
Modeling Optimistic Concurrency using
Quantitative Dependence Analysis

Christoph von Praun Rajesh Bordawekar Călin Caşcaval
IBM T.J. Watson Research Center

{praun, bordaw, cascaval}@us.ibm.com

Abstract
This work presents a quantitative approach to analyze paralleliza-
tion opportunities in programs with irregular memory access where
potential data dependences mask available parallelism. The model
captures data and causal dependencies among critical sections as
algorithmic properties and quantifies them as a density computed
over the number of executed instructions. The model abstracts from
runtime aspects such as scheduling, the number of threads, and con-
currency control used in a particular parallelization.

We illustrate the model on several applications requiring or-
dered and unordered execution of critical sections. We describe a
run-time tool that computes the dependence densities from a de-
terministic single-threaded program execution. This density metric
provides insights into the potential for optimistic parallelization,
opportunities for algorithmic scheduling, and performance defects
due to synchronization bottlenecks.

Based on the results of our analysis, we classify applications
into three categories with low, medium, and high dependence den-
sities. Applications with low dependence density are naturally good
candidates for optimistic concurrency, applications with medium
density may require a scheduler that is aware of the algorithmic
dependencies for optimistic concurrency to be effective, and ap-
plications with high dependence density may not be suitable for
parallelization.

Categories and Subject Descriptors D.1.3 [Software]: Concur-
rent Programming; D.2.3 [Software]: Coding Tools and Tech-
niques; D.2.8 [Software]: Metrics

General Terms Measurement, Performance

Keywords available parallelism, dependence analysis, depen-
dence density, implicit parallelism, optimistic concurrency, pro-
gram parallelization, transactional memory

1. Introduction
Until recently parallel programming has been restricted to a small
set of skilled practitioners who have the knowledge and expertise to
extract the maximum parallelism from applications. With the cur-
rent trends in computer system design, there is a need to make par-
allel programming more accessible. Even assuming that a parallel

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPoPP’08 February 20–23, 2008, Salt Lake City, Utah, USA.
Copyright c© 2008 ACM 978-1-59593-960-9/08/0002. . . $5.00

algorithm is given for a particular application, coding that algo-
rithm is not a trivial matter. The programmer must take care of data
sharing, communication, and synchronization between tasks. These
tasks are typically error prone and hard to debug.

Taking all these factors into consideration, we believe that sim-
plifying parallel programming means not only providing new pro-
gramming paradigms but also tools that allow programmers to un-
derstand concurrent behavior. These tools must help users focus on
the important sections of an application, and provide guidance with
respect to potential opportunities for optimization.

In this paper, we focus on abstractions that enable the construc-
tion of such tools in the context of optimistic concurrency such as
provided by Transactional Memory (TM). TM is considered one
of the paradigms that will simplify parallel programming. Previ-
ous work [6, 8, 20] argues, mainly qualitatively, about TM’s ben-
efits compared to other forms of synchronization, such as locks.
These benefits are in terms of ease of programming, such as ab-
sence of deadlocks, composability, local reasoning (avoiding lock
management), etc., and in terms of performance, such as optimistic
concurrency. Most of the previous work on TM evaluations has fo-
cused on different designs and presented results with respect to the
specific features proposed. In addition, researchers have studied the
parallelism available in applications on ideal parallel systems, such
as [25]. As far as we know, this is the first study that abstracts a
TM system and provides a quantitative study of application con-
currency and synchronization characteristics.

We first define a program execution model that allows us to cap-
tures different forms of parallel execution: transactional optimistic
concurrency [11] and optimistic parallelization, such as thread level
speculation (TLS) [12]. We then derive two data dependence based
metrics to quantify the potential contention probability of a task
(block of code that can execute in parallel). Given these metrics,
we discuss the amount of parallelism available to an application.
In a nutshell, the parallel execution of the application can bene-
fit if a parallel scheduler that has knowledge of data dependen-
cies between tasks can decide on several execution modes: se-
quential, optimistically parallel, or truly parallel. In addition, op-
timistic parallelism can be supported by a TLS or TM system, or
an inspector-executor paradigm [27], where dependencies are dy-
namically checked before the execution of the parallel section.

We apply this model to several applications from different do-
mains: scientific (UMT2K and SSCA#2) [30, 1], bio-informatics
(genome) [20], data mining (kmeans) [23], transactional process-
ing and databases (vacation and MySQL keycache) [20, 22], and
computational geometry (Delaunay) [13]. Based on their charac-
teristics with respect to the metrics in our model, we classify these
applications into three categories, namely those with low, medium,
and high dependence density. We argue that the performance of
applications with low dependence density can be enhanced by op-
timistic concurrency. Applications that have a medium dependence

185

density can benefit from optimistic concurrency with algorithmic
modifications and the support of an informed scheduler. Finally,
for application with a high dependence density, it is very difficult
or impossible to benefit from current techniques of optimistic con-
currency.

To summarize, this paper makes the following contributions:

• Defines an abstract model for parallelism based on the density
of dependencies of tasks in an application, independent of the
number and interleaving of execution threads.

• Presents a detailed, quantitative analysis of several applications
that have been used to characterize different TM systems; we
discuss the properties of these applications and provide insights
in their behavior with respect to optimistic synchronization and
parallelism.

• Describes a tool that incorporates our model and produces the
analysis on-the-fly based on a single-threaded program execu-
tion.

The rest of the paper is organized as follow: Section 2 introduces
our abstract model of parallelism, Section 3 presents our tools
and experimental setup, and Section 4 discusses the application
characterization. We discuss related work in Section 5 and conclude
in Section 6.

2. Abstract model
We first define an abstract model of program execution to cap-
ture data dependencies. The model identifies in a program distinct
phases that define the set of parallel tasks that can execute con-
currently at any point in time. The model can represent parallel
programs with both explicit and implicit parallelism. In explicit
parallel programs, accesses to shared data are protected by criti-
cal sections. Implicit parallel programs use optimistic parallelism
and rely on the system to detect conflicting accesses.

2.1 Execution model
A program execution consist of one or several sequences of exe-
cuted instructions (threads) (Figure 1a). In our abstract model, we
consider inter-dependencies between sets of tasks (defined below)
from any such sequence of instructions and rely on a scheduler to
pick any tasks such that it maximizes concurrency. The thread of
execution from where the task originates is irrelevant and will be
ignored in the subsequent discussion.

Tasks A task is an atomic unit of execution, i.e., a sequence of
instructions that execute serially and are divided into further con-
current units. Also, a task is the smallest unit of independent work
that may be executed concurrently with other tasks (Figure 1b).

For the dependence analysis model we consider only in the ex-
ecution of critical sections and optimistic parallel regions. Nested
critical sections are assumed flattened. Critical sections and opti-
mistic parallel regions, are defined statically as program constructs.
Dynamic instances of a critical section in a program execution are
referred to as unordered tasks, and a dynamic instance of a spec-
ulatively parallel region is an ordered task. A task may be embed-
ded into a computational context that occurs outside a critical sec-
tion; the model ignores such auxiliary computation since it does not
contribute to inter-task dependencies or constrain the scheduling of
tasks.

