
GPU Technology Applied to Reverse Time Migration and
Seismic Modeling via OpenACC

Ahmad Qawasmeh, Barbara Chapman
Department of Computer Science

University of Houston, Houston, Texas
{arqawasm, chapman}@cs.uh.edu

Maxime Hugues, Henri Calandra
Advanced Computing Department

TOTAL E&P USA, INC, Houston, Texas
{maxime.hugues,

henri.calandra}@total.com

ABSTRACT
GPU computing offers tremendous potential to accelerate
complex scientific applications and is becoming a leading
force in speeding up seismic imaging and velocity analysis
techniques. Developing portable code is a challenge that
can be overcome using emerging high-level directive-based
programming model such as OpenACC. In this paper, we
develop OpenACC implementations for both seismic mod-
eling and Reverse Time Migration (RTM) algorithms that
solve the isotropic, acoustic, and elastic wave equations. We
employ OpenACC to take advantage of the computational
power of two Nvidia GPU cards: 1) M2090 and 2) K40,
residing in IBM and CRAY XC30 clusters respectively. Al-
though we implement a hybrid OpenACC-MPI approach to
parallelize seismic modeling and RTM on multiple GPUs, in
this paper, we focus on developing mapping techniques to
exploit potentials of one GPU. We observe an incremental
improvement in performance while exploring different op-
timization techniques. Adequate code restructuring to tap
GPU’s potential seems critical. Depending on the inten-
sity of computations, different propagators exhibit different
speedup behaviors. A performance enhancement of ∼ 10x
was obtained, when the acoustic model was ported to a sin-
gle GPU, compared with a 1.3x speedup obtained using the
isotropic model.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—Parallel algorithms

General Terms
Algorithms, Design, Measurement

Keywords
OpenACC, Seismic imaging, Reverse Time Migration, GPU,
Accelerator, MPI

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PMAM ’15 February 07-11 2015, San Francisco, CA, USA
Copyright 2015 ACM 978-1-4503-3404-4/15/02 ...$15.00
http://dx.doi.org/10.1145/2712386.2712401.

1. INTRODUCTION
The massive complexity of the exploration process in the

oil and gas industry requires high performance computing
technologies to produce an accurate and fast representation
of the subsurface. Seismic modeling and Reverse Time Mi-
gration (RTM), which are based on a full wave equation dis-
cretization, are important applications that can solve com-
plex wave propagation fields across different medias. The
graphics processing unit (GPU), first invented by Nvidia in
1999, is the most prevalent parallel processor to date. GPUs
can be identified as a combination of multicore general pur-
pose processors and vector processing units, intending to
generate a higher level of parallelism. Efforts to exploit
the GPU for non-graphical applications have been under-
way since 2003, as GPUs were originally targeting graphical-
based applications. Nowadays, GPUs are used in a large
variety of applications that exhibit different characteristics
and purposes.

Using GPU programming languages, such as CUDA [7] for
Nvidia or OpenCL [11], requires a thorough understanding
of the GPU architecture and design to accelerate applica-
tions. Prior to the introduction of high level GPU APIs,
developers targeting HPC accelerators have had to rely on
language extensions to their programs. Host+accelerators
programmers have needed to program at a detailed level in-
cluding a need to understand and specify data usage infor-
mation and manually construct sequences of calls to man-
age all movements of data between host and accelerator.
OpenACC [12], which is a standard directive-based GPU
programming model, has alternatively gained a wider pop-
ularity among domain specialists, especially in the seismic
community, because of its simplicity and portability across
many platforms. Using this API, a single version of an appli-
cation should be maintained with specific compiler options
to be used to activate the inserted directives.

In this work, we have mainly focused on exploiting the
massive computation capacity provided by the GPU tech-
nology to better analyze and process seismic modeling and
RTM. We experienced different implementations of Ope-
nACC against these applications while using different seis-
mic imaging techniques. We also employed different opti-
mization approaches that target the design and memory hi-
erarchy provided in GPUs. We observed the influence of
using different versions of CUDA, PGI, as well as CRAY
compilers on the overall performance. We realized that dif-
ferent compiler versions have different heuristics to gener-
ate the GPU code. In some cases, conforming to the spec-
ification more closely might result in worse performance.

75

We also check the impact of using two Nvidia Tesla Cards:
Fermi M2090 and Kepler K40 on the obtained performance
in terms of speedup and throughput. Kepler cards arith-
metically outpace Fermi cards in terms of memory band-
width, number of cores, and throughput. Our experiments
emphasized the advantage of using Kepler cards over Fermi
cards.

The main motivation behind this work lies in observing
the feasibility of using OpenACC to extract the maximum
potential of GPUs in order to improve the performance of
velocity analysis in seismic imaging applications. Two popu-
lar seismic applications used in the real world oil exploration
industrial context were examined and optimized: 1) Seis-
mic Modeling 2) Reverse Time Migration (RTM).
The aforementioned observation was performed through the
following contributions:

1. Studying and analyzing all aspects in these large appli-
cations to determine what to port on GPUs and how
to minimize host-device data transfers and reduce the
latency produced by accessing GPUâĂŹs global mem-
ory.

2. Combining OpenACC directives with various optimiza-
tion techniques that include code transformations, loop
scheduling, and compiler flags.

3. Assessing the OpenACC programming model with re-
spect to its:

• ease of use

• capability to adapt to different GPU cards and
compilers

• performance gain compared with a parallel CPU
code implemented using MPI

• programming effort required

Performance is our main driven criteria. In order to ac-
complish the best possible speedup, the following steps were
performed:

• Specify all the variables that should be transferred be-
tween host and accelerator.

• Determine the compute regions that should be offloaded
to the accelerator, depending on computation inten-
sity.

• Apply the necessary optimizations needed to improve
the performance.

• Tune the generated code.

• Compare the speedup gained against a full socket MPI
implementation on a multi-core CPU platform.

• Repeat the previous steps as needed to achieve the
desired performance.

