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Abstract

Distributed-memory machines have proved successful for
many challenging numerical programs that can be split into
largely independent computation-intensive subtasks requir-
ing little data exchange (although the amount of exchanged
data may be large). However, many irregular applications
— e.g. in the AI field — have a fairly tight data coupling
that often results from the use of shared data structures,
making them in many cases not amenable to parallelization
on distributed-memory machines. EARTH is an efficient
multithreaded architecture that supports in particular large
numbers of small data exchanges by means of low start-up
times and the ability of tolerance of even small latenci=. In
this paper, we show the benefits provided by EARTH for
applications of this sort by presenting experimental results
from several AI applications run on the MANNA machine,
which is a distributed-memory machine with a very high-
performance communicantion network. EARTH-MANNA is
shown to extend the range of programs that can be paral-
lelized and run effectively on distributed-memory machines.

1 Introduction

EARTH-MANNA [13] is an eflicient multithreaded archi-
tecture implemented on the high-performance distributed-
memory machhe MANNA [9]. EARTH is fi.ne-grained in the
sense that it provides communication by remote load/store
operations and mt.dtithreading at a level below the function
body with very fast thread switches allowing even small la-
tencies to be hidden — considered the most difficult goal in
Culler’s cost estimations [7]. EARTH-MANNA additionally
providea fast block transfer, thus allowing loosely coupled
numeric applications (involving rarely occurring communi-
cations) to be run efficiently, too. EARTH’s real benefits,
however, are demonstrated in applications with a more cri-
tical computation / communication ratio, especially when
there are very many small communications. The software
overhead (eepeckdly the start-up time, which — for short
memages — in conventional message passing is much larger
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than the real transfer time) is reduced in EARTH to a min-
imum, the potential for hiding latency being maximized.
EARTH is, then, less sensitive to imperfect data distribu-
tions [21] and it provides benefits for numerical applications
with complex irregular data structures that are hard to par-
tition and in some cases may even evolve dynamically. Be
cause start-up time is low and the number of communica-
tions is of limited significance, optimization for combining
several small messagee to a large one become obsolete in
many cases, thus also reducing the demands on the com-
piler with respect to communication optimization. In con-
trast, tests showed that it may even be advantageous to
split large messages in order to increme the possibilities of
overlapping computation and communication [21].

Furthermore, fin-grained communication and multi-
threadkg is of particular benefit for applications with dy-
namically created computational tasks, asynchronous mu-
tual communications bet- tasks, irregular unpredictable
data accesses, and — perhaps the most important aspect —
frequent small communications, such as occured especially
in the AI field in the following forms:

●

●

●

tree-like dynamic task structures, appearing in many
search problems

They often have fairly small parallel computation steps,
require dynamic task creation, asynchronous communi-
cation, and efficient dynamic load balancing, but by
keeping overhead low and grouping several steps to
threads / processes, there is potential for massive par-
allelism.

computations with shared data structures, appearing in
many reasoning- or transformation-baaed applications

The data structures may potentially be linked, created
dynamically, with possibly only part of them being
acmwwd by each node. Because data is created dy-
namically, it is hard to be distributed by the compiler.
ACCESCXJare unpredictable, irregular, and highly asyn-
chronous. The task-internal control structure is com-
plex, and computation time may vary significantly for
each parallel task. Thus, static assignment and static
grouping or dynamic aggregation of communication to
form larger messages (or prefetcbing) are difficult.

fine-grained data-parallel and closely intercomected
computations, as in artificial neural networks
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Very low-cost communication / synchronization and
subtle latency hiding are the only chance for paralleliza-
tion.

● indeterministic application behavior with respect to
computation time

Some types of applications — and not only discrete
optimizations for which this effect is well known — se-
mantically permit arbitrary execution orders, but their
execution time differs depending on them. This may
lead to superlinear speedups in the best case, but in
general it means a potentially wide spectrum of run-
times. Lower overheads minimize communication influ-
ences and thus should lead to more stable performance
results, although the basic effect is inherently of an al-
gorithmic nature.