Phases A program execution can be partitioned into a sequence
of phases (Figure 1a). Examples of program constructs that define
the execution in phases are loops with speculative parallelization or
fork-join regions in an explicit parallel program. The concept of a
phase enables the dependence analysis to consider only a specific
part of the execution and to exclude known parallel or inherently

program execution

execution context

thread

program

critical
sections

section
critical

(b)

tasks

2 3 4

1
2

3

4

4321

1

low dependence
density

medium dependence
density

high dependence
density

threads

1

1 2 3 4

2

1phase

scheduling

(c)

section
critical

inter−task

task

dependence

(a)

Figure 1. Abstract execution model.

serial parts of a program. The dependence analysis is applied inde-
pendently to each program phase. In this abstract model, a phase
consists of a set of tasks; we assume (by construction) that tasks in
a phase are either all ordered or all unordered.

Inter-task dependencies The main limiting factor of concurrent
task execution are memory-level dependencies. A memory-level
dependence exists between tasks t1 and t2 if the tasks access a
shared variable and one of the tasks writes (Figure 1b). A memory-
level dependence creates an inter-task dependence. For example, a
memory-level dependence may manifest itself as a conflict in trans-
actional memory when dependent tasks are executed as concurrent
transactions.

Applications with ordered tasks specify for each memory-level
dependence the order in which the accesses should occur. This
is typically done by imposing the ordering between tasks to the
memory operations. The order can be a total order, as is commonly
assumed with optimistic loop parallelization, or a partial order, as
described in Section 4 in the case of umt2k. We refer to this high-
level order specified by the programmer as algorithmic order. The
algorithmic order induces transitive dependency chains across tasks
which we call causal dependence.

Scheduler The role of a scheduler is to achieve concurrency by
mapping tasks onto parallel threads under consideration of algorith-
mic dependencies between tasks (Figure 1c). A scheduler may, but
does not necessarily have to, take into account information about
memory-level dependencies when making scheduling decisions. If
a scheduler chooses to ignore memory-level dependencies then we
assume that appropriate concurrency control mechanisms are in
place at run time to guard against concurrent conflicting memory
access, i.e., violations of memory-level dependencies. We shall dis-
cuss how the choice of a schedule affects the available parallelism
in the application in the next sections.

2.2 Dependence density
In this section, we introduce the notion of dependence density
to characterize the inter-task dependencies. Intuitively, the depen-
dence density expresses the probability of existing memory-level
dependencies among any two randomly chosen tasks from the same
program phase. We use this metric to quantify the available paral-
lelism in a phase with unordered tasks.

186

In the following, we devise different dependence density met-
rics for unordered tasks (data dependence density) and ordered
tasks (causal dependence density) because the nature of depen-
dencies changes when tasks are ordered. These metrics express the
potential concurrency and the ’reward’ that a scheduler may reap
when considering memory-level dependencies.

To formally define dependence densities, we first define the read
and write sets of a task t as follows:

read set(t) := {l | t reads from location l and has not
previously written to location l}

write set(t) := {l | t writes to location l}

A data dependence between tasks t1 and t2 is defined as:

flow dep(t1, t2) := write set(t1) ∩ read set(t2)

has data dep(t1, t2) := t1 6= t2 ∧
(flow dep(t1, t2) 6= ∅ ∨
flow dep(t2, t1) 6= ∅)

This definition ignores write-write dependencies, because such
dependencies do not necessarily limit concurrency, but rather just
introduce potential data races.

The data dependence density, data dep dens(t), for a task t
expresses the fraction of tasks (measured using their execution
length) with which t has a data dependence. Let Tp be the set of
unordered tasks in phase p, and T the set of tasks considered in
our analysis. Let len(t) be the size of a task t, e.g., the number of
cycles or instructions.

data dep dens(t) :=

∑
s∈Tp∧has data dep(t,s)

len(s)

∑
t∈Tp−{t}

len(t)

data dep dens(T) :=

∑
t∈T

data dep dens(t)

|T |

Note that the dependence density for an individual task
data dep dens(t) is always computed over the set Tp, since the
model regards any pair of tasks as potentially concurrent. The data
dependence density for a set of tasks T is the average of the de-
pendence densities of the individual tasks in T . T can be chosen
as either all tasks in a phase or a subset, such as all the dynamic
instances of a particular task. In the evaluation (Section 4), e.g.,
the dependence densities are computed for the sets of dynamic task
instances corresponding to critical sections in the program code.

The values of the dependence density fall into the interval [0, 1]
– lower numbers indicate a lower probability of a memory-level
dependence violation when tasks execute concurrently, i.e., higher
degrees of potential parallelism.

2.3 Causal dependence density
Similar to the data dependence density, we introduce the causal
dependence density to characterize inter-task dependencies for or-
dered tasks. Causal dependence imposes the following additional
constraint: an execution schedule of the tasks must adhere to data
dependence chains that may transitively spawn across a sequence
of tasks. We call the inter-task dependencies resulting from data
dependence and task ordering causal dependence.

Let read and write sets of a task t be defined as in Section 2.2.
We specify the algorithmic order as sets of predecessor and succes-
sors tasks of a task t as follows:

pred(t) := {s | execution of task s must precede t}
succ(t) := {s | execution of task s must follow t}

The pred and succ sets do not necessarily define a total order
among tasks. A task t1 has a causal dependence with some task t2
if either of the following cases holds: task t2 is a predecessor of t1
and there exists a chain of dependencies from a write of t2 to a read
of t1, or alternatively, task t2 is a successor of t1 and there exists a
dependence chain from a write of t1 to a read of t2.

We formally define this relationship as follows:

has causal dep(t1, t2) :=
(t2 ∈ succ(t1) ∧ has causal chain(t1, t2)) ∨
(t2 ∈ pred(t1) ∧ has causal chain(t2, t1))

We describe two variants of determining causal de-
pendence chains, has causal chain . First, predicate
has causal chain precise(t1, t2) specifies a precise computation
of causal dependence chains.

has causal chain precise(t1, t2) :=
(∃ l ∀ t3 · l ∈ flow dep(t1, t2) ∧

t3 ∈ succ(t1) ∩ pred(t2) ∧
l 6∈ write set(t3)) ∨

(∃ t3 · t3 ∈ succ(t1) ∩ pred(t2) ∧
has causal chain precise(t1, t3) ∧
has causal chain precise(t3, t2))

A causal dependence from task t1 to t2 exists if (i)
the tasks communicate through some location location l due
to flow dependence and no tasks intervening between t1
an t2 in the algorithmic order breaks this communication,
or (ii) some intermediate task t3 transitively establishes a
causal dependence due to has causal chain precise(t1, t3) and
has causal chain precise(t3, t2). We call this variant ’precise’
since the dependence between two tasks t1, t2 is determined in-
dependently of the results of the dependence analysis of tasks that
intervene t1 and t2 in the algorithmic order. Thus this predicate has
the potential to unveil causal independence among tasks that are
’distant’ in some original sequential execution.