The workflow of these steps is depicted in Figure 1. Ta-
ble 1 gives a detailed information about the different soft-
ware/hardware used as our evaluation platform.

The remaining of this paper is organized as follows: Sec-
tion 2 gives some hints about the previous work. We de-
scribe the context, the algorithm and the CPU implementa-
tion of the modeling and RTM applications in Section 3. An

Figure 1: A workflow diagram showing how to accelerate
applications

Table 1: Evaluation Platform

Software/Hardware Facts

CPU/CRAY Two Intel 10 core Xeon Ivy Bridge
E5-2680 v2 @2.8 GHz, total 20
cores/64GB memory per node.

CPU/IBM Two Intel Quad-core Xeon E5640
@2.8 GHz, 12MB L3 Caches, total
8 cores/24GB memory per node

GPU1 Nvidia Tesla Kepler K40 on CPU
platform with 2880 cuda cores, 12
GB GDDR5 Memory, ECC: dis-
abled.

GPU2 Nvidia Tesla Fermi M2090 on CPU
platform with dedicated PCIe2x16
per GPU 512 cuda cores, 6 GB
GDDR5 Memory, ECC: disabled

API and Languages OpenACC 2.0, MPICH 3.1, FOR-
TRAN 2003

Compilers PGI Compiler 13.7 / 14.3 /
14.6, CRAY Compiler 8.2.6, Nvidia
CUDA 5.0 / 5.5

overview of the GPU architecture and OpenACC is given in
Section 4. We explain our OpenACC and CPU implemen-
tations and optimization analysis in Section 5. Section 6
demonstrates our evaluation results and performance anal-
ysis. In Section 7, we conclude the work presented and give
some hints about our future ideas.

2. RELATED WORK
Directive-based GPU programming models [12], [10], [8]

proposed a simpler approach, compared with GPU program-
ming languages, to handle GPU usage across many plat-
forms. The directive-based approach was first proposed by
OpenMP [2], which is a standard API for shared mem-
ory programming. OpenMP provides a directive-based pro-
gramming approach for generating parallel versions of pro-
grams from sequential ones.

Reverse Time Migration (RTM) is a seismic depth imaging
method for velocity analysis to better analyze the structure
of the subsurface. RTM was introduced and presented by a

76

number of authors that include Baysal et al. [3], McMechan [6]
among others. On the other hand, seismic modeling [5] is
an essential geographical data processing technique for nu-
merically simulating seismic wave propagation. Several at-
tempts were previously conducted to port RTM and seis-
mic modeling to GPUs. Abdelkhalek et al. [1] employed
CUDA to solve the acoustic wave equation in RTM and
seismic modeling on GPU. Ghosh et al. [9] had experiences
in analyzing the performance and programmability of three
high-level directive-based GPU programming models - PGI,
HMPP and OpenACC on an Nvidia GPU against Isotropic
(ISO)/Tilted Transversely Isotropic (TTI) finite difference
kernels. A prediction-based performance tuning mechanism
was proposed in [13] to tune OpenACC gang and vector
clauses. This proposed tuning methodology was applied to
the isotropic modeling kernel to dynamically adapt to the
execution environment on a given system.

In contrast with the aforementioned experiences, the work
reported here, to the best of our knowledge, is the first to tar-
get porting RTM and seismic modeling on GPU using Ope-
nACC for solving the isotropic, acoustic, and elastic wave
equation.

3. SEISMIC IMAGING
The efficiency of a seismic imaging technique can be de-

termined via three primary concerns. These concerns in-
clude the accuracy of determination of the true subsurface
medium, the quality of the produced image, and having a
clear understanding of how waves propagate through the
media. Among the numerous seismic imaging approaches,
seismic modeling and RTM are two applications of particu-
lar interest.

3.1 Seismic Modeling
Numerical seismic modeling is a keystone tool for simu-

lating wave propagation in the earth. It mainly forms the
forwarding phase of RTM in which a seismic wave is prop-
agated from the source to the subsurface. This useful tech-
nique predicts the seismograms that can be recorded by a
set of sensors in order to give an assumption for the struc-
ture of the subsurface. To solve the wave equation by direct
methods, which are used in our applications, the geological
model is approximated by a numerical mesh, that is, the
model is discretized in a finite numbers of points (25-point
stencil in our propagators). As a consequence, we can model
or simulate seismic wave propagation as a movie snapshots
traveling through the earth.

3.2 Reverse Time Migration (RTM)
RTM is a seismic migration method for creating images

in complex wave propagation fields. The source and re-
ceivers wave-fields in RTM are respectively propagated for-
ward and backward in time. RTM then uses the well estab-
lished imaging condition I(z, x, y) of cross correlation be-
tween the forward propagated source wave-field S(z, x, y, t)
and the backward propagated receiver wave-field R(z, x, y, t)
summed over the sources s where z, x, y, and t denote depth,
horizontal, lateral axis, and time respectively. Figure 2 de-
picts how the seismic image is created by combing the wave-
fields from source(s) and receiver(s) through imaging condi-
tion.

3.3 Propagators and Equations

Figure 2: Seismic image creation through imaging condition

There are three basic formulations to represent the earth
models. These formulations are purely isotropic or acous-
tic, isotropic elastic, and anisotropic. In our experiments,
we focused on the first two formulations. However, we will
consider the anisotropic case in the future. The following
sections give more details about what we have implemented.

3.3.1 Isotropic
Isotropic acoustic models are based on the assumption

that density and instantaneous velocity are the only physi-
cal parameters defining wave propagation. Hence, only flu-
ids can be described by this model. This model has been the
most prevalent as propagation in such environments can be
simulated efficiently. A semi-analytic form of the isotropic
propagator in constant density domain, where we only dis-
cretize in time, can be written as seen in Equation 1, where
u is the wave-field, vp is the pressure velocity, and f is the
point source of propagation. A 2nd order 25-point stencil is
used.

u−1 = u0 = 0, un+1 −Qun + un−1 = ∆t2v2pf
n,

Q = 2 + ∆t2v2p∇2, 0 ≤ n ≤ N − 1.
(1)

3.3.2 Acoustic
The variable density domain acoustic propagator (here in

2D) is implemented as a 25-point stencil staggered grid first
order system. Equation 2 describes this model, where ρ
is the density of fluid, p is the pressure in fluid, qx is the
velocity flow of fluid in the x-direction, and qz is the velocity
flow of fluid in the z-direction.