The types of applications mentioned above may appear
as isolated problems or as subproblems in more complex pro-
grams. Pure search problems naturally involve massive par-
allelism with large numbers of independent subtaaks. If over-
head is kept low, we can expect close-to-optimal speedup,
and for some applications of this sort it has already been
obtained in other systems [16]. Applications based on com-
plex reasoning or transformations and using shared data
structures are more challenging — especially on distributed-
memory machines — because the control structure inher-
ently contains many dependencies and the shared data eas-
ily becomes a bottleneck. Although sharing doea not nec-
essarily mean central management and a partly distributed
organization is often possible, the inherent degree of paral-
lelism is usually limited, i.e. it is not massive, exploiting
up to several thousand processors. However, such programs
are often very time-consuming (in the range of hours), and
even a speedup of 5 or 10 is therefore a great achievement.
Furthermore, in complex programs several such centers of
parallel code may be neated in a tredike manner, thus ulti-
mately allowing sufficient overall parallelism to be obtained.
Nevertheless, what is needed are systems that keep thread
/ process management and communication overhead to a
minimum.

We present applications of the classes mentioned above
and explore the usability and benefits of multithreading.
More specifically, we demonstrate

● the influence of overhead and the difference made by
using multithreading w compared with existing mes-
sage passing or abstract-data-structure libraries

. that some applications become amenable to paralleliza-
tion only if overhead is kept extremely low.

Two of the applications presented (Eigenvalue and
Grobner Basis) are taken from Multipol [22], which is an
interesting library supporting some important shared-data
abstractions related to scheduling structures or partial/final
result structures. Multipol is implemented using the TAM
rrmltithreaded system and was first run on a CM-5 — Am a
distributed-memory machine. However, providing abstract
data structures at library level naturally involves an over-
head that may be too high for this critical type of applica-
tion, We make direct use of EARTH’s thread and commu-
nication operations, investigating the benefits of this imple
mentation. The third application is a feed-forward artificial
neural network with a very critical ratio of computation and

communication, thus being at best parallelizable if commu-
nication overhead is kept extremely low. as in EARTH. We
show that these irreguku applications can be well supported
by multithreaded architectures, and that the range of appli-
cations that are parallelizable on distributed-memory ma-
chines can be extended in this way.

In Section 2, we describe in detail the EARTH-MANNA
system. Section 3 presents performance results for three
applications: Eigenvalue, Grobner Basis, and feed-forward
neural networks. Section 4 discusses the relation to other
work, and Section 5 givea a summary.

2 The EARTH-MANNA System

EARTH (Efficient Architecture for Running THreads) is
a runtime system supporting a fine-grained multithreaded
program-execution model. The code within a function
body is subdivided into threads that are scheduled using
dataflow-like synchronization operations. Threads are non-
preemptive, i.e. once started, they run to completion.
Threaded functions and threads in the threaded functions
can be invoked remotely; threads are the schedulable enti-
ties in the EARTH system. The system maintains a global
address space, and communication is performed by remote
load/store operations and is thus at a very finegrained level,
too. Overheads for thread scheduling and communication
start-up are in the range of a few microseconds (i.e. in the
range of a few tens of instructions in the implementation
of the corresponding operations). Thus, overlapping even
small latencies is possible and worthwhile. EARTH also pro-
vides an efficient dynamic Ioad-bshncing facilities (using a
work-stealing mechanism). For details, see [13].

EARTH was first implemented on MANNA, but it is cur-
rently being ported to other machines like the IBM SP2 and
a cluster of SUN machines connected via a Myrinet switch.
MANNA is a high-performance and low-cost d~tributed-
memory machine. Each node contains two Intel i860 XP
RISC CPUS, 32 MB of local memory, and a 50 MB/s band-
width communication network realized on the basis of hier-
archically organized crossbars. Detailed descriptions can be
found in [9]. EARTH comes in two versions: a two-processor
configuration per node, with one processor (Synchroniza-
tion Unit) performing the specific EARTH operations and
the other (Execution Unit) executing the basic application
codq and a single-processor version executing all the code
together. Both versions were shown to provide much the
same efficiency with the existing smart singl~proccswm im-
plementation [18], All tests shown in the following sections
were run on MANNA with the single-processor EARTH ver-
sion.

EARTH programs can be written in either EARTH-C or
EARTH Threaded-C, both being extensions of C (see Fig-
ure 1 a). EARTH Threaded-C is the basic language dealing
explicitly with threads and remote data accesses. EARTH-
C is supported by the McCAT compiler [12] and hides re-
mote data accesses and tbread handling, i.e. it traaslatm
programs written at an abstract level (treelike parallelism
with communication being hierarchical between parent and
children but not taking place between siblings) into multi-
threaded code. It is thus more convenient to use, but it
currently supports only one specific programming model,
whereas Threaded-C offers considerable flexibilityy in this re-
spect.