Second, predicate has causal chain seq(t1, t2) computes an
approximation of has causal chain precise(t1, t2), as follows:

has causal chain seq(t1, t2) :=
flow dep(t1, t2) 6= ∅ ∨
∃ t3 ∈ succ(t1) ∩ pred(t2) · flow dep(t1, t3) 6= ∅

Starting from a task t, all tasks succ(t) with which t has
a flow dependence in some sequential execution, are considered
causally dependent. This predicate provides a conservative over-
approximation of the real causal dependence chains. However, it
characterizes the behavior of schedulers that choose a task based
on local knowledge and do not significantly depart from the same
sequential task sequence when computing the schedule, i.e., the
scheduler considers only the successor or a small a window of tasks
around task t in the sequential task sequence.

Note that the dependence chain across tasks may in-
volve more than one variable, e.g.: write set(t1) = {x},
read set(t3) = {x}, write set(t3) = {y}, read set(t2) =
{y} results in a dependence chain t1 → t3 → t2, hence
has causal chain 〈seq |precise〉(t1, t2).

If not relevant, we omit to specify the variant used to com-
pute the causal relation in the following and just refer to predi-
cate has causal chain; in this case either of the variants seq or
precise is a valid implementation.

187

Dual to the data dependence density, we define the density of
causal dependencies of an individual task t and for a set of tasks T
as follows:

causal dep dens(t) :=

∑
s∈Tp∧has causal dep(t,s)

len(s)

∑
t∈Tp−{t}

len(t)

causal dep dens(T) :=

∑
t∈T

causal dep dens(t)

|T |
2.4 Available parallelism
Let Tp be the set of tasks in phase p. The dependence density
defines the probability of conflict between a pair of tasks that a
scheduler chooses from Tp. Given the dependence density for all
pairs of tasks in a phase, we want a metric to capture the potential
concurrency for the set of tasks.

The available parallelism metric captures this program property
independently of the execution environment, i.e., of the number of
parallel threads. The available parallelism is not necessarily equal
to the possible speedup obtained for the phase. Several additional
factors affect speedup: first, tasks may account only for a small
fraction of the overall execution of a phase (coverage). Second,
tasks may have different characteristics in the same phase (e.g.,
tasks corresponding to different critical sections) and produce load
imbalance, thus wasting resources. Third, this model for available
parallelism takes into account only the number of available threads
and abstracts from other finite resources like memory bandwidth,
latency, and cache operation that impact the achievable speedup.
A complete model that accounts for all these factors would be
significantly more complex, and would tie the abstract model to
a particular machine configuration. For the scope of this paper,
we strive to maintain machine independence and characterize the
algorithmically available parallelism.

In the remainder of this section, we discuss scheduling decisions
which affect the two dependence density metrics and available
parallelism metrics.

Un-informed scheduler First, consider an un-informed sched-
uler. For unordered tasks, this scheduler randomly selects for exe-
cution any task; the probability of an inter-task dependence is mod-
eled by the data dep dens metric. For ordered tasks, the execution
order must be compatible with the algorithmic order; the probabil-
ity of an inter-task dependence is captured by causal dep dens . In
the following we use dep dens to mean one or the other metrics,
depending on the ordering of the set of tasks.

Let n be the number of threads onto which the scheduler maps
the execution. The available parallelism among tasks in Tp is cal-
culated as follows:

avail par(Tp, n) :=

n−1∑
k=0

(1− dep dens(Tp))k

:=
1− (1− dep dens(Tp))n

dep dens(Tp)

avail par(Tp) := lim
n→∞

avail par(Tp, n)

=
1

dep dens(Tp)

In this geometric series, the k-th term represents the amount of
’useful’ work that can be achieved, on average, on the k proces-
sor under the assumption of homogeneous task size, and a pairwise

conflict probability of dep dens(Tp) with threads 0 to k − 1. The
geometric series reflects the fact that, with non-zero dependence
density, additional computational (growing number of threads) re-
sources become less and less effective in returning performance in-
creases. Notice that we make idealized assumptions about conflict
management in this model, in that the addition of the k-th thread
does not perturb or increase conflict probabilities in the previous
k − 1 threads. This is a reflection of our assumption that conflict
probabilities are independent. This assumption holds by definition
in the unordered case, and by construction in the ordered case, since
we use the causal dependence density metric.

As an example, a program phase with data dependence density
of 0.1 under an un-informed scheduler results in an available paral-
lelism of 5.69 with 8 threads and a maximum available parallelism
of 10 with an unlimited number of threads.

Algorithmic scheduler The available parallelism computed ac-
cording to the un-informed scheduler model may underestimate the
parallelism that may be obtained by an algorithmic scheduler, i.e.,
a scheduler that chooses tasks according to the likelihood of in-
terference with concurrently executing tasks. The benefit of such
algorithmic scheduling has been demonstrated in [14] on the ex-
ample of the Delaunay mesh refinement for unordered tasks. We
will also discuss the effect of algorithmic scheduling for umt2k
with ordered tasks in Section 4.

However, since the operation of an algorithmic scheduler is
highly dependent on the data structure and algorithm, we do not
give a formula on the basis of the current dependence analysis
framework. Instead we discuss how the data dependence density
metric can be intuitively used to estimate the available parallelism
and present concrete results when we discuss applications that can
benefit from such scheduling decisions.

There exist, of course, pathological cases, in which a workload
will not benefit from algorithmic scheduling. Consider the case of
an execution phase where a transaction reads and writes exactly
one out of a total of two shared variables with equal probability.
An algorithmic scheduler will not be able to do better that an un-
informed scheduler, which achieves a maximum available paral-
lelism of 2. The following is a model that captures such patholog-
ical and distinguishes it from cases such as Delaunay, which has
potential for algorithmic scheduling.

The key idea is as follows: assume a dependence density of
d = dep dens(T). Let S ⊂ T be 1/d randomly chosen tasks
that are pairwise independent. Let S′ ⊂ T be the set of tasks,
independent of S, that conflict with some tasks in S. If |S′| ≈ |S|
and |S| + |S′| � |T | , then an algorithmic scheduler has ample
room to choose tasks that are independent of those already in S and
hence high potential to grow available parallelism. If |S′| ≈ |T |
then there is little potential for an informed scheduler to grow the
available parallelism beyond 1/d. The pathological case presented
above has |S| = |S′| = 1 and |T | = 2.

To capture this idea in the dependence analysis framework, we
extend the definition of dependence density to sets of tasks: for a
task t and a set of tasks S, let

has dep(t, S) = ∃ s ∈ S · has dep(t, s),

where has dep may stand for causal or data dependence. For a set
S ⊂ T of k (pairwise) independent tasks, we define the k-order
dependence density to the task length:

dep dens k(S) =

∑
t∈Tp−S ∧ has dep(t,S)

len(t)

∑
t∈Tp−S

len(t)

188

The concept of the k-order dependence density is applicable to
data and causal dependence. The values fall into the interval [0, 1]
and express the fraction of tasks in Tp that are dependent with some
task in set S. Since |S| = k, a low value of the k-order dependence
density indicates that there is room for an algorithmic scheduler to
achieve parallelism beyond k.