∂tp = ρv2p (∂xqx + ∂zqz) + ρv2p∂
−1
t f (xs, t)

∂tqx =
1

ρ
∂xp

∂tqz =
1

ρ
∂zp

(2)

As in the constant domain case, this model assumes that
the earth is fluid and hence it is not very accurate in some
cases.

3.3.3 Elastic
Isotropic elastic models are described by density, compres-

sional velocity, and shear velocity. The waves are character-
ized by particle motions (normal to the direction of propa-
gation in the case of compressional waves and tangential in

77

the case of shear waves). Equation 3 represents the velocity
stress formulation of the elastic wave equation. It consists
of three particle velocity equations and six stress equations,
where ρ is density, σ represents the stress wave-field, and
v represents the particle velocity. This Equation is imple-
mented as a first order system in a staggered grid.

∂tvω =
1

ρ
(∂xσxω + ∂yσyω + ∂zσzω) , ω = x, y, or z,

∂tσxx = (λ+ 2µ) ∂xvx + λ (∂yvy + ∂zvz) ,

∂tσxy = µ (∂xvy + ∂yvx) , where xy = xy, xz, or yz.

(3)

This model assumes that the earth is a solid medium, which
makes it more accurate compared with the acoustic model.
However, it is more complicated and computationally inten-
sive.

The staggered grid approach used in our acoustic (variable
domain) and elastic models has the advantage of accuracy
with less computational effort because it allows a larger grid
size.

4. AN OVERVIEW OF GPU ARCHITECTURE
AND OPENACC

GPU, which indicates General Purpose GPU in this paper,
has a different architecture than CPU. A CPU consists of
cores optimized for sequential serial processing while a GPU
has thousands of smaller and more efficient cores designed
for handling multiple tasks simultaneously. Nvidia GPU
cores are constructed into Streaming Multiprocessors (SMs).
GPU has a complex memory hierarchy that includes global
memory, shared memory, texture (read-only) memory and
L1 cache, and registers distributed among different threads.
The Kepler architecture focuses on energy efficiency with
more advanced capabilities compared with Fermi, as seen in
Table 2.

The desired and sometimes conflicting goals associated
with using the OpenACC directive programming model in-
tend to enhance productivity, portability, and performance.
While this abstract programming model needs less effort/time
to produce optimized codes targeting multiple architectures,
understanding the architecture and memory hierarchy of
GPU is crucial for a programmer to reduce access latency
and maximize coalesced GPU memory accesses. The per-
formance obtained still does not reach what can be achieved
using CUDA or OpenCL. CUDA in particular, since we are
using Nvidia cards, provides a low-level programming ap-
proach, which offers more flexibility to exploit the available
potentials of GPUs.

OpenACC is an open pragma-based GPU directives stan-
dard, which was first announced by Nvidia in Supercomput-
ing 2011 conference. OpenACC is a joint effort of CAPS
enterprise, CRAY, PGI, and Nvidia. The OpenACC specifi-
cation 1.0 was the first version to be supported by these ven-
dors. The OpenACC specification 2.0 was released later with
some new features, but still not fully implemented in both
PGI and CRAY compilers. OpenACC concepts are inherited
from the PGI accelerator model [14]. OpenACC execution
model exposes three levels of parallelism via gang, worker
and vector parallelism to better control the distribution of
iterations among cores and to tune the code. For GPU map-
ping, a gang is a block which is executed by one Streaming
Multiprocessor (SM). Worker represents a warp/group of

threads and vector is represented as the threads in a warp.
OpenACC offers two types of compute directives: parallel
and kernels. With the parallel construct, a gang-redundant
mode is exhibited, which means that if no loop directive is
specified inside the parallel region, the encapsulated code
will redundantly be executed by all gangs. On the other
hand, the kernels construct produces a sequence of acceler-
ator kernels, where each loop nest becomes a kernel.

5. OPENACC IMPLEMENTATIONS AND OP-
TIMIZATION ANALYSIS

Our CPU implementation of seismic modeling and RTM
employs finite difference direct methods to solve the isotropic,
acoustic, and elastic wave equation. We use operators with
a 3D stencil width of 8. Discretizations in space and time oc-
cur along the forward and backward propagation to compute
numerical solutions to the wave equation. The discretiza-
tion process depends on the formulation used to describe
the earth model as explained in the previous section. At
each grid point, the stencil (25 data read accesses are per-
formed) is applied to compute one grid point of the updated
wave-field. Since seismic modeling represents the forwarding
phase of RTM, we decided to have one algorithm explaining
the overall process. Algorithm 1 describes the parallel CPU
implementation we use as a reference to evaluate our Ope-
nACC accelerated solution. This implementation is based on
domain decomposition where each domain may be divided
into sub-domains mapped onto several hosts to fit into mem-
ory and to decrease simulation time. Ghost nodes are ex-
changed via MPI non-blocking standard send (MPI ISEND)
and receive (MPI IRECV). When all required sends and re-
ceives are posted, the communication request handles are
then immediately checked for completion via corresponding
number of MPI WAITANY calls. Ghost node thickness is
determined by the stencil used to solve the wave equation.

We step forward in the modeling phase to exchange bound-
aries, compute the updated source wave-field for all grid
points, and perform source injection. The snap period value
depends on the maximum frequency used in the attached ve-
locity model. A partial snapshot is saved after each snap period
and the cumulative propagated snapshot is then displayed
as the output of seismic modeling. In RTM, this snapshot
should be read in the backward phase to generate the final
seismic image.

