
Automatic Formal Verification of MPI-Based Parallel Programs

Stephen F. Siegel
Verified Software Laboratory, Department of Computer

and Information Sciences, University of Delaware
siegel@cis.udel.edu

Timothy K. Zirkel
Verified Software Laboratory, Department of Computer

and Information Sciences, University of Delaware
zirkeltk@udel.edu

Abstract
The Toolkit for Accurate Scientific Software (TASS) is a suite of
tools for the formal verification of MPI-based parallel programs
used in computational science. TASS can verify various safety
properties as well as compare two programs for functional equiva-
lence. The TASS front end takes an integer n ≥ 1 and a C/MPI
program, and constructs an abstract model of the program with
n processes. Procedures, structs, (multi-dimensional) arrays, heap-
allocated data, pointers, and pointer arithmetic are all representable
in a TASS model. The model is then explored using symbolic ex-
ecution and explicit state space enumeration. A number of tech-
niques are used to reduce the time and memory consumed. A va-
riety of realistic MPI programs have been verified with TASS, in-
cluding Jacobi iteration and manager-worker type programs, and
some subtle defects have been discovered. TASS is written in Java
and is available from http://vsl.cis.udel.edu/tass under
the Gnu Public License.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—Formal methods

General Terms Verification

Keywords Symbolic execution, MPI, message-passing, debug-
ging, verification

1. Motivation. Developing correct, portable MPI-based parallel
programs is difficult for several reasons. First, traditional testing
methods can only sample a small portion of a program’s parameter
and input space. Second, there are many sources of nondetermin-
ism arising from MPI, e.g., how statements from different processes
are interleaved in time, the buffering policy of the MPI implemen-
tation, and the use of “wildcard” receives. Often, a program may
appear to run correctly on one machine, but when ported to a new
platform which resolves the nondeterminism differently, a defect is
revealed. These defects may manifest themselves as deadlocks or
as results which are incorrect or differ unexpectedly from execution
to execution. Such defects are often difficult to identify and isolate.

2. Symbolic Execution. TASS uses symbolic execution [3, 4] to
deal with the issue of the input space. The user may insert pragmas
into the C source to identify input variables, e.g.,

#pragma TASS input { N > 1 && N <= 10 }
int N;

Copyright is held by the author/owner(s).
PPoPP’11, February 12–16, 2011, San Antonio, Texas, USA.
ACM 978-1-4503-0119-0/11/02.

(This pragma is accompanied by a predicate which restricts the
input space.) TASS initially assigns a unique symbolic constant
(X1, X2, . . .) to each such variable. As TASS “executes” the pro-
gram, operations on these values result in more complex symbolic
expressions.

A branch is treated as a nondeterministic choice, and a boolean-
valued path condition variable pc is used to record the choices
made. For example, if the true branch is chosen at a branch on
condition a>0, when the value of a is the symbolic expression
X1 + 1 and the value of pc is X2 < 0, then the value of pc
becomes X2 < 0 ∧ X1 + 1 > 0. Automated theorem proving
techniques are used to determine if pc becomes unsatisfiable, which
indicates the current path is infeasible and need not be explored.
TASS dispatches most of the proofs itself, but when it cannot, it
invokes CVC3 [1]. If CVC3 cannot produce a definitive answer,
TASS logs a possible violation. TASS analysis is safe: if it says a
property holds, the property holds (within the specified bounds).
Spurious error reports are possible, but rare, in our experience.

The ability to reason about the infinite input space is one of the
main advantages over traditional testing and dynamic verifiers such
as ISP [10], which analyze executions for one input vector at a time.

3. State enumeration. A symbolic state assigns a symbolic ex-
pression to each variable in the program, including pc. It represents
a set of concrete states: any assignment of concrete values to sym-
bolic constants that satisfies pc results in a concrete state in the set.

TASS uses explicit state enumeration techniques to deal with
the nondeterminism arising from MPI (as well as from symbolic
execution branches described above). An explicit representation of
the state is used, and the set of all reachable states is explored with
a depth-first search. Typically, the user places bounds on certain
variables to ensure the state space is finite (or reasonably small).