2.5 Dependence granularity
The discussion until now focused on dependences between individ-
ual accesses. However, in many systems, conflict detection is per-
formed at cache line granularity. To model such cases, we increase
the granularity at which accesses are considered to cause depen-
dences, based on their mapping into cache lines. The formulation
remains the same, but computed dependence density will depend
on the granularity. In Section 4.4 we evaluate the sensitivity of the
applications to this metric.

2.6 Phase classification
Given the metric of available parallelism avail par(Tp) in an ap-
plication, and taking into account the number of parallel threads n
targeted by the scheduler, we introduce following classification of
program phases (Figure 1c) according to the dependence density
among tasks in that phase:

high dependence density : avail par(Tp) � n. The parallelism
in such workload is inherently limited and the choice of sched-
uler has little or no impact on the available parallelism.

medium dependence density : avail par(Tp) ≈ n. This work-
load is amenable to parallelization. The choice of scheduler can
have significant impact on the available parallelism.

low dependence density : avail par(Tp) � n. Parallelism is
ubiquitous and an un-informed scheduler can reach a high levels
of parallelism, thus effectively exploit multithreading.

For an application, one can use this classification of program
phases to estimate its parallel behavior and determine requirements
for a task scheduler.

3. Methodology
3.1 Task profiler tool
We developed a profiling tool that records and evaluates the execu-
tion of program phases and tasks within these phases. The tool is
an online dynamic binary instrumentation and tracing tool, based
on the PIN [18] framework.

The tool operates on a single or multithreaded execution of an
input program. The input program communicates events like the
start and end of a program phase, task boundaries and ordering
properties to the tool through marker calls. Currently, marker calls
are inserted by the programmer but such information can easily be
synthesized by a compiler from the critical regions and annotations
for regions of speculation boundaries in the program source code.

At run time, the tool records properties of the program execution
such as instruction count and memory accesses; moreover, the tool
computes the dependence density, i.e., the data dependence density
for phases with unordered tasks and the causal dependence density
for phases with ordered tasks.

The dependence analysis as described in Section 2 considers
memory access information for all tasks within a phase; also the
density metric for an individual task is computed by pairwise de-
pendence detection with all other tasks in phase p, which is of com-
plexity O(|Tp|2).

The programs we target have typically thousand or more tasks
within a phase and hence an exhaustive recording of per task infor-
mation is impractical. Instead the task profiler samples tasks and

computes dependence information from the samples. The fraction
of tasks sampled in a phase is a parameter to the tool. For phases
with ordered tasks, a sample is a contiguous task sequence of a
specified length. The causal dependence analysis is computed in-
dividually for each sample, i.e., the length of the sample provided
the window size at which the analysis determines dependencies.
For phases with unordered tasks, a sample consist of an individual
task. The dependence analysis is performed for all tasks samples
within a phase.

3.2 Experimental setup
We have conducted the dependence analysis on a set of applications
that have been recently used to evaluate transactional memory
systems [26, 32, 20, 15]. For this study, a phase usually covers
the entire execution of the (speculatively) parallel region in the
program. Unless specifically noted, applications are configured to
execute in a single thread with the same input and command line
arguments used in prior studies.

Since a single-threaded application run is used for profiling,
data structures allocated in thread-specific memory could introduce
artificial dependencies among tasks. Hence, we exclud certain loca-
tions in thread-specific storage from the read and write sets of tasks.
Examples of thread-specific storage include the memory allocator
and the random number generator in the STAMP benchmarks [20].
Also, we exclude automatic variables (typically allocated on the
stack) from the read and write sets, since these are usually task-
private.

For applications with ordered tasks, 2% of the tasks are sampled
and each sample consists of 250 consecutive tasks. For applications
with unordered tasks, we sampled 5% of the tasks; lower or higher
sampling rates minimally affected the results.

The task profiling tool records read and write sets and detects
dependencies. the tool reports the source code location (i.e., file
name and line number), the fraction of the execution of the phase
spent in tasks, (coverage) of this category, the number of dynamic
task instances, (count), the number of instructions in a critical
section, (size, the size of read and write sets (average per task
and total per category of task), and the dependence density. The
evaluation results (Section 4) reports these attributes as columns in
Table 1 to Table 7. Read and write sets contain all addresses of static
global and heap-allocated data (not stack addresses), irrespective
of the sharing properties of those data. Unless noted otherwise,
the set for conflict detection contain word-aligned addresses. The
tool provides flexibility to choose different alignments and hence
evaluate the effects of false sharing on the dependence density.

As mentioned in Section 3, the set of tasks to compute depen-
dence densities can be chosen in different ways. For these experi-
ments, we choose two such sets:

• dependence density relative to Tp, where Tp is the set of all
tasks in the same program phase p; this metric is reported in
column dep-density - all in Table 1 to Table 7.

• dependence density relative to Tc, where Tc is the set of tasks
corresponding to the same static instance of a critical section c
or a parallel loop; this metric is reported in column dep-density
- same.

For programs with ordered tasks, the causal dependence
is computed for all tasks in the phase with the pre-
cise (causal chain precise()) and the approximated predicate
(causal chain seq()). Note that even the precise predicate is not
perfect since the dependencies are computed from a sampling win-
dow of 250 consecutive tasks. Both metrics for causal dependence
density are reported in columns dep-density - precise and dep-
density - seq in Table 6.

189

4. Evaluation
We experimented with the following applications: genome, kmeans
and vacation from the STAMP suite [20], delaunay – a reimple-
mentation of [13], SSCA#2 [1], UMT2K [30], and MySQL [22].
We categorized these applications according to the classification
in Section 2.6, assuming an execution platform with few tens of
threads.

4.1 Low dependence density
As mentioned before, benchmarks with a low dependence density
can reach high levels of parallelism relatively easy, even with an
un-informed scheduler.

4.1.1 delaunay
The Delaunay triangulation is an algorithm for discretizing a two-
dimensional domain into a mesh of triangles with certain quality
guaranties. Mesh generation is an important aspect of graphics ren-
dering and for solving finite-element solutions of partial differen-
tial equations. The Delaunay method refines a coarse initial mesh
through iteration. The sequential algorithm repeatedly looks for a
’bad’ mesh element that does not satisfy the quality constraints;
computes a region around the ’bad’ element, called its ’cavity’, and
replaces elements in the cavity by new elements. This process is
called the refinement. Some of these new elements may not satisfy
the quality constraints themselves. However, it can be shown that
the algorithm always terminates and produces a guaranteed quality
mesh, regardless of the order in which the ’bad’ elements are pro-
cessed. The algorithm can be parallelized by operating concurrently
on non-overlapping and non-adjacent cavities. Furthermore, the
per-cavity refinement process is completely independent. However,
it is very difficult to identify non-conflicting cavities at compile-
time due to input-dependent nature of the program. In addition,
conflicts may arise at runtime due to cavity expansion during the
refinement process. The conflict issue, however, makes this appli-
cation a suitable candidate for exploiting the conflict-detection and
rollback properties of the transactional memory. The program de-
launay is a reimplementation of Kulkarni et al.’s earlier work [13].

In a transactional-memory implementation of the Delaunay al-
gorithm, multiple threads choose their elements from a work-queue
and refine the cavities as separate transactions. The conflict detec-
tion capabilities provided by the transactional-memory system de-
tect any inter-cavity conflicts at runtime and the conflicting trans-
actions are then rolled back.