In practice, it is necessary to truncate the computational
domain. The truncation is usually done by introducing a
boundary layer that absorbs the outgoing waves. The Per-
fectly Matched Layer was introduced by Berenger [4] and
has since been the most used absorbing boundary with dif-
ferent formulations. The standard PML is used in our sec-
ond order (isotropic) formulation of the wave equation. One
major problem with the standard PML is that the bound-
ary layer does not absorb evanescent waves where the PML
method suffers from large spurious reflections. Instead, we
use the Convolutional PML (C-PML) method to simulate
wave propagation in acoustic (variable density) and elastic
medias by storing four different one-dimensional arrays with
the cpml-coefficients for each dimension (x,y,z etc). A 2D
case snapshot of wave propagation resulted from the mod-
eling phase in acoustic media is depicted in Figure 3.

Imaging in RTM is represented by the backward phase as
demonstrated in Algorithm 1. RTM simulates the source

78

wave-field in both forward and backward phases and the
receivers wave-field. The imaging condition is applied in the
backward phase to compute the cross-correlation between
forward source and backward receiver wave-fields over the
time iterations. A 2D seismic image in acoustic media for
RTM is shown in Figure 5

Input: wavefields,velocity model
Output: snapshot, seismic image
for time← tstart to tend do

exchange boundaries;
forall the domain grid points do

forward time step source wave-field (2D/3D);
end
source injection;
foreach snap period do

save snapshot(time);
end

end
for time← tend to tstart do

foreach snap period do
read saved snapshot(time);
apply imaging condition;

end
exchange boundaries;
forall the domain grid points do

backward time step receiver wave-field
(2D/3D);

end
receiver injection;

end
Algorithm 1: Reverse Time Migration and Modeling
algorithm

Figure 3: A 2D seismic modeling snapshot in acoustic media

5.1 OpenACC Implementation of RTM
Any OpenACC implementation should handle three main

issues: host computations, accelerator computations and
data allocation, and communications between host and ac-
celerator. Our implementation targets exploiting the full
potentials of the GPU by optimizing the intensive compu-
tation kernels that should be ported to GPUs, restructuring
the code, and minimizing data transfers between host and
device.

Our OpenACC implementation consists of five consecutive
steps as described in Figure 4. These steps are as follows:

1. Data allocation: Due to GPU global memory con-
straints in both Kepler and Fermi cards, we found
that the forward and backward wave-field variables of
RTM cannot be allocated at the same time on GPU.
Nvidia System Management Interface program (nvidi-

aấLŠsmi) provided the required guidance in this mat-
ter. Using more than one data directive prevents data
in the GPU global memory from being persistent across
different kernel launches. Our solution was to exploit
the new feature provided in OpenACC 2.0 specs by us-
ing the (ACC ENTER DATA COPYIN) (ACC EXIT
DATA DELETE) after host allocation and before host
de-allocation respectively. In the first step, the forward
phase variables were moved to the GPU memory. A
MACRO was used to automate the process of choosing
the variables according to the used seismic model.

2. Forward phase: The forward propagation of the wave-
field in time is performed in the GPU memory by log-
ically swapping tn and tn+1 arrays. Only the ghost
nodes need to be exchanged between host and GPU at
each time step when partitioning the domain among
several GPUs. Exchanging only ghost nodes (partial
transfers) instead of the whole domain, despite requir-
ing more programming effort, significantly reduces the
amount of data exchange and thus computing time.
However, exchanging non-contiguous data remains a
non-optimal solution. One workaround is rearranging
data of these ghost nodes by performing a transposi-
tion on GPU. Our focus was on exploiting one GPU,
and hence we did not try to optimize multiple GPUs.
A branch condition was needed to ensure that the host
snapshot data will not be updated at each time step.
Instead, it is only updated after each snap period.

3. Offloading forward and uploading backward: In order
to save the global GPU memory, the modeling data is
offloaded from the GPU, except for the forward wave-
field, which is needed in the later steps. The imag-
ing data needed in backward propagation and imaging
condition is then uploaded to the GPU.

4. Backward phase: Computing the backward time step
receiver wave-field on the GPU was suffering from bank
conflicts in shared memory due to a lack of coalescing
memory accesses. Coalescing memory accesses pro-
vided an initial solution to the problem. However, code
restructuring was needed to gain a better performance.
The better optimized kernel, which is used in the mod-
eling phase and benefits from vectorization, was called
instead by passing the backward wave-field data to it
and the ghost node exchanges were rearranged to imi-
tate the modeling phase. This technique showed a 3x
performance speedup over the original RTM code in
both acoustic and elastic models. The isotropic kernel
used in both phases was the same, and hence it did
not suffer from this issue. The imaging condition can
be applied either on the GPU or the CPU. Our exper-
iments demonstrated a better performance when the
final seismic image was computed on the GPU instead
of the CPU. However, this advantage was insignificant
due to two main factors: 1) The overheads resulted

79

from transferring the image back to the CPU. 2) The
lack of intensive computations that can benefit from
the power of the GPU.

5. Storing image and offloading data from the GPU: The
decision of applying imaging condition on the GPU
requires sending the image back to host. Once the
final seismic image is computed, the data is no longer
needed on the GPU. The PRESENT clause was used
in all kernels as the required data is persistent on the
GPU across the different kernel launches.