A number of techniques are used to reduce the memory foot-
print. The state is represented hierarchically: at the highest level
there are components for the input and output variables, the state
of each process, and the set of buffered messages. A process state
consists of the state of each global variable and a call stack. The call
stack is a sequence of frames. Each frame has the value of all local
variables and the current location within a function body. The life-
cycle of a state component has three phases: mutable, immutable,
and canonic (flyweighted). These design choices facilitate maximal
sharing between states on the stack or seen set, while still allowing
fast modifications when a component is not shared.

4. Properties checked. TASS checks a number of safety proper-
ties as it explores the state space: absence of (absolute or potential)
deadlocks, buffer overflows (from pointer arithmetic, array index-
ing, etc.), reading uninitialized variables, division by zero, memory
leaks, and assertion violations; the type and size of a message re-
ceived with MPI_Recv are compatible with the receive buffer/type;
proper use of malloc and free, MPI_Init, MPI_Finalize, and
so on. In all cases, violations are logged and the search continues

309



program bounds nprocs time (s) states
adder n ≤ 200 30 443 411044
diffusion nx ≤ 100 ∧ nt ≤ 2 50 4653 5788608
matmat l ≤ 2 ∧m ≤ 2 ∧ n ≤ 10 7 13157 151752013
matmat l ≤ 2 ∧m ≤ 2 ∧ n ≤ 10 11 242 10543295
integrate intervals = 12 ∧ tol = 0.01 6 3788 3511123
laplace nx ≤ 4 ∧ ny ≤ 12 ∧ nt ≤ 30 5 30911 3384271
laplace nx ≤ 4 ∧ ny ≤ 30 ∧ nt ≤ 3 20 1787 875577

Figure 1. TASS performance verifying functional equivalence

after adjustments to the path condition, in order to report as many
errors as possible from a single search. If no errors are reported then
it is guaranteed that all the safety properties hold on all executions
with the given processor count and within the specified bounds.

5. Simplification. Two symbolic states are equivalent if they rep-
resent the same set of concrete states. The ability to recognize
equivalence can greatly reduce the search space. This can often be
accomplished by transforming symbolic expressions into a canoni-
cal form. For example, TASS transforms every real-valued expres-
sion into a quotient p/q, where p and q are polynomials in primitive
expressions. (A primitive expression is any non-concrete expres-
sion that is not the result of +, -, *, or /; symbolic constants and
array-read and array-write expressions are examples.)

TASS performs other equivalence-preserving state transforma-
tions. For example, each equation occurring as a clause in pc may
be considered a linear expression

∑
i aixi, where ai is a concrete

real and xi is a monomial in the primitives. Gaussian elimination is
performed on the matrix of coefficients resulting from these equa-
tions to determine if any monomials can be reduced to concrete
values. For example if pc is X1 +X2 = 3 ∧X1 −X2 = 1, then
2 will be substituted for X1 wherever X1 occurs in the state, 1 will
be substituted for X2, and pc will become true.

6. Reduction. Exploring every possible interleaving is not neces-
sary to verify the properties in our list. For example, for programs
which restrict their use of MPI to a certain safe subset (which ex-
cludes MPI_ANY_SOURCE), it can be shown that it is safe to con-
sider a single interleaving [6, 7]. TASS uses the “urgent” partial or-
der reduction algorithm, an optimization which is safe even in the
presence of MPI_ANY_SOURCE [5]. For programs in the safe set, it
still explores only a single interleaving; otherwise, whenever some
process is at an any-source receive, some subset of the possible in-
terleavings must be explored. This can reduce the number of states
explored dramatically.

7. Comparative symbolic execution. Pragmas can be inserted
into the source code to identify output as well as input variables.
Together, these annotations specify an input set X and output set
Y , and the program may be considered a function f : X → Y .
Two programs with the same X and Y may be compared to see if
they define the same function. This is extremely useful in computa-
tional science, where developers often start with a simple sequen-
tial version of an algorithm, and transform it by hand by adding
layers of optimizations and parallelism before arriving at the pro-
duction code. TASS gives the developers the ability to check that
the original and final codes are functionally equivalent. The tech-
nique used is comparative symbolic execution [9]. TASS constructs
a model in which the two programs read the same input and run
concurrently, and checks the assertion that the outputs agree at ter-
mination. (KLEE [2] is another symbolic execution tool which has
been used to verify functional equivalence in some cases; however
it does not apply to parallel programs.)