Table 1 shows the dynamic characteristics of tasks correspond-
ing to the critical sections in the program. Almost all the execu-
tion is spent in critical sections, most significantly delaunay.c:237,
which computes the cavity refinement. Note that although the crit-
ical sections at lines 218 and 262 have high dependence densities
(the former one coordinates concurrent accesses to a shared work-
list, and the latter updates a shared bookkeeping variable), their
coverage is very low. This led to the classification of ’low depen-
dence density’ assuming tens of threads. The implementation of
delaunay randomizes the order of tasks in the initial worklist list;
this corresponds to our assumption of an un-informed scheduler.

4.1.2 genome
genome implements a gene sequencing program that reconstructs
the most likely original gene sequence from a large pool of un-
matched gene segments. The basic data structure is a hash table for
storing unique unmatched gene segments. In a parallel scenario,
each thread tries to add to its partition of currently matched seg-
ments by searching the shared pool of unmatched segments. Since
multiples threads try to access the same segment, these accesses are
executed as transactions within each thread.

Table 2 details the five critical sections in this application. The
first and the third critical sections (lines 288 and 386) have the max-
imum coverage and hence their dependence densities are most crit-
ical to the parallel program performance. All of these critical sec-
tions protect accesses to the shared data structures such as the hash
table and the shared segment pool. Access to these data structures
are mostly independent and hence an un-informed scheduler can
easily achieve high degrees of parallelism. The critical section at
line 360, does not have any conflicts, i.e., both dependence density
values are 0. Nevertheless, the critical section is necessary as con-
flicts may occur with different program inputs; this critical section
is short and does not significantly affect application performance.
The important critical sections at lines 288 and 386 exhibit low de-
pendence densities, hence the classification of this application.

4.1.3 SSCA2
We focus the evaluation of the SSCA2 [1] benchmark on kernel 4,
which computes the “betweenness centrality” metric for each node
in a randomly generated graph; graph generation is done in another
kernel of this benchmark. Two variants of the algorithm are imple-
mented that execute in two different phases. The critical section at
line 131 falls into one phase while the critical sections lines 306,
380 are executed in the other phase. For both variants of the ker-
nel, a significant fraction of the execution is spent outside critical
sections, hence certainly not contributing to task-interdependence.
The dependence densities of the tasks are very low, indicating that
even in the sections of the phase with potential inter-dependencies,
the probability of a dependence violation due to concurrent task
execution is very low.

4.1.4 vacation
vacation implements a travel reservation system backed by a non-
distributed, in-memory database. The nature of the application is
similar to the SPECjbb2000 benchmark. The database consists of
four tables: cars, rooms, flights, and customers. The first three have
relations with fields representing a unique ID number, reserved
quantity, total available quantity, and price. The table of customers
tracks the reservations made by each customer and the total price of
the reservations they made. The database tables are implemented as
red-black trees.The workload consists of several client threads in-
teracting with the database via the system’s transaction manager.
Each client thread can invoke one of the three main tasks: (1) make
a reservation: The client checks the price of n items and reserves
a few of them. (2) delete customer, once the total cost of a cus-
tomer’s reservation is computed and the customer is removed from
the system, (3) update to item tables: For a reservation, add items to
one of the tables (e.g., car, room, and flight) using the unique ID as
the key. Items may also be removed, i.e., for a reservation, remove
items from one of the tables using the unique ID as the key. Each
task operates on one or more tables and operates within a transac-
tional context to maintain atomicity, consistency, and isolation.

The vacation application spends most of its execution time in-
side critical sections that protect the execution of individual user
tasks. All tasks have low dependence densities. Although the de-
pendence density for the high contention input is slightly higher
than for the low contention input, the classification of this program
is the same for both input sets.

4.2 Medium dependence density
The tasks in the following two application have medium depen-
dence density under the assumption that the execution environment
provides few tens of parallel threads.

190

critical section coverage count size read-set write-set dep-density
[file:line number] [% of phase] [# insts] avg total avg total same all

delaunay.c:218 0.12 24227 34.99 2.31 31749 1.0 2 0.9992 0.0038
delaunay.c:237 97.67 39470 17808 80.9 1665645 95.4 3601920 0.0003 0.0003
delaunay.c:248 0.30 15244 143 5.1 39102 2.44 22076 0.5668 0.0024
delaunay.c:262 < 0.01 1 13.0 4.0 4 2.0 2 1.0 < 0.0001

Table 1. Characterization of delaunay.

critical section coverage count size read-set write-set dep-density
[file:line number] [% of phase] [# insts] avg total avg total same all
sequencer.c:288 73.25 4096 45882.6 801.6 1229771 66.9 272848 0.0115 0.0089
sequencer.c:360 0.03 4065 18.0 1.0 4065 1.0 4065 0 0
sequencer.c:386 22.76 126015 463.5 52.9 315939 3.0 315844 0.0040 0.0008
sequencer.c:399 0.21 4065 132.2 8.01 10708 3.0 10704 0.0003 < 0.0001
sequencer.c:474 0.51 7438 177.36 13.56 50816 3.8 22359 0.0007 < 0.0001

Table 2. Characterization of genome.

critical section coverage count size read-set write-set dep-density
[file:line number] [% of phase] [# insts] avg total avg total same all

betweennessCentrality.c:131 2.14 46674 10 2.0 434 1.0 217 0.0046 0.0046
betweennessCentrality.c:306 30.80 376962 28 3.1 3604 1.1 3570 0.0053 0.0050
betweennessCentrality.c:380 5.28 107419 17 4.0 464 1.0 219 0.0321 0.0107

Table 3. Characterization of ssca2.

critical section coverage count size read-set write-set dep-density
[file:line number] [% of phase] [# insts] avg total avg total same all

low contention
client.c:170 90.82 52439 2464 125.7 946682 25.2 1070875 0.0012 0.0012
client.c:229 2.40 6566 515 65.6 143386 3.50 22328 0.0003 0.0006
client.c:239 4.95 6531 1079 92.3 198855 8.71 55326 0.0007 0.0004

high contention
client.c:170 86.73 52330 3413 178.3 509495 18.8 661639 0.0023 0.0026
client.c:229 6.66 6603 2072 250.7 391928 18.2 55243 0.0067 0.0043
client.c:239 5.34 6603 1668 134.3 117524 11.6 51481 0.0023 0.0026

Table 4. Characterization of vacation.

4.2.1 kmeans
kmeans implements a commonly used clustering technique in data
mining applications. It clusters a set of objects based on their at-
tributes into k partitions, where k is an user-specified parameter. It
uses an iterative refinement heuristic that partitions the input data
into an initial partition of k sets. It then calculates the mean point
or centroid of the sets using a similarity function. For example, for
spatial clustering, usually the Euclid distance is used to measure the
closeness of two objects. The algorithm then constructs a new par-
tition by associating each object with the closest centroid. The cen-
troids are recalculated for the new clusters, and algorithm repeated
by alternate application of these two steps until convergence, which
is obtained when the objects no longer switch clusters (or alterna-
tively centroids are no longer changed). In the parallel implemen-
tation, each thread works on one partition and contention occurs
when multiple threads try to associate the same object to multiple
partitions.

