optional annotation language. We use TADL for

S.

the annotation of tunable parallel architectures and not for per-
formance estimation. As we mentioned in section 3, AP offers
four different operation modes. During our study, only the ex-
perienced multicore engineer experimented with TADL without
having known the language before. All other participants used
the fully automatic parallelization. This shows that Patty meets
requirement R3. To summarize this aspect, Patty was more in-
tuitive to use and led to faster first results for all participants in
comparison to Parallel Studio.

Effectivity: In order to assess the quality of the tool we need
to know how many locations it identifies, how many it misses
and in what time this is achieved. During study preparation,
we manually identified three locations with parallel potential in
the benchmark program. The manual control group identified
the least amount of code locations (Avg. 2.0) and was the only
group that produced false-positives. In all cases, this was due
to the fact that data races were overlooked by the engineers. As
figure 5 b) shows, the manual group also finished first (Avg. 34
minutes). In the questionnaires all of them were confident that
they had found all locations with parallel potential. The intel
group identified an average of 2.25 code locations within an av-
erage of 46.5 minutes. The group with the highest effectivity
was Patty with an average of 3.0 across all participants and an
average working time of 38.67 minutes.

Future work

With this study, we showed that our tool is capable of supporting
pattern-based parallelization in an adequate way. The next step for
us is to assess the detection accuracy of pattern-based paralleliza-
tion as such. For this, we will focus on precision and recall. We are
just in the process of conducting a study with a set of benchmark
tools from different application domains with a total of 26,580 lines
of code. We aim at parallelizing this code manually and evaluate

159

our approach against this manual parallelized version concerning
both, the detection and the transformation quality.

We want to define the detection quality by the notion of recall
and precision to show, how many of the relevant source patterns can
be detected by Patty and how many relevant source patterns of the
manual parallelization are included in the result set. Also, we want
to quantify the runtime overhead by the dynamic analysis, so we
will measure the runtime and memory increase. The transformation
quality will be defined by the performance improvement of the
parallel code in comparison to the original version.

Early results indicate that with pattern-based parallelization we
achieve high values for precision and recall with a balanced F-score
of approximately 70%. At the same time, early performance results
indicate a parallel performance close to manual parallelization that
is achieved within minutes and not days of work.

6. Related Work

This paper introduces a pattern-based parallelization process and
implements the process in Patty, an automatic tool that installs on
top of the common IDE Visual Studio. This section covers works
from automatic parallelization and tool-assisted parallelization.

¢ Automatic parallelization: In the past decades, many analyses
have been developed that can hardly be fully covered in this
paper. For the purpose of this paper we examine some of the
recent approaches to point out the most relevant concepts.

All works on automatic parallelization either employ static
source code analysis or dynamic runtime analysis [33]. Static
analyses generally execute fast because they operate on source
code. The downside is that they are pessimistic in their predic-
tions. This leads to an overapproximation of the actual program
dependencies and results in parallel code that might not even be
executed. At the same time, parallel potential will mistakenly
be sorted out due to the overapproximation.

Dynamic analyses in contrast only gather dependencies that
effectively occur at runtime. As they operate at runtime they
generally have a huge performance and memory impact. The
analysis of whole program executions is therefore unmanage-
able. Although the detection of parallel potential might be more
precise and the parallel suggestions yield higher speedups, dy-
namic analyses also miss potential: As they only gather what is
being executed under the given input data, they cannot detect
parallel potential in code that is not executed during dynamic
analysis.

Recent research works like [34, 35] among others increasingly
make use of a combination of both analysis techniques. J. Mak
et al. try to detect task parallelism by executing single state-
ments in threads [35]. Mak makes suggestions for the devel-
oper where the main thread should wait at a barrier. The paral-
lelization has to be done by the software engineer. Many current
works focus on loop and pipeline parallelism [5, 7, 8, 34]. While
Rul identifies pipeline stages by analyzing control and data de-
pendencies (like Patty), Tournavitis balances pipeline stages by
runtime information. In contrast to all mentioned works we
cover and differentiate both forms of parallelism. Another im-
portant aspect is that we detect parameters that influence the
runtime behavior to enable the parallel code to adapt to current
and future multicore hardware. The benefit of tuning parame-
ters and their influence on software architectures has previously
been shown in [27, 36].