F@ure 1 b shows a piece of EARTH Threaded-C code.
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4

EARTH-C

b) TNREADEOvadd (SLOT*done, int size, double
double *b, double *result)

{ SLOTSsmc.sI-0Ts[21 ;
int i; double la, lb;

INIT-SYNC(O, 2, 2, 1);
INIT-STNC(l, size, size, 2) ;

for (i=O; i< size; i++) {

CET-SYNC-D(a++, &la, O);
GET-SYNC-D(b++ , &lb, O);
END-THREAD();

THREAD-i:
DATAJWSC-D(la+lb, result++, 1) ;

J
END-THREAD

TNREAD-2:
RSTNC(done)

ENDJIJNCTION(:
}

);

;

*a,

Figure 1: The EARTH-MANNA language/machine hierarchy (a) and an example of EARTH Threaded-C code (b).

Punctions can be called remotely by using either INVOKE
(explicit node assignment) or TOKEN (subject to automatic
dynamic load balancing), and several ones can be simulta-
neously active on a node. THREADED indicates that the
function contains multiple threads. Threads are labeled by
THREAD-rv the first thread is started at function entry,
and END-THREAD informs the runtime system to schedule
the next ready thread. Remote data accases are split-phase
transactions. GETIW’NC~ and DATA S’NCZ are remote
read and write accesses, respectively, and are defined for dif-
ferent types of data. The third argument of these operations
specifies a synchronization counter that is initialized with
INIT5YNC and decremented on completion of the opera-
tion. The index+ I-th thread is associated with the counter
and ready to run when the counter is zero. The example in
Figure 1 b demonstrates the syntax of EARTH Threaded-C
and how split-phase transactions are used. Two input vec-
tors are added and the resulting vector is returned. Vudd
fetches the &th elements of the vector input-operands in par-
aliel, then — again aIl in parallel — writes the i-th result
value and reads the i+f-th elements. Thread_2 is scheduled
when ail elements have been processed. RSYNC signals the
end of the function by decrementing the counter done. Note
that this small example does not, however, already demon-
stratee the overlapping of computation and communication.
In more realistic code, in many cases there are other threads
performing local computation being performed while load or
store operations are under way.

Note that in the rest of the paper, we use the term ‘taak’
for entities at application level that logicaJly constitute par-
allel work, and ‘thread’ for entities at program level which
would really be executed in parallel at architectural / system
level.

3 Performance Results

3.1 Eigenvalue

Eigenvalue is an example of the important class of search
applications. Other search applications (Protein Folding —
finding all possible polymers of a specific cube, Paraffins —
enumerating all distinct isomers of parafFms up to a certain

size, or TSP — computing the optimal route for a traveling
salesman through a certain number of cities) have already
been shown to parallelize very well on EARTH-MANNA
[13]. This class of applications is also commercially rele-
vant in the still emerging application field of job planning
in industrial environments.

● Application chwacteristic: Search applications create a
tree of search nodes and are easy to parallelize in terms
of the algorithmic structure. However, the overhead in-
volved is critical, because the individual search nodes
(basically constituting the potential parallel tasks) rep-
resent a small amount of work only and the tree unfolds
dynamically and usually with an irregular shape, this
then requiring dynamic load balancing.

We used the eigenvalue calculation algorithm of ScaLA-
PACK based on bisection and the basic parallelization of
Multipol. The basic algorithm takes a symmetric tridiago-
nal matrix and can compute an initial range on the real line
containing all eigenvalues. Furthermore, for a given real
number, it is possible to determine how many eigenvalues
are less than it. The eigenvalues are then found by approx-
imation, successively subdividing the real line (in a binary
way) until the intervals containing eigenvalues — and finally
constituting the solutions — are determined to the desired
accuracy. Thus, this application creates a dynamic search
tree.