Table 5 shows the characteristics of the two critical sections in
kmeans: one at line 164, for computing the cluster centroid, and
one at line 178, for updating the shared task queue. The overall cov-
erage of critical sections reported in Table 5 is significantly lower
than the number reported in [20] since we removed an unneces-
sary critical section (normal.c:144) from this program. Both critical
sections have low coverage and do not affect the overall execution
performance. Although the second critical section exhibit conflicts,

its overall impact is significantly lower than the first critical sec-
tion (which has much lower dependence density). As expected, the
dependence density for the low contention configuration is lower
than the density of the high contention configuration. The available
parallelism in the low contention case is just above thirty, hence
the classification of this program in category “medium dependence
density”.

4.2.2 umt2k
umt2k is an unstructured mesh transport code [30]. This code is
parallelized with a combination of MPI/OpenMP. For our study we
focused on a sequential kernel in the sweep routine. In particular
we studied the parallelization of a loop (snswp3d.c:357) the imple-
ments the sweep and covers about 50% of the overall sequential
execution time of this benchmark. The execution of the loop forms
a single phase wherein individual iterations of the loop execute as
tasks. We re-factored the implementation of the loop body such
that dependencies due to automatic variables access and reduction
operations are avoided. Yet, some residual flow data dependencies
among tasks remain. A scheduler must meet those dependencies,
which reflect the energy transport that is simulated by this code, in
the algorithmic order specified by the mesh topology. This order is
featured indirectly as the original (sequential) iteration order of the
loop.

191

critical section coverage count size read-set write-set dep-density
[file:line number] [% of phase] [# insts] avg total avg total same all

low contention
normal.c:164 1.81 350000 90.0 28.0 650600 13.0 520 0.0254 0.0242
normal.c:178 0.09 116662 13.0 2.0 2 1.0 1 0.9997 0.0455

high contention
normal.c:164 3.50 250000 90.0 28.0 650300 13.0 260 0.0522 0.0497
normal.c:178 0.17 83330 13.0 2.0 2 1.0 1 0.9997 0.0464

Table 5. Characterization of kmeans.

© 2004 IBM CorporationPPoPP - March 15, 2007

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

1 11 21 31 41 51 61 71 81 91 101 111 121

dependence distance 1: 98661 (37.2%), 2: 12173 (45.26%)

...

dependence distance [# iterations]

count

Figure 2. Dependence distance of iterations in the original itera-
tion order.

Figure 2 shows a histogram of the distance of flow dependencies
among iterations, where distance is measured as the number of
iterations in the sequential schedule. The vast majority of tasks
have a flow dependence on their predecessor or pre-predecessor;
notice that the y-axis is shortened significantly in the graph to
facilitate the presentation. Hence an un-informed scheduler that
issues tasks in the sequence of the sequential schedule will achieve
little parallelism.

The existence of occasional long-range dependencies, i.e., de-
pendencies across tens or hundreds of iterations, suggest that a de-
parture from the original iteration schedule could expose more par-
allelism. The iteration space of the loop can be understood as a
directed acyclic graph where edges correspond to iterations (tasks)
and edges correspond to data flow dependencies. The graph de-
fines a partial order among tasks and any topological sort of the
graph meets the flow dependencies. We computed from this ab-
stract model of the iteration space a schedule that inserts inde-
pendent tasks into buckets of fixed width k. If data dependencies
are tight, then not all slots in a bucket will be filled with a task.
A run time, all tasks within the same bucket can execute concur-
rently, while tasks in different buckets are executed in sequence.
This methodology is similar to an inspector-executor model, where
an execution schedule (in the original work [27] a communication
schedule) is computed at run time based on dynamic data depen-
dence information.

The results of this scheduling experiment are illustrated in Fig-
ure 3 for buckets of width k = 32. The histogram shows the fill of
buckets in the final schedule: nearly all buckets can be filled with
independent tasks, hence such algorithmic scheduler can clearly
surpass the available parallelism exposed in the original schedule;
again, the y-axis is shorted significantly in the figure to facilitate
the presentation.

Table 6 specifies the characteristics of the tasks in umt2k. The
dependence density is specified as a range and average, specifies
the lowest and highest values observed in the sequence of samples.
The density computed according the causal chain seq is close to
1, which reflects that an un-informed scheduler that adheres to the

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

bucket fill

% of total buckets 98.2

Figure 3. Resorted iteration order: Fill of buckets of width 32 with
iterations that are causally independent.

sequential execution order will have little success find parallelism.
The density computed according to causal chain precise varies
widely among samples (see Figure 4); the low values reflects the
ability of an algorithmic scheduler to find parallelism within a
window of 250 tasks (sample size). We observed that the average
density dropped slightly as we increased the window size. Also,
high density values were observed in early stages of the iteration
space, whereas dependence densities dropped form samples in the
middle of the iterations space. This reflects observation reflects the
extent of the mesh and unfolding parallelism as the ’frontline’ of
the sweep through the mesh widens.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

sample id (iteration order)

ca
us

al
 d

ep
en

de
nc

e
de

ns
ity

precise seq

Figure 4. Causal dependence densities for different samples in the
iteration space of umt2k.

4.3 High dependence density
4.3.1 MySQL keycache
The keycache is a data structure in MySQL’s MyISAM storage
manager [22] that provides a cache of index blocks from database
tables that reside in files on disk. Nearly every database operation
(insert, query, update) accesses this structure. For our experiments,
we used MySQL version 5.2 and the ATIS SQL benchmark in the
distribution to synthesize a workload (insert followed by query)

192

speculative region coverage count size read-set write-set dep-density
[file:line number] [% of phase] [# insts] avg total avg total seq precise

snswp3d.c:357 100.0 9999 218.71 54.4 136804 38.5 13757 0.88-0.97 (0.31) 0.08–0.86 (0.91)

Table 6. Characterization of umt2k.

on an artificial database. The execution of the ATIS benchmark
constitutes a single phase.

Several critical sections guard the shared data structures in the
keycache and a non-negligible fraction of the execution time is
spent in two critical sections at mf keycache.c:1808,1863. The
dependence distance in those critical sections is close to one, hence
almost any pair of concurrent tasks will encounter a conflict. This
suggests that the choice to implement concurrency control with
a single lock, as done in the implementation that we studied, is
reasonable.

Figure 5 illustrates the write access behavior of the critical
section with the highest coverage in execution time. Bars of a
certain color add up to 100 units on the y-axis (the axis is shortened
for presentation purpose), reflecting the fraction of the locations
written by tasks corresponding to a certain critical section. Each
location falls into some bin on the x-axis. The x-axis plots the
probability that some task accesses a variable in the bin. The graph
illustrates that a large majority of variables are written occasionally,
i.e., with probability < 0.1 by any one critical section. However,
some variables, the probability of write access by a randomly
chosen task is very high (> 0.9). This observation conveys that
the high dependence density in this workload can be attributed to
very few variables.

0

2

4

6

8

10

12

14

16

<0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 >0.9

mf_keycache.c:1863 mf_keycache.c:1808
mf_keycache.c:2083 mf_keycache.c:2284

... adds up to 100

access probability

fraction of total write set [%]

Figure 5. Likelihood of write access of individual variables in the
four most prominent critical sections of the keycache workload.