The detected patterns in our approach are internally represented
by an architecture description and the code is transformed ac-
cordingly. Related works consider either implicit parallel pro-
gramming as in OpenMP, CILK, TBB, or XJava [27]), or auto-

160

matic parallelizing compilers like SUIF [37] or the Intel C++
compiler. The advantage of implicit parallel programming is
that parallelism can be expressed comfortably and thread cre-
ation or synchronization overhead is hidden behind interfaces.
This lowers the burden for software engineers to develop par-
allel software. Still, the detection of an adequate location and
how to parallelize it properly is not answered. Refactoring se-
quential to parallel code is still left to the engineer. Compilers
can achieve fully automatic parallelization but the parallel po-
tential is limited because compilers formally prove the correct-
ness of the parallel result. Many works on parallelizing com-
pilers address automatic loop parallelization [38-43]. The ba-
sic observation is that most of the runtime is spent in program
loops, so these program structures carry high parallel poten-
tial. As Hind reveals in [44], this potential is restricted to pro-
gram loops with a predefined number of iterations and without
any dependencies. In the presence of heap memory reference,
compilers use pessimistic heuristics, and this permits only lit-
tle performance gains. In scientific programming though, this
mechanism is heavily used.

Tool-assisted parallelization: The recent years brought forth
several tools to assist in parallelization from both, the research
and industry community. This section covers ParaGraph [45,
46], HTGviz [12], Prism by CriticalBlue [10] and the intel
Parallel Studio [9].

As its main feature, ParaGraph visualizes the control flow
graph in order to reveal data dependencies. It is implemented
as a plugin on top of Eclipse and uses the external source-
to-source compiler Cetus [47] for the detection of control and
data dependencies. ParaGraph uses a visualization comparable
to traditional control flow graphs, but extends it in two ways:
1) ParaGraph displays basic source code blocks as nodes, but
does not convert loop statements to conditional branches as in
traditional control flow graphs. The authors claim that this in-
creases the recognition value of the underlying source code.
2) ParaGraph adds control and data dependency edges to its
graph representation. The weaknesses of ParaGraph compared
to our approach are that ParaGraph does not distinguish be-
tween the different types of data dependencies (true, output,
anti-dependency). Also, the graph serves as pure visualization
and provides no further functionality for parallelization assis-
tance.

HTGviz also displays the control and data flow. It uses a static
analysis to generate both. HTGviz is not integrated into a de-
velopment environment but provides a graphical user interface.
In contrast to ParaGraph, the graph in HTGviz can directly be
manipulated, so that basic blocks can be grouped together and
dependencies can be eliminated. It also detects hierarchies in
nested loops. This enables a graphical collapse of nested blocks,
and this improves code readability. HTGviz also visualizes the
different types of data dependencies. One drawback is, that HT-
Gviz does not reflect the changes back to the source code. This
has to be done manually.

Prism is an industrial tool by CriticalBlue which is used to iden-
tify parallel potential in sequential software. It does not make
changes to the source code but provides hints to the user where
to parallelize. Prism is able to perform symbolic execution of
the user changes and calculates a speedup potential from the
simulation. The number of computing cores can be specified
for the simulation. In contrast to the first two tools, Prism ex-
ecutes the software to retrieve actual runtime information, and
it produces a graphic representation of runtime shares and hot
spot regions. Prism does not generate source code, so paral-
lelization is a pure engineer task. For the purpose of validation,

Prism keeps track of the source code changes and refreshes the
dependency graph, so that the engineer can identify potential
data races.