The tridiagonaJ matrix is replicated on each node, and
only interval boundaries need to be communicated. Search
nodes consume sufficient time so that threads can be cre-
ated (i.e. parallel code entities be specified) for all search
nodes in the tree, i.e. no grouping of search nodes in threads
is applied (which is necessary in many applications of this
sort to create sufficiently coarse-grained and cost-efkctive
threads). EARTH-C is used for parallelization, and the par-
allel code entitiee are specified explicitly at EARTH-C level
(i.e. we did not attempt automatic detection of parallelism).
The scheduling structure and the approximate solution coin-
cide here. Eigenvalues are not equally spread but clustered,
which means that the tree is irregular and EARTH’s dy-
namic load balancing has to be applied.
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1000x1OOOmatrix
problem size 7310 msec

(original sequential version)
nurnberof tasks created

(= number of search nodes)
935

argument sizes 3 integers and 2 doubles
(4*3+8*2 = 28 bytes)

mean computation time 7.82 msec
per step

depth of leafs 1 to 22
(most between 18 and 22)

Table 1: Characteristics of ScaLAPACK Ekenvalue
rithm.
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F@re 2: Speedups for Elgenvalue calculation by bisection;
time in msec (speedups are relative to original sequential
version).

The argument to each thread is a small structure (see
Table 1). We tried using both individual remote accesses
to the structure elements (by pointer dereferencing) and a
block move for fetching the whole structure at once. The dif-
ferences in rnntime proved to be insignificant (see Figure 2).
For the former veraion, the McCAT compiler automatically
inserts all the threads neceamry for exploiting the latency-
hiding potential with respect to the remote data accesses.
Speedups are close to optimal, i.e. communication, thread
creation and load balancing overhead are in the range of mi-
croseconds and do not significantly influence execution time.
Furthermore, the speedup is significantly better than in the
Multipol veraion on a CM5, speedup there being only about
8 on 20 nodea. With the granularity of the tasks being still
about 8 msec, a communication overhead of 0.5 msec per
task would still, however, “only” reduce ideal speedup from
20 to 18.5 on 20 nodes. Thus, the random work distribu-
tion applied at thread creation time in the Multipol version
probably contributes to the low speedup by not achieving
a sufficiently good load balance. On the other hand, load
balancing should not create much additional overhead, and
the results show that EARTH-MANNA rerdly did not, i.e.
was successful and efficient in this rmp=t.

3.2 Gri5bner Basis

Grobner Basis is another application taken from the Mul-
tipol library and thus already parallelized for distributed
memory. Grobner Basis is a computer-algebra problem,
symbolically performing Gaussian elimination by transform-
ing a eet of polynomials into another set with the same roots,
which are, however, easier to compute. The new set (solu-
tion set ) is analogous to a triangular set of equations that are
solvable by substitution. Grobner Basis computation thus
has applications in solving systems of nonlinear equations
[5]. The algorithm works by forming so-called critical pairs,
taking two polynomials of the already existing ones. Then,
a new polynomial (a so-called S-polynomial) is calculated
from them and simtdified (reduced) bv subtracting multirdes. . ,. . ,
of other polynomials. Polynomials that do not reduce to zero
(i.e. are not a linear combination of existing ones) are added
to the new set. The order of creating and processing pairs
haa a significant impact on the overall amount of work to
be done, and thus on performance, a good selection heuris-
tic being essential. Using the algorithm, the original set is
extended by further polynomials until no more irreducible
onm can appear and the result constitutes a Grobner Basis.
The algorithm is thus a completion procedure, i.e. the new
set represents a partial solution at any point in time. The
basic completion procedure is typical for many other AI ap-
plications, i.e. it forms a typical programming pattern. For
example, the Knuth-Bendix algorithm (also investigated in
[22]) used in theorem provers operates similarly on rewrite
rules (but at a finer level of granularity that is also hard to
mrallelize on shared-memorv svatems).

Performing the reductio& is the bgonthm’s main job,
and the critical pairs thus constitute the work to be done.
The algorithm is psrallelized at this level, i.e. several” good”
pairs are processed in parallel. If any of these computa-
tions yield irreducible polynomials that have to be added
to the solution set, the first ready one is inserted by ac-
quiring exclusive access to the basis. Because globaf irr~
ducibility is required, the next candidates need to be checked
for reducibility again before potentially being inserted, too.
Nodes failing to acquire acceas to the solution set perfbrm
further reductions and try again after having finished the
next reduction. Thus, waiting times are overlapped with
computation at the algorithmic level — which would not
have been available to automatic restructuring. Runtimes
per raduction vary significantly (potentially by several or-
ders of magnitude, see [1]).