Figure 4: Reverse Time Migration and Modeling OpenACC
implementation

Figure 5: A 2D seismic image in acoustic media for RTM

5.2 Compiler Optimizations and Loop Schedul-
ing

Different compilers apply different optimization techniques
associated with OpenACC directives and clauses. Loop schedul-
ing clauses, provided by OpenACC, determine how loops

are mapped to the GPU architecture. However, compilers
vary in terms of implementing these clauses. Based on our
experiments, we found that the most efficient way to of-
fload perfectly nested loops, which is the case in our acous-
tic and elastic models, relies significantly on the compiler
itself. Using PGI, it was more efficient to use the kernels
directive to allow the compiler to handle the existing work-
sharing among loops without using the gang/worker/vector
paradigm. To ensure a good coalescing, the generator as-
sumes that the cache-friendly loop is the innermost. There-
fore, our 3D loop nest case led to the collapsing of the 2
innermost loops to generate a 2D grid of hardware accelera-
tor threads. We also used the independent clause to specify
that no dependencies exist among loop iterations, which fa-
cilitates the compiler’s task to parallelize the code. Using
CRAY, it was totally different, i.e., the more information
you pass to the compiler, the better performance you get.
Using the gang/worker/vector paradigm associated with the
parallel directive gave the best performance. Having the 3D
case as an example, if no loop scheduling is provided with
the parallel directive, the CRAY compiler uses gangs on the
outer i-loop, but then analyzes the j and k loops to deter-
mine which loop looks most profitable to be vectorized. The
compiler may actually look at the i-loop as well depending
on whether this loop-level has work to be done. Which loop
gets vectorized is completely dependent on the code inside
the loop. In our experiments with the CRAY compiler, vec-
torizing the innermost loop explicitly improved mapping the
parallelism of the acoustic and elastic models to the acceler-
ator. A performance comparison between kernels and paral-
lel implementations using CRAY is depicted in Figure 8 and
Figure 9 for the 2D and 3D acoustic models respectively.

The main kernel in our isotropic code suffered from the
if-statements, which are needed to compute PML at the
boundaries of the grid domain only. These if-statements
reduce GPU utilization and prevent efficient gridification.
We implemented two approaches to make the loop levels
perfectly nested in this kernel, and hence to improve grid-
ification and loop scheduling. The first approach was to
remove these if-conditions by changing the loop indices and
restructuring the loop region accordingly. The loop inde-
pendent scheduling in PGI triggers gridification in kernels
regions, and 2D gridification requires perfectly nested loops.
This approach significantly enhances the performance using
PGI 14.3 compiler as shown in Figure 7. However, PGI 14.6,
shown in Figure 6, did not give the same improvement. Our
second approach was to compute PML everywhere in the
grid domain. Although this change increases computations,
it was more efficient than the original code with PGI 14.3,
but not with PGI 14.6. CUDA 5.0 is the default version that
was used with PGI 14.3, while CUDA 5.5 is the default with
14.6. The CUDA version used affects GPU code generation
and justifies performance variation.

Occupancy (number of concurrently running threads) is
another metric of performance. When register spilling is
an issue, increasing the limit of registers per thread might
reduce occupancy, which potentially reduces execution effi-
ciency. However, this may still be an overall win due to fewer
total bytes being accessed. The best number of registers per
thread was found to be 64 in all implemented cases on both
Fermi and Kepler GPU cards. This number gives the re-
quired balance between occupancy and number of accessed
bytes. Figure 10 shows a performance comparison between

80

Figure 6: ISO Modeling 3D (PGI 14.6)

Figure 7: ISO Modeling 3D (PGI 14.3)

different numbers of registers for the 3D elastic modeling
case.

Another interesting case was to execute multiple kernels
concurrently using the async clause assuming that there are
no dependencies among them, which is the case in our elastic
model. There are three limiting factors to async: 1) There
is a specific number of async streams, one of which is used
by the implementation for automatic use. 2) The PCIe bus
can only move so much at a time. 3) The device can only
hold so much at a time. The async on parallel and kernels
directives is useful to let the CPU queue up the next work
unit and therefore CRAY compiler uses auto async kernels
as its compilation default. Having said that, using different
async streams with different kernels does not necessarily im-
prove performance. PGI compilers gave a worst performance
on both Fermi and Kepler when async was used to overlap
GPU kernels with each other. On the contrary, using async
with CRAY compiler reduces the execution time by 30%.
Referring to Figure 11, we realized that overlapping GPU
kernels is very hard to be accomplished in our elastic case,
as the available streaming multiprocessors are occupied by
one or few kernels. However, using multiple streams can
lead to small jobs packing on to the device all at once and it
can lead to reduced lag time between kernel launches. The
30% improvement was due to this reason.

The best compilation strategy used with the PGI com-
piler was (ta = nvidia : pin, ptxinfo,maxregcount : 64 −
Minfo = accel, loop, opt,mp) on both Kepler and Fermi.

Figure 8: Acoustic Modeling 2D (CRAY Compiler)

Figure 9: Acoustic Modeling 3D (CRAY Compiler)

We used the pin option to avoid the cost of transfers be-
tween pageable and pinned host arrays by directly allocating
our host arrays in pinned memory and move them to device
memory.

5.3 Loop Transformations
Code transformations are critical to improve loop map-

ping and GPU code generation. We have considered various
transformation techniques that include, but not limited to
inlining, permutation, fission, transposition, tiling, and col-
lapsing. Due to space limitations, we will discuss the two
techniques, which were most significant in our implementa-
tions.

Starting with loop fission, the most intensive 3D acoustic
kernel, as depicted in Figure 12, consists of computations
that handle wave-fields derivations over three dimensions
for all grid points. We simply break this kernel into three
kernels where each is responsible for one dimension. A 3x
speedup was gained after applying loop fission when this
code was executed on M2090 Fermi card. As a justification,
the original loop needs too many registers and this may pre-
vent effective execution. Most of the register pressure we
were getting with the original code was with the array ad-
dress variables (the compiler will use local temp variables to
store the offsets into the various multi-dimensional arrays.
Loop fission overcomes these issues, and hence improves per-

81

Figure 10: Elastic Modeling 3D (registers per thread)

Figure 11: Nvidia Profile for a 2D Elastic Model (Async) on
CRAY

formance when Fermi card is used. That was not the case
though on Kepler card, as the register per thread count is
doubled with 255 registers per thread. This increase allows
K40 card to handle the pressure generated from the original
loop.