Intel Parallel Studio is a tool chain that consists of three differ-
ent tools. It integrates with Microsoft Visual Studio, provides
a fixed parallelization process, and guides the engineer through
three steps: 1) VTune Amplifier is a runtime profiler that reveals
the code locations with the highest amount of runtime share.
In comparison to all other tools in this section, it is the only
one capable of handling sequential and parallel code. For paral-
lel regions it shows how many threads executed them and how
long the CPU was busy. VTune Amplifier displays the analysis
results directly in the IDE, so it is easy to link the runtime infor-
mation to the source code. VTune serves the purpose to reveal
what locations carry the highest runtime, so it can be used to
identify parallel potential. 2) Parallel Advisor assists in identi-
fying the potential speedup for a given location. To achieve this,
the engineer has to add annotations to the source code. Parallel
Advisor provides an annotation language in which the engineer
can define tasks. On this basis, Parallel Advisor computes the
potential speedup gain. 3) Parallel Inspector is a dynamic detec-
tor for parallel errors. It executes a parallel program and identi-
fies deadlocks and data races in the runtime trace.

To conclude, Parallel Studio is the most complex product in this
section and offers a fine integration into an IDE. In contrast to
Patty, Parallel Studio does not answer how to parallelize a code
region. The range of the annotation language is currently still
quite limited and it does not support the actual parallelization
process. Parallel Studio embodies a general dynamic race de-
tector, while Patty automatically add performance and correct-
ness validation tests and integrate them into the parallelization
process.

7. Conclusion

Even one decade after the dawn of the multicore age, parallelization
remains hard, costly, knowledge-intensive and time-consuming,
because tool support is still inadequate. Help is urgently needed,
because multicore processors are here to stay.

In this paper we introduced a process model for software par-
allelization. This process model relies on the detection of tunable
parallel architectures from sequential software. It uses optimistic
analyses and elevates correctness and performance testing as cen-
tral parallelization tasks, in addition to the traditional tasks detect-
ing and utilizing parallel potential.

We instantiated this process model and implemented it in Patty,
a plugin that integrates pattern-based parallelization into an IDE.
With this measure we bridge the gap between parallelization tasks
and general software engineering tasks. With Patty, parallelization
becomes a regular task in any software engineering process.

At the same time, Patty addresses software engineers of differ-
ent skill levels by providing flexible parallelization assistance. Patty
offers five different operation modes, ranging from full automatism
to explicit parallel programming. Within this spectrum, Patty pro-
vides a higher-level programming mode using architecture annota-
tions and a lower-level programming mode using data types from
a parallel runtime library. The last mode purely addresses the op-
timization of the tunable parallel architecture and deals with data
race detection and performance optimization without source code
insight.

To evaluate our approach we carried out a user study with soft-
ware engineers of different skill levels. The three groups had to
identify parallelizable regions in a given benchmark as a pure man-
ual task, using intel’s Parallel Studio, and Patty. Pattern-based par-
allelization as implemented in Patty receives better average user

161

scores than Parallel Studio: Our tool is regarded to be structured
more clearly, perceived more easily, easier to learn, provides a
higher degree of flexibility, and is more intuitive to use (Patty: 2.17,
Parallel Studio: 1.00). Concerning objective results, Patty outper-
forms Parallel Studio with respect to detection accuracy and time
(Patty: 100% in 39 minutes, Parallel Studio: 75% in 47 minutes).
This makes our approach a very efficient and effective solution to
parallelization.

Another finding deals with the tool correspondence to paral-
lelization tasks. From the manual control group we collected a list
of features for a parallelization process. Comparing this feature list
to Patty and Parallel Studio, we reveal that our tool provides five
features out of nine, while Parallel Studio provides only two. From
this we conclude that our approach assist in the right tasks and is
well-suited for parallelization.

Pattern-based parallelization as implemented in Patty has the
potential to serve as universal parallelization tool that is well-suited
for engineers from different skill levels in an efficient and effective
way. The free lunch might be over. But free snacks are obviously
available.

Acknowledgment

The authors would like to thank André Wengert, Jochen Huck
and Simon Wagner for their support in implementing Patty. We
thank Siemens Corporate Technology for their financial support.
We also appreciate the support of the Initiative for Excellence at
the Karlsruhe Institute of Technology.