8. Collective assertions. Assertions are an important tool for de-
veloping reliable sequential programs. However, assertions within

a single process are unable to capture important properties of the in-
teractions between different processes. To remedy this, TASS gives
users the ability to use collective assertions [8]. A single collective
assertion comprises a set of locations in each process and an ex-
pression on the global state. The semantics are defined as follows:
whenever control in a process reaches one of the locations, a “snap-
shot” of the local state of that process is sent to a coordinator; once
a snapshot has been received from each process, the expression is
evaluated on the global state formed by uniting the snapshots.

9. Collective loop invariants. The infinite-state problem arising
from loops can be surmounted in some cases using an invariant,
which the user can associate to a loop using another pragma. The
invariant is a form of collective assertion which is not only checked
by TASS, but is used to simplify the state of a process after each
loop iteration. This results in a possible loss of precision (i.e.,
possible spurious error reports) but is still safe. This technique
applies to loops that cut across multiple processes, and even to
comparative symbolic execution.

10. Experiments. We have applied TASS to small but non-trivial
MPI programs. Examples include (1) a program to sum the ele-
ments of a block-distributed array, (2) a block-distributed solver
for the 1d-diffusion equation, (3) a manager-worker matrix multi-
plication routine, (4) a 1d adaptive mesh numerical integrator, and
(5) a column-distributed 2d-Laplace solver using Jacobi iteration.
Results for verifying the equivalence of various configurations of
these with the corresponding sequential/specification program are
shown in Fig. 1. More extensive case studies, and further extensions
and optimizations, are in progress.

Acknowledgments
Supported by NSF grants CCF-0953210 and CCF-0733035 and the
University of Delaware Research Foundation.

References
[1] C. Barrett and C. Tinelli. CVC3. In W. Damm and H. Hermanns,

editors, CAV 2007, volume 4590 of LNCS, pages 298–302. Springer.
[2] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and au-

tomatic generation of high-coverage tests for complex systems pro-
grams. Proc. 8th USENIX Symposium on Operating Systems Design
and Implementation, 2008.

[3] S. Khurshid, C. S. Pǎsǎreanu, and W. Visser. Generalized symbolic ex-
ecution for model checking and testing. In H. Garavel and J. Hatcliff,
editors, TACAS 2003, volume 2619 of LNCS, pages 553–568.

[4] J. C. King. Symbolic execution and program testing. Communications
of the ACM, 19(7):385–394, 1976.

[5] S. F. Siegel. Efficient verification of halting properties for MPI pro-
grams with wildcard receives. In R. Cousot, editor, VMCAI 2005,
volume 3385 of LNCS, pages 413–429.

[6] S. F. Siegel and G. S. Avrunin. Modeling wildcard-free MPI programs
for verification. In PPoPP ’05, pages 95–106. ACM, 2005.

[7] S. F. Siegel and G. S. Avrunin. Verification of halting properties
for MPI programs using nonblocking operations. In F. Cappello,
T. Hérault, and J. Dongarra, editors, Euro PVM/MPI 2007, volume
4757 of LNCS, pages 326–334. Springer, 2007.

[8] S. F. Siegel and T. K. Zirkel. Collective assertions. In R. Jhala and
D. Schmidt, editors, VMCAI 2011, volume 6538 of LNCS, pages 387–
402.

[9] S. F. Siegel, A. Mironova, G. S. Avrunin, and L. A. Clarke. Combining
symbolic execution with model checking to verify parallel numerical
programs. ACM TOSEM, 17(2):Article 10, 1–34, 2008.

[10] A. Vo, S. Vakkalanka, M. DeLisi, G. Gopalakrishnan, R. M. Kirby, and
R. Thakur. Formal verification of practical MPI programs. In PPoPP
2009, pages 261–270. ACM.

310