Coalescing memory accesses on the GPU is essential for
any OpenACC application to efficiently move data from
global memory into shared memory and registers. Each time
a location is accessed, many consecutive locations, includ-
ing the requested location, are accessed. Recalling that all
threads in a warp execute the same instruction, the most
favorable global memory access is achieved when the same
instruction for all threads in a warp accesses consecutive
memory locations. In this favorable case, the hardware coa-
lesces all memory accesses into a consolidated access to con-
secutive global memory locations. The generator assumes
that the best loop for cache utilization is the innermost to
ensure a good coalescing. However, this is not the case in
our acoustic and elastic models. Taking the 2D acoustic
backward phase kernel, as depicted in Figure 13, the inner
ix loop is not parallelized due to loop carried dependencies.
We solved that in three steps. The first step was to trans-
pose the original array by creating a new temporary array
on GPU. The second step was to replace the original array

Figure 12: Loop fission optimization (Acoustic 3D)

with the temporary one inside the kernel. Having done that,
the inner loop has no dependencies any more and should not
suffer from a coalescing problem. The last step was trans-
posing the array back and removing the temporary array
from GPU. This technique allows us to gain a 3x speedup
compared with the original code on both GPU cards using
PGI and CRAY compilers.

Figure 13: Coalescing of memory accesses (Acoustic 2D)

5.4 Reducing Data Transfers
(ENTER DATA COPYIN) and (EXIT DATA DELETE)

directives were used after host allocation and before host
de-allocation respectively to ensure the persistence of the
required data on GPU across different kernel launches. The
forward phase data and backward phase data were handled
separately to save GPU memory. (UPDATE HOST)and
(UPDATE DEVICE) directives were used to manage data
transfers between host and GPU. All intensive computations
were ported to GPU using either kernels or parallel direc-
tives. pgprof tool from PGI was used to determine these
intensive regions. The present clause was associated with
all GPU kernels to assist the compiler to determine the vari-
ables that are already present in GPU memory and to reduce
data transfers across different kernels. In some cases, the
create clause was used to create temporary variables needed
in a single kernel, such as the transposition case mentioned
earlier in this section.

Recalling our OpenACC implementation of RTM in Fig-

82

ure 4, source injection, receiver injection, and applying imag-
ing condition were optionally computed on GPU to reduce
data transfers and to improve performance. Source and re-
ceiver injection code was called as a function inside a one
dimensional loop. In the case of adding a receiver term, the
loop iterates over the number of receivers provided in the
model. We decided to port both injections to avoid updat-
ing the host with the wave-field at each time step. How-
ever, as seen in the Nvidia profile for the 2D isotropic model
in Figure 14, GPU utilization of source injection is 0.04%,
due to lack of computations. For receiver injection, we per-
formed inlining to let the kernels directive encapsulate the
loop iterating over receivers. GPU utilization was much bet-
ter 26%. Regarding the imaging condition, two kernels (one
is to compute the wave-field at odd time steps and the other
is at even time steps) were ported as depicted in Figure 15.
Again, GPU utilization in both cases was very low 1.9%.
However, the performance was slightly better than comput-
ing the seismic image on CPU because there was no need to
update the host with the source wave-field anymore. GPU
utilization of the main kernel as depicted in Figure 14 and
Figure 15 was almost the same, because this kernel is not af-
fected by applying the imaging condition. The acoustic and
elastic models exhibited a similar behavior to the isotropic
model regarding the imaging condition.

Figure 14: Nvidia Profile while image is on CPU (Isotropic
2D)

Figure 15: Nvidia Profile while image is on GPU (Isotropic
2D)

6. EVALUATION RESULTS

In our experiments, we have used two Nvidia GPU cards
representing different accelerator generations to compare their
performance against our seismic image applications. The
first GPU card is Fermi M2090, which is built on top of an
IBM cluster. The second card is Kepler K40, which is built
on top of an XC30 CRAY supercomputer. Table 2 shows the
specifications of each GPU card and the attached CPU clus-
ter. All computations were carried out in single precision for
both the CPU reference implementation and the GPU im-
plementation. The reference CPU total time is the time to
process the entire domain while using sub-domain decom-
position. It is given by running a full socket MPI imple-
mentation using the PGI compiler, and the GPU reference
time is given by using one GPU without using sub-domain
decomposition. On CRAY, the full socket MPI implemen-
tation consists of 10 cores and was executed using PGI 14.6
compiler with CUDA 5.5, which is the default for this com-
piler version. On IBM, the full socket MPI implementation
consists of 8 cores and was executed using PGI 14.3 com-
piler with CUDA 5.0, which is the default for this compiler
version. CUDA 5.0/5.5 employ LLVM compiler front-end
and can link multiple object files into one program. With
Kepler cards, GPU can generate work for itself, in contrast
with the previous CUDA versions where GPU work can only
be generated by CPU.

The reference CPU kernel time for RTM compromises
both the forward and backward propagation kernels. In
seismic modeling, the reference CPU kernel time consists
of the forward propagation kernel. Our performance metric
was the ratio of the execution time of the CPU-based im-
plementation to that of the GPU-based one for a one shot
profile. The GPU-based implementation represents the best
optimized version of each seismic case. As mentioned in
the previous section, different optimizations were applied to
each seismic case before obtaining the timing and speedup
measurements. The best optimization technique also differs
from one compiler to the other. Nvidia profiler was the main
tool used to analyze our performance measurements.

Table 2: GPU cards specs and attached CPU platforms

Card GFLOPS (SP) Bandwidth Memory #cores CPU

M2090 1331.2 180 GB/sec 6GB 512 Two Intel Quad-core Xeon E5640
@2.8 GHz, 12MB L3 Caches, total
8 cores/24GB memory per node

K40 4291 288 GB/sec 12GB 2880 Two Intel 10 core Xeon Ivy Bridge
E5-2680 v2 @2.8 GHz, total 20
cores/64GB memory per node.