References

[1] L. Hochstein, J. Carver, F. Shull, S. Asgari, V. Basili, J. K.
Hollingsworth, and M. V. Zelkowitz, “Parallel programmer productiv-
ity: A case study of novice,” in Parallel Programmers, International
Conference for High Performance Computing, Networking and Stor-
age, 2005. [Online]. Available: http://dx.doi.org/10.1109/SC.2005.53

H. Vandierendonck and T. Mens, “Averting the next software crisis,”
Computer, vol. 44, no. 4, pp. 88-90, Apr. 2011.

C. Hammacher, A. Zeller, K. Streit, and S. Hack, “Profiling java
programs for parallelism,” in Proceedings of the 2009 ICSE Workshop
on Multicore Software Engineering, ser. IWNMSE "09. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 49-55. [Online].
Available: http://dx.doi.org/10.1109/IWMSE.2009.5071383

Y. Liu, Z. Hu, and K. Matsuzaki, “Towards systematic parallel pro-
gramming over mapreduce,” in Proceedings of the 17th international
conference on Parallel processing - Volume Part II, ser. Euro-Par’11.
Bordeaux, France: Springer-Verlag, 2011, pp. 39-50. [Online].
Available: http://dl.acm.org/citation.cfm?id=2033408.2033414

S. Rul, H. Vandierendonck, and K. De Bosschere, “A profile-based
tool for finding pipeline parallelism in sequential programs,” Parallel
Comput., vol. 36, no. 9, pp. 531-551, Sep. 2010. [Online]. Available:
http://dx.doi.org/10.1016/j.parco.2010.05.006

K. Streit, C. Hammacher, A. Zeller, and S. Hack, “Sambamba:
runtime adaptive parallel execution,” in Proceedings of the 3rd
International Workshop on Adaptive Self-Tuning Computing Systems,
ser. ADAPT ’13. Berlin, Germany: ACM, 2013, pp. 7:1-7:6.
[Online]. Available: http://doi.acm.org/10.1145/2484904.2484911

G. Tournavitis and B. Franke, “Semi-automatic extraction and
exploitation of hierarchical pipeline parallelism using profiling
information,” in Proceedings of the 19th international conference
on Parallel architectures and compilation techniques, ser. PACT
’10. Vienna, Austria: ACM, 2010, pp. 377-388. [Online]. Available:
http://doi.acm.org/10.1145/1854273.1854321

G. Tournavitis, Z. Wang, B. Franke, and M. F. P. O’Boyle,
“Towards a holistic approach to auto-parallelization,” in Proceedings
of the 2009 Conference on Programming Language Design
and Implementation (PLDI), Jun. 2009. [Online]. Available:
http://homepages.inf.ed.ac.uk/gtournav/data/pldil21-tournavitis.pdf

[2]

[3]

[4

=

[5

=

[6

o}

[7

—

[8

—

[9] C. Intel, “Intel parallel studio,” 2014. [Online].
https://software.intel.com/en-us/intel-parallel-studio-xe

[10] C. CriticalBlue, “The prism technology platform,” 2014. [Online].
Available: http://www.criticalblue.com/prism-technology.html

Available:

[11] D. Dobb’s, “The state of parallel programming - the parallel program-
ming landscape,” 2012.

[12] U. Gleim and T. Schuele, Multicore-Software: Grundlagen, Architek-
tur und Implementierung in C/C++, Java und C#. Dpunkt, 2011.

[13] H. Sutter, “A fundamental turn toward concurrency in software,” Dr.
Dobb’s Journal, vol. 30, no. 3, pp. 16 — 23, 2005.

[14] E. Otto, C. A. Schaefer, M. Dempe, and W. F. Tichy, “A language-
based tuning mechanism for task and pipeline parallelism,” in Euro-
Par 2010 - Parallel Processing, ser. Lecture Notes in Computer Sci-
ence, P. DAmbra, M. Guarracino, and D. Talia, Eds. Springer Berlin
Heidelberg, Jan. 2010, no. 6272, pp. 328-340.

V. Pankratius, C. Schaefer, A. Jannesari, and W. F. Tichy,
“Software engineering for multicore systems: An experience
report,” in Proceedings of the Ist International Workshop
on Multicore Software Engineering, ser. IWMSE °08. New
York, NY, USA: ACM, 2008, pp. 53-60. [Online]. Available:
http://doi.acm.org/10.1145/1370082.1370096

M. L. Youguo Pi, Wenzhi Liao and J. Lu, “Theory of cognitive pattern

recognition,” in Theory of Cognitive Pattern Recognition, P.-Y. Yin,
Ed. I-Tech, 2008, p. 626.