A closer study of the in source code unveils that most if not all
of the ’highly contended’ locations correspond to counters serving
statistics or guiding the replacement policy of the cache. Note that
such counters would be a definite obstacle to a straightforward ap-
plication of transactional memory; techniques have been proposed
to overcome the frequent task rollbacks in such case [21, 9].

4.4 Effect of varying the dependence granularity
So far, the task profiling tool recorded read and write sets as word-
aligned addresses (Section 3), i.e., an inter-task dependence is de-
tected if different tasks read and write the same word. Systems that
support the detection of interference at run time commonly choose
to track addresses at cache-line granularity (32 bytes to 128 bytes
is common), which can lead to an increased number of reports of
inter-task dependencies. Some of such reports can be spurious, i.e.,
they reflect access to the same cache line but accesses may not ac-
tually interfere if they target different offsets in the line.

An increased number of interference reports also increases the
dependence density and hence affects the available parallelism that
we determine for an application. To assess the effects of coarser
grain dependence detection, we configure the task profiler to track
addresses at 64 byte alignment; also we consider writes by different
tasks to the same line as task inter-dependence (although no com-
munication is facilitated through those writes). Table 8 reports the
dependence densities for selected critical sections.

We observe that dependence densities can increase significantly
due to false sharing. For example in the case of vacation, certain
critical sections have medium dependence density (assuming tens
of threads) such that scheduling becomes a relevant performance
factor.

For umt2k, we illustrate the effects of false sharing by studying
the occurrence of dependencies using the algorithmic scheduling
model described in Section 4.2.2. The scheduler arranges indepen-
dent tasks in buckets of size k or smaller under the assumption of
different address alignments.

Figure 6 shows the percentage (y-axis) of k-size buckets (x-
axis) where all k slots could be filled with independent tasks.
Generally, buckets of larger sizes do not fill up as well as smaller
buckets. In the case where addresses are tracked precisely (no
align), for example, 98.2% of buckets of size k = 32 can be filled
completely, while just above 90% of the buckets can be filled when
k = 128. The second observation is that the increase of address
alignment significantly reduces the ability of the scheduler to fill
up the buckets with independent tasks.

0

20

40

60

80

100

2 4 6 8 12 16 32 64 128

no align 64-byte align 256-byte align

blocks with k independent tasks [% of total blocks]

block width (k)

Figure 6. Algorithmic scheduling for umt2k: Fill of buckets of
various width with no, 64-byte, and 256-byte address alignment.

False sharing in umt2k does not only affect inter-task depen-
dencies but also puts a significant penalty on the shared memory
access latency. We executed the sweep phase of the benchmark on
a Power5 multiprocessor, scheduling the execution of tasks (indi-
vidual loop iterations) to processor cores in a round robin manner.
Processor cores executed the tasks in order, irrespective inter-task
dependencies (i.e., concurrency control was omitted for the pur-
pose of this limit study, hence the result of the computation could
have been incorrect). Execution on 8 cores achieved a speedup of
3 over single thread performance. This less than ideal speedup can
be attributed entirely to increased latencies in the memory access
path due to the sharing of lines in caches associated with different
cores and processors.

193

critical section coverage count size read-set write-set dep-density
[file:line number] [% of phase] [# insts] avg total avg total same all

mf keycache.c:1808 3.28 277134 271.6 28.2 481 47.2 1151 0.9996 0.2577
mf keycache.c:1863 3.46 277134 286.2 23.7 253 41.6 699 0.9996 0.9946
mf keycache.c:2083 0.39 13278 673.5 306.0 9514 330.4 4397 0.9992 0.9946
mf keycache.c:2271 < 0.01 9768 16.0 5.0 5 4.0 4 0.9990 0.9945
mf keycache.c:2284 0.23 13278 396.1 42.4 198 60.2 193 0.9992 0.2550
mf keycache.c:2552 < 0.01 11 124.0 10.0 30 16.0 61 0.9990 0.9998

Table 7. Characterization of MySQL keycache.

critical section dep-density
[file:line number] same all
delaunay

delaunay.c:237 0.0005 0.0005
genome
sequencer.c:288 0.0509 0.0506
kmeans (low contention)

normal.c:164 0.0886 0.0845
vacation (high contention)

client.c:170 0.0334 0.0323
client.c:229 0.0110 0.0180
client.c:239 0.0271 0.0186

Table 8. Dependence densities with dependence checking at 64-byte alignment.

5. Related work
Saltz et al. first proposed [27] using the inspector-executor prin-
ciple for parallelizing applications with irregular memory access
patterns. In this approach, the inspector phase determines the de-
pendencies between units of work and the executor phase performs
the computation in parallel. This approach is suitable for applica-
tions where the execution schedule can remain stable at runtime
and hence the cost of the inspector phase can be amortized. This
approach is not suitable for applications where execution sched-
ules have to adapt dynamically, e.g., the Delaunay mesh genera-
tion [13]. Recently, Kulkarni and Pingali have demonstrated that
optimistic parallelism is an effective tool for parallelizing such ap-
plications [15].

The Transactional Memory (TM) programming model has been
proposed for managing concurrency in irregular problems. TM [11]
was first introduced by Herlihy and Moss as an alternative to con-
current programming using locks. Since then, the TM approach has
been investigated in software, hardware and in hybrid schemes that
combine software and hardware implementations [28, 6, 8, 20, 2].
While there has been significant work in developing TM infrastruc-
ture, behavior of TM-enabled applications has not been analyzed
in depth, with some notable exceptions [15, 10]. To the best our
knowledge, no prior work has abstracted program dependence via
quantitative means and used it to expose potential parallelism.

Thread level speculation (TLS) [31, 12, 7, 29] has been intro-
duced as a technique to speedup serial applications that are no-
toriously hard to parallelize, such as SPECint. In this approach,
tasks are identified in the application by a compiler or the user, and
the system is responsible for detecting dependence violations and
restarting the offending tasks. Tasks are typically selected as either
loop iterations or function continuations. Compiler instrumentation
and profiling has been used to select profitable tasks [17, 33]. In ad-
dition, several studies have looked at the ideal parallelism that can
be obtained with TLS systems [16, 25, 19].

Runtime program profiling has been used extensively to support
optimizations like instruction scheduling for super-scalar proces-
sors, program hot-spot analysis, and speculative execution [5, 24].
Data dependence profiling has also been used in the context of TM
and TLS, again, to identify and select the most profitable tasks. Ex-

amples include TEST [3], JRPM [4] and the IPOT TaskFinder [32].
In this work the authors use models based on data dependence to
analyze and rank tasks with respect to profitability for execution.
However, each task is considered in isolation and there is no sched-
uler that selects tasks in order to maximize parallelism.

6. Concluding remarks
In this paper, we presented a quantitative model that captures data
and causal dependencies in parallel programs. We applied this
model to determine parallelization opportunities in programs for
which the parallelization potential cannot be analyzed statically
(e.g., those with irregular memory accesses). Our model abstracts
runtime aspects of the execution and represents dependencies as a
density computed over the number of executed instructions. This
density metric can capture data dependencies in both ordered and
unordered critical sections. We have implemented this model in
a dynamic binary instrumentation and profiling tool and applied
this profiler to several parallel applications requiring ordered and
unordered execution of critical sections.