6.1 Modeling
Table 3 illustrates the timing and speedup measurements

obtained for seismic modeling for solving the isotropic, acous-
tic, and elastic wave equations in both two-dimensional and
three-dimensional domains. In general, the execution time
obtained while using PGI was lower than that obtained with
CRAY. The reference CPU execution time was obtained us-
ing the PGI compiler. Our GPU CRAY implementation can
still be optimized though. We found that the CPU/GPU
time ratio decreases while increasing the number of sub-
domains because more CPU parallelism is achieved while
communication time becomes more predominant. The elas-

83

Table 3: Seismic modeling timing and speedup measurements

CRAY cluster IBM cluster
Total GPU time(s) Total speedup Kernels time(s) Kernels speedup Total GPU time(s) Total speedup Kernels time(s) Kernels speedup

Model CRAY PGI CRAY vs 10 PGI vs 10 CRAY PGI CRAY vs 10 PGI vs 10 PGI PGI vs 8 PGI PGI vs 8
ISOSTROPIC 2D 2.3 1.4 0.6 1 1.6 1 0.7 1.1 2 2 1.5 2.3
ACOUSITC 2D 4.1 3.2 0.7 0.9 3.4 2.7 0.9 1.1 5 1.3 4.4 1.2
ELASTIC 2D 7 4.5 0.9 1.2 6.6 4.3 0.7 1.1 7 1.9 4.8 2.4
ISOSTROPIC 3D 460 365 1 1.3 365 285 0.9 1.2 448 1.2 385 1.0
ACOUSITC 3D 310 235 1.5 2 220 155 1.2 1.7 260 2.3 200 2.3
ELASTIC 3D 4000 3200 2.1 2.7 3100 2700 2.4 2.7 x x x x

tic variables could not fit in GPU memory when Fermi card
was used. The best speedup (2.7x) was achieved with the
elastic model since it is the most computationally intensive
case. On the contrary, the isotropic model gave the worst
speedup because it is a memory-bound application, which
exhibits inefficient GPU utilization. Due to avoiding CPU-
GPU communication overheads, Kernel speedup was better
than total speedup in all implementations.

The total GPU time gained on CRAY cluster with Kepler
card was slightly better than what was gained on IBM with
Fermi card. The speedup range of (1.1x-1.5x) in all cases is
still far from the optimal capacity that should be achieved
by using Kepler over Fermi. The CUDA version used on
CRAY was 5.5, while CUDA 5.0 was used on IBM. This
may have a big impact on GPU code generation, and hence
may significantly affect performance.

The full socket MPI implementations of both isotropic
and acoustic models in the three-dimensional domain pro-
duce similar execution times. Yet, porting these two models
to GPU produce different execution times. The total GPU
time of the acoustic model was almost 2x faster than the
isotropic model. This emphasizes the big variation in the
architectures of CPU and GPU and illustrates the differ-
ences in handling memory/compute bound applications by
the GPU architecture and OpenACC programming model.

6.2 Migration
The Cray XC30 supercomputer integrates a novel inter-

communications technology that provides improvements on
all of the network performance metrics: bandwidth, latency,
message rate, etc. This makes our CPU implementation run
much faster on CRAY, compared with the old interconnec-
tion technology provided by the IBM cluster. This justifies
the higher speedup rates on IBM, compared with CRAY. Ta-
ble 4 shows the timing and speedup measurements obtained
for RTM for solving the isotropic, acoustic, and elastic wave
equations in both two-dimensional and three-dimensional
domains.. A speedup of 10.8x was obtained on IBM for the
acoustic model in 3D domain, in contrast with the speedup
obtained on CRAY for the same model, which was 1.3x.
The RTM implementation involves more CPU/GPU com-
munications than the modeling. This significantly reduces
the obtained CPU/GPU time ratio.

Seismic models with variable density domain (acoustic
and elastic) demonstrate low communication times compared
with the computation time, and hence the overall time is
slightly impacted. On the contrary, the isotropic case re-
quires many host-GPU updates within the (enter data/exit
data) region to keep the variables consistent on both host
and GPU. The three-dimensional cases showed better speedup
measurements compared with the two-dimensional cases due
to better GPU utilization. The best GPU utilization achieved

in the 2D cases was around 70% for the most intensive com-
pute kernel, in contrast with 90% in the 3D cases.

One of the major issues encountered in the RTM CPU
implementation was the receiver injection. Adding receiver
term has to be done on GPU to avoid updating the host with
the wave-field at each time step. However, iterating over the
available receivers will launch the receiver term on GPU for
(#receivers×#timesteps) times, as explained in Algorithm
1. To avoid that, we inlined the function, in which the re-
ceiver term was added, to have one kernel encapsulating all
receivers. Inlining was successfully processed by the CRAY
compiler, but could not be processed by the PGI compiler.
This justifies the improvement of CRAY measurements over
PGI in RTM. Inlining was crucial to avoid kernels launches
overheads, but could not solve the loop carried dependen-
cies between the different receivers. This significantly hurts
the performance, especially in the 2D seismic cases. Having
said that, a future solution that might be interesting is to
integrate the receiver injection into the backward time step
kernel or to separate the source injection from the receiver
injection and compute the receiver injection on CPU instead
of GPU.

6.3 Constraints, Limitations, and Suggestions
In the following, the major constraints, associated with

using the OpenACC directive approach in seismic imaging,
are summarized. Some suggestions are also presented.

• How to explicitly use shared memory for specific vari-
ables is still a bottleneck. The tile and cache features
are not working properly in both CRAY and PGI.

• The routine directive does not support multiple levels
of subroutine parallelism.

• Loop mapping, which describes how loop nests are con-
verted into GPU threads, should be more efficient.

• Performance portability is an issue (parallel and Ker-
nels directives demonstrate different performance from
one compiler to another).

• Applying code transformations is critical to optimize
GPU code generation. However, this prevents main-
taining a single version of code that can still run ef-
ficiently on CPU. Providing new OpenACC directives
to apply code transformations is a necessity.

• Overlapping kernels execution on GPU can dramati-
cally enhance performance. OpenACC current asyn-
chronous operations efficiently overlap computations
with data transfers. However, this is not the case when
multiple kernels can benefit from concurrent execution
on GPU.