[15]

[16]

[17] T. Mattson and M. Wrinn, “Parallel programming: Can we
PLEASE get it right this time?” in Proceedings of the
45th Annual Design Automation Conference, ser. DAC ’08.

Anaheim, California: ACM, 2008, pp. 7-11. [Online]. Available:
http://doi.acm.org/10.1145/1391469.1391474

[18] T. G. Mattson, B. A. Sanders, and B. K. Massingill, Patterns for
Parallel Programming. Addison-Wesley Longman, 2004.

[19] V. Pankratius, A.-R. Adl-Tabatabei, and W. F. Tichy, Fundamentals of
Multicore Software Development. CRC-Press, 2012.

[20] K. Molitorisz, J. Schimmel, and F. Otto, “Automatic parallelization
using autofutures,” in Proceedings of the 2012 International Confer-
ence on Multicore Software Engineering, Performance, and Tools, ser.
MSEPT’12. Berlin, Heidelberg: Springer-Verlag, 2012, pp. 78-81.

K. Molitorisz, “Pattern-based refactoring process of sequential source
code,” in Proceedings of the 2013 17th European Conference
on Software Maintenance and Reengineering, ser. CSMR ’13.
Washington, DC, USA: IEEE Computer Society, 2013, pp. 357-360.
[Online]. Available: http://dx.doi.org/10.1109/CSMR.2013.49

J. Schimmel, K. Molitorisz, A. Jannesari, and W. F. Tichy, “Auto-
matic generation of parallel unit tests,” in 8th IEEE/ACM International
Workshop on Automation of Software Test (AST 2013), May 2013.

C. Schaefer, V. Pankratius, and W. Tichy, “Engineering parallel ap-
plications with tunable architectures,” in 2010 ACM/IEEE 32nd Inter-
national Conference on Software Engineering, vol. 1, May 2010, pp.
405-414.

M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and
I. Neamtiu, “Finding and reproducing heisenbugs in concurrent pro-
grams,” in Proceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI’08. Berkeley, CA,
USA: USENIX Association, 2008, pp. 267-280. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855741.1855760

S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova, and M. Prieto,
“Survey of scheduling techniques for addressing shared resources in
multicore processors,” ACM Comput. Surv., vol. 45, no. 1, pp. 4:1-
4:28, Dec. 2012.

S. Blagodurov, S. Zhuravlev, and A. Fedorova, “Contention-aware
scheduling on multicore systems,” ACM Trans. Comput. Syst.,
vol. 28, no. 4, pp. 8:1-8:45, Dec. 2010. [Online]. Available:
http://doi.acm.org/10.1145/1880018.1880019

F. Otto, V. Pankratius, and W. Tichy, “High-level multicore program-
ming with XJava,” in 3/st International Conference on Software En-
gineering - Companion Volume, 2009. ICSE-Companion 2009, May
2009, pp. 319-322.

[21

[22]

(23]

[24]

[25]

[26

[27]

162

[28] D. J. Meder and W. F. Tichy, “Parallelizing an index generator for
desktop search,” in Proceedings of the 2010 international confer-
ence on Computer Architecture, ser. ISCA’10. Saint-Malo, France:
Springer-Verlag, 2012, pp. 77-85.

T. Karcher and V. Pankratius, “Run-time automatic performance tun-
ing for multicore applications,” in Euro-Par 2011 Parallel Processing,
ser. Lecture Notes in Computer Science, E. Jeannot, R. Namyst, and

[29]

J. Roman, Eds. Springer Berlin Heidelberg, Jan. 2011, no. 6852, pp.
3-14.
[30] J. A. Nelder and R. Mead, “A simplex method for function minimiza-

tion,” The Computer Journal, vol. 7, no. 4, pp. 308-313, Jan. 1965.
[Online]. Available: http://comjnl.oxfordjournals.org/content/7/4/308

[31] F. Glover, “Future paths for integer programming and links to
artificial intelligence,” Comput. Oper. Res., vol. 13, no. 5, pp. 533—
549, May 1986. [Online]. Available: http://dx.doi.org/10.1016/0305-

0548(86)90048-1

B. Laugwitz, M. Schrepp, and T. Held, “Konstruktion eines frage-
bogens zur messung der user experience von softwareprodukten,” in
Mensch und Computer 2006: Mensch und Computer im Strukturwan-
del, A. M. Heinecke and H. Paul, Eds. Mnchen: Oldenbourg Verlag,
2006, pp. 125-134.