Given the amount of available parallelism, the dependence den-
sity metric can be used to predict potential concurrency and scala-
bility properties of parallel applications. Applications fall into three
categories: low, medium and high dependence density. Applica-
tions with low dependence density are naturally good candidates
for optimistic concurrency, while application with medium depen-
dence density may require a scheduler that is aware of the algorith-
mic dependencies for optimistic concurrency to be effective. Ap-
plications with high dependence density may not be amenable to
parallelization.

Acknowledgments
We would like to acknowledge members of the transactional mem-
ory project at IBM Research for providing the basis for this work.
We would like to thank the STAMP team at Stanford for giv-
ing us early access to the their benchmark suite. We would also
like to thank Keshav Pingali for providing access to the Delaunay
mesh generation application. We also thank the reviewers for their
thorough reading and insightful comments.

194

References
[1] D. Bader and K. Madduri. Design and Implementation of the HPCS

Graph Analysis Benchmark on Symmetric Multiprocessors. In Proc.
of HiPC 2005, pages 465–476, December 2005.

[2] J. Bobba, K. E. Moore, H. Volos, L. Yen, M. D. Hill, M. M. Swift,
and D. A. Wood. Performance Pathologies in Hardware Transactional
Memory. In Proc. of ISCA’07, pages 81–91, 2007.

[3] M. K. Chen and K. Olukotun. TEST: A Tracer for Extracting
Speculative Thread. In Proc. of CGO’03, pages 301–314, 2003.

[4] M. K. Chen and K. Olukotun. The Jrpm System for Dynamically
Parallelizing Java Programs. In Proc. of ISCA’03, pages 434–445,
2003.

[5] T. Chen, J. Lin, X. Dai, W.-C. Hsu, and P.-C. Yew. Data Dependence
Profiling for Speculative Optimizations. In Proc. of Compiler
Construction’04, pages 57–72, 2004.

[6] D. Dice and N. Shavit. Understanding Tradeoffs in Software
Transactional Memory. In Proc. of CGO’07, 2007.

[7] L. Hammond, M. Willey, and K. Olukotun. Data Speculation Support
for a Chip Multiprocessorx. In Proc. of ASPLOS’98, 1998.

[8] T. Harris and K. Fraser. Language Support for Lightweight
Transactions. In Proc. of OOPSLA’03, pages 14–25, 2006.

[9] T. Harris and S. Stipic. Abstract Nested Transactions. In Proc. of
TRANSACT’07, 2007.

[10] M. Herlihy and E. Koskinen. Transactional Boosting: A Methodology
for Highly-Concurrent Transactional Objects. Technical Report CS-
07-08, Department of Computer Science, Brown University, July
2007.

[11] M. Herlihy and J. E. B. Moss. Transactional Memory: Architecture
Support for Lock-free Data Structures. In Proc. of ISCA’93, pages
289–300, 1993.

[12] V. Krishnan and J. Torrellas. Hardware and Software Support
for Speculative Execution of Sequential Binaries on a Chip-
Multiprocessor. In Proc. of ICS’98, 1998.

[13] M. Kulkarni, L. P. Chew, and K. Pingali. Using Transactions in
Delaunay Mesh Generation. In Workshop on Transactional Memory
Workloads (WTW’06), 2006.

[14] M. Kulkarni and K. Pingali. Scheduling Issues in Optimistic
Parallelization. In Proc. of IPDPS’07, pages 1–7, 2007.

[15] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala, and
L. P. Chew. Optimistic Parallelism Requires Abstractions. In Proc. of
PLDI’07, pages 211–222, 2007.

[16] M. S. Lam and R. P. Wilson. Limits of control flow on parallelism.
In Proc. of ISCA ’92, pages 46–57, 1992.

[17] W. Liu, J. Tuck, L. Ceze, W. Ahn, K. Strauss, J. Renau, and
J. Torrellas. POSH: a TLS compiler that exploits program structure.
In Proc. of PPoPP ’06, pages 158–167, 2006.

[18] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building Customized
Program Analysis Tools with Dynamic Instrumentation. In Proc. of
PLDI’05, 2005.

[19] P. Marcuello and A. Gonzalez. A Quantitative Assessment of TLS
Techniques . In Proc. of IPDPS’00, 2000.

[20] C. C. Minh, M. Trautmann, J. Chung, A. McDonald, N. Bronson,
J. Casper, C. Kozyrakis, and K. Olukotun. An Effective Hybrid
Transactional Memory System with Strong Isolation Guarantees. In
Proc. of ISCA’07, pages 69–80, 2007.

[21] E. J. B. Moss and T. Hosking. Nested Transactional Memory: Model
and Preliminary Architecture Sketches. In In Proceedings, Workshop
on Synchronization and Concurrency in Object-Oriented Languages,
Oct 2005.

[22] MySQL - The World’s Most Popular Open Source Database.
http://www.mysql.com.

[23] R. Narayanan, B. Ozisikyilmaz, J. Zamberno, G. Memik, and
A. Choudhary. MineBench: A Benchmark Suite for Data Mining
Workloads. In Proc. of IISWC’06, pages 182–188, 2006.

[24] N. Neelakantam, R. Rajwar, S. Srinivas, U. Srinivasan, and C. Zilles.
Hardware Atomicity for Reliable Software Speculation. In Proc. of
ISCA’07, pages 174–185, 2007.

[25] J. Oplinger, D. Heine, and M. Lam. In Search of Speculative Thread
Level Parallelism. In Proc. of PACT’99, pages 303–313, 1999.

[26] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and
B. Hertzberg. McRT-STM: A High Performance Software Trans-
actional Memory System for a Multi-Core Runtime. In Proc. of
PPoPP’06, pages 187–197, March 2006.

[27] J. Saltz, R. Mirchandaney, and K. Crowley. Run-Time Parallelization
and Scheduling of Loops. IEEE Transacations on Computers, 40(5),
1991.

[28] N. Shavit and D. Touitou. Software Transactional Memory. In Proc.
of PODC’95, pages 204–213, 1995.

[29] J. G. Steffan and T. C. Mowry. The Potential for Using Thread-Level
Data Speculation to Facilitate Automatic Parallelization. In Proc. of
HPCA’98, 1998.

[30] The UMT Benchmark Code. http://www.llnl.gov/asci/purple/-
benchmarks/limited/umt.

[31] T. Vijaykumar and G. S. Sohi. Task Selection for a Multiscalar
Processor. In Proc. of MICRO’98, 1998.

[32] C. von Praun, L. Ceze, and C. Cascaval. Implicit Parallelism with
Ordered Transactions. In Proc. of PPoPP’07, pages 79–89, 2007.

[33] A. Zhai, C. B. Colohan, J. G. Steffan, and T. C. Mowry. Compiler
Optimization of Memory-Resident Value Communication Between
Speculative Threads. In Proc. of CGO’04, pages 39–52, 2004.

195