84

Table 4: RTM timing and speedup measurements

CRAY cluster IBM cluster
Total GPU time(s) Total speedup Kernels time(s) Kernels speedup Total GPU time(s) Total speedup Kernels time(s) Kernels speedup

Model CRAY PGI CRAY vs 10 PGI vs 10 CRAY PGI CRAY vs 10 PGI vs 10 PGI PGI vs 8 PGI PGI vs 8
ISOSTROPIC 2D 8.5 14 0.4 0.2 2 2.3 1.2 1 11.5 0.5 4 1.3
ACOUSITC 2D 12.2 16 1.2 0.9 4.5 5.6 2.4 2 19 5.3 9 7.9
ELASTIC 2D 20 23 0.8 0.7 7 8 1.7 1.5 30 1.1 12 2.3
ISOSTROPIC 3D 1600 1500 0.6 0.6 600 550 1.1 1.2 1200 0.9 800 1.1
ACOUSITC 3D 870 765 1.1 1.3 320 310 1.3 1.3 530 10.2 400 10.8
ELASTIC 3D x 15000 x 1.3 x 6000 x 2.9 x x x x

• Minimizing memory traffic has a great impact on per-
formance. Different techniques, similar to CPU, can
be added to the OpenACC specification to reduce ac-
cess latency such as thread affinization and placement,
and cache blocking.

7. CONCLUSION AND FUTURE WORK
In this work, we presented and discussed our experiences

in evaluating and analyzing the impact of using GPU tech-
nology on seismic imaging via the OpenACC directive-based
standard model. We developed OpenACC versions for 12
different seismic cases using seismic modeling and Reverse
Time Migration (RTM) algorithms. We employed OpenACC
to exploit the powerful capacity of two Nvidia GPU cards:
1) M2090 and 2) K40, residing in IBM and CRAY clusters
respectively. Our OpenACC implementations for the differ-
ent models showed different speedup behaviors depending
on the implied intensity of computations, the compiler used,
and the applied GPU/CPU technology. The best speedup
results were 3x on CRAY and 10.2x on IBM. The innovative
network technology provided in CRAY XC30 enhances com-
munications across distributed memory systems and among
multiple GPUs. However, the restriction of using multi-
ple asynchronous streams is still a bottleneck that prevents
efficient utilization on a single GPU. Code restructuring
seemed crucial to enhance GPU utilization. Understand-
ing GPU register pressure management and the architecture
led to better exploitation of OpenACC features. The lack
of enough computations justified the speedup measurements
and GPU utilization obtained in two-dimensional domains.
Our experiments emphasized that OpenACC solutions can
still benefit from a margin of improvement in order to be
effectively used from a seismic imaging industrial point of
view.

Path forward, we believe that exploiting multiple GPUs
will provide powerful insights. Consequently, overlapping
MPI communications with GPU computations could im-
prove performance, especially when larger grid dimensions
are used. Last but not the least, our experiments exposed
some inefficiencies in the implementations of RTM and seis-
mic modeling applications that affect GPU utilization through
OpenACC. Some solutions were applied in this work to over-
come these inefficiencies and some others will be used to
enhance the usage of OpenACC in seismic imaging.

8. ACKNOWLEDGMENTS
The authors would like to thank the PGI group support

team and the CRAY compiler support team for their col-
laboration in this work. We would also like to thank Sunita
Chandrasekaran from the HPCTools group at University of
Houston for her feedback on the paper. Many thanks go to

TOTAL for providing the computing resources.

9. REFERENCES
[1] R. Abdelkhalek, H. Calandra, O. Coulaud, J. Roman,

and G. Latu. Fast Seismic Modeling and Reverse Time
Migration on A GPU Cluster. In High Performance
Computing & Simulation, 2009. HPCS’09.
International Conference on, pages 36–43. IEEE, 2009.

[2] O. ARB. The OpenMP API Specification for Parallel
Programming. http://openmp.org/wp/, 2014.

[3] E. Baysal, D. D. Kosloff, and J. W. Sherwood. Reverse
Time Migration. Geophysics, 48(11):1514–1524, 1983.

[4] J.-P. Berenger. A Perfectly Matched Layer for the
Absorption of Electromagnetic Waves. Journal of
computational physics, 114(2):185–200, 1994.

[5] Carcione, Jose M and Herman, Gérard C and Ten
Kroode, APE. Seismic modeling. Geophysics,
67(4):1304–1325, 2002.

[6] W.-F. Chang and G. A. McMechan. Reverse-time
Migration of Offset Vertical Seismic Profiling Data
Using the Excitation-time Imaging Condition.
Geophysics, 51(1):67–84, 1986.

[7] N. CUDA. Compute Unified Device Architecture
Programming Guide. 2007.

[8] C. entreprise. HMPP Directives.
https://www.olcf.ornl.gov/wp-content/uploads/

2012/02/HMPPWorkbench-3.0_HMPP_Directives_

ReferenceManual.pdf, Nov. 2010.

[9] S. Ghosh, T. Liao, H. Calandra, and B. M. Chapman.
Experiences with OpenMP, PGI, HMPP and
OpenACC Directives on ISO/TTI Kernels. In High
Performance Computing, Networking, Storage and
Analysis (SCC), 2012 SC Companion:, pages 691–700.
IEEE, 2012.

[10] T. P. Group. PGI Accelerator Programming Model for
Fortran & C. http://www.pgroup.com/lit/
whitepapers/pgi_accel_prog_model_1.3.pdf, 2010.

[11] A. Munshi, B. Gaster, T. G. Mattson, and
D. Ginsburg. OpenCL Programming Guide. Pearson
Education, 2011.

[12] OpenACC-Standard.org. The OpenACC Application
Programming Interface. http://www.openacc.org/
sites/default/files/OpenACC.2.0a_1.pdf, 2013.

[13] S. Siddiqui and S. Feki. Predictive Performance
Tuning of OpenACC Accelerated Applications. In
Supercomputing, page 511. Springer, 2014.

[14] M. Wolfe. Implementing the PGI Accelerator Model.
In Proceedings of the 3rd Workshop on
General-Purpose Computation on Graphics Processing
Units, pages 43–50. ACM, 2010.

85