F. Nielson, H. R. Nielson, and C. Hankin, Principles of Program
Analysis. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 1999.

M. Kim, H. Kim, and C.-K. Luk, “SD3: A scalable approach
to dynamic data-dependence profiling,” in Proceedings of the
2010 43rd Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO ’43. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 535-546. [Online]. Available:
http://dx.doi.org/10.1109/MICRO.2010.49

J. Mak, K.-F. Faxn, S. Janson, and A. Mycroft, “Estimating
and exploiting potential parallelism by source-level dependence
profiling,” in Proceedings of the 16th international Euro-Par
conference on Parallel processing: Part I, ser. EuroPar’10.
Ischia, Italy: Springer-Verlag, 2010, pp. 26-37. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1887695.1887700

C. A. Schaefer, Automatische Performanzoptimierung Paralleler
Architekturen: Neue Konzepte zur effizienten Enwicklung paral-
leler Programme. Saarbrucken: Suedwestdeutscher Verlag fuer
Hochschulschriften, 2010.

M. W. Hall, S. P. Amarasinghe, B. R. Murphy, S.-W. Liao, and M. S.
Lam, “Interprocedural parallelization analysis in SUIF,” ACM Trans.
Program. Lang. Syst., vol. 27, no. 4, pp. 662-731, Jul. 2005. [Online].
Available: http://doi.acm.org/10.1145/1075382.1075385

GCC, “Automatic parallelization in GCC,” 2012. [Online]. Available:
http://gcc.gnu.org/wiki/AutoParinGCC

[39] C. Intel, “Intel compilers,” 2014.
http://software.intel.com/en-us/intel-compilers/

[40] C. Bastoul, A. Cohen, S. Girbal, S. Sharma, and O. Temam, “Putting
polyhedral loop transformations to work,” in Languages and Compil-
ers for Parallel Computing, ser. Lecture Notes in Computer Science,
L. Rauchwerger, Ed. Springer Berlin Heidelberg, Jan. 2004, no. 2958,
pp. 209-225.

M. E. Wolf, “Improving locality and parallelism in nested loops,”
Ph.D. dissertation, Stanford University, Stanford, CA, USA, 1992,
UMI Order No. GAX93-02340.

M. E. Wolf and M. S. Lam, “A data locality optimizing algorithm,”
in Proceedings of the ACM SIGPLAN 1991 Conference on
Programming Language Design and Implementation, ser. PLDI *91.
New York, NY, USA: ACM, 1991, pp. 30—44. [Online]. Available:
http://doi.acm.org/10.1145/113445.113449

H. Zima and B. Chapman, Supercompilers for Parallel and Vector
Computers. New York, NY, USA: ACM, 1991.

M. Hind, “Pointer analysis: Haven’t we solved this problem yet?”
in Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering, ser. PASTE
’01. New York, NY, USA: ACM, 2001, pp. 54-61. [Online].
Available: http://doi.acm.org/10.1145/379605.379665

[32]

(33]

[34]

[35]

[36]

[37]

[38]

[Online]. Available:

[41]

[42]

[43]

[44]

[45] 1. Bluemke and J. Fugas, “C code parallelization with paragraph,” in
2010 2nd International Conference on Information Technology (ICIT),
Jun. 2010, pp. 163-166.

[46] ——, “A tool supporting ¢ code parallelization,” in Innovations in
Computing Sciences and Software Engineering, T. Sobh and K. Ellei-
thy, Eds. Springer Netherlands, Jan. 2010, pp. 259-264.

[47] C. Dave, H. Bae, S.-J. Min, S. Lee, R. Eigenmann, and S. Midkiff,
“Cetus: A source-to-source compiler infrastructure for multicores,”
Computer, vol. 42, no. 12, pp. 3642, Dec. 2009.

163