Both the solution set and the pairs are shared data struc-
tures (see Figure 3). The pairs queue is implemented as a
distributed shared data structure, i.e. each node maintains
its own queue, but special interface functions allow inter-
node access for adding entries to other nodes’ queues. At
each node, one main thread is running, picking up its work
from the local pairs queue that is ordered by priority of
“goodness”. Paks are constructed from the input polyno-
mials or dynamically from the input and the new polyno-
mials that have been added. The latter are created asyn-
chronously and in varying numbers per node, and are thus
subject to dynamic load balancing which is performed by
means of a simple receiver-initiated ring distribution (mov-
ing pairs as long as a node is found on which the referenced
polynomials are already cached — avoiding waiting times on
the transfer of potentially large polynomials). Our experi-
ments showed that adequate load balancing can be achieved
with this simple strategy. The decentralized maintenance
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Figure 3: Main data structures and operations of Grobner Basis algorithm.

of the queue prevents it from becoming a bottleneck, thus
offering-bett~ scalability, but priorities-are only maintained
locally and thus nodes do not neccsaarily work on the glob-
ally best pairs. The solution set is implemented by some
central maintenance information about its state and by full
replication (read caching) of the polynomials. The solution
set h= only a few entries that potentially need to be ac-
cessed by all nodes. Accesses are read wcesses, because the
algorithm never deletes any polynomial from the solution
set (this is not the only approach, but it simplifies the pro-
cedure, and Chakrabarti and Yelick [5] say they noted no
significant disadvantage). The polynomials are represented
in a compacted form as vectors. For access to the solution
set, a lock hrw to be acquired.

● Application characteristic: llssks are created dynami-
cally and consume varying amounts of runtime. Thus,
dyn-arnic load balancing ~ to be applied. There are
shared data structures, one of them being implemented
in a distributed way and the other in a central way
(with replication of the entries). The programming
style applied is having one main application thread per
node, executing the tasks. Threads on different nodes
operate and communicate asynchronously (because of
the varying execution times for the tasks). Communi-
cation is mutual between nodea, and mostly serves to
access the shared data structures. The application is
dependent on the execution order (with respect to work
performed and thus runtime) and is thus intrinsically
indeterministic in its parallel behavior.

As we have already said, the order in which the pairs are
processed has significant impact on the amount of work that

ultimately has to be done. Parallelization changes the order
in which the pairs are processed and thus may influence the
amount of wmk to be done. Parallel execution can then, in
principle, be superlinear as well as performing very badly.
Potential superlinear speedup by mutual utilization of the
partial solutions of other concurrent solvers is a phenomenon
that is observed and exploited in several AI applications. We
obtained superlinearity in several test runa, and [1] recently
discovered the superlinearity ef%ct for the Grobner Baais
computation, too, discussing the phenomenon in depth and
providing many results of this type. The dependence on the
order in which the pairs are processed makes the applica-
tion intrinsically indeterministic (on shared memory, too),
because subtle time differences in the execution may change
the order of accessing the solution set, Our experiments
showed significant differences in processing time, as can be
seen from Figures 4 and 5. Although moat results are close
to the mean, some vary by a factor of up to 7 for different
runs with the same input.

We adopted the algorithm in its essential structure from
Multipol, but simplified the code that maintains the shared
solution set. The setisextended only and thus a simple vec-
tor is sufficient for its implementation whereas a hash table
and a more complex maintenance are required for the gen-
errdity provided by Multipol’s data structure. Furthermore,
originally the maintenance was performed in a distributed
way, and is now centralized as explained above. (Because
of the simple accesses and the fast communication, the cen-
tral maintenance does not create a bottleneck effect.) This
avoids one broadcast when a new polynomial is inserted.
Our simplication of the data structure and the central main-
tenance in addition enable to release the lock earlier when
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Lazard Katsura-4 Katsura-5

problem size 3761 msec 6373 msec 362750msa
number of tasks created 141 75 168

(= number of pairs)
number of polynomials m solution set 3 as input 5 as input 6 as input

27 added for completion 15 added for wmpletion 26 added for completion
mean comrmtatlon time Rer step 26.7 msec 85 msec 111.86 msec

(time per s;ep varying si~ificantiy) I
mean s~zeof polynomial 454 bytes 439 bytes 3243 bytes

Table 2: Characteristics of the Grobner Baais application (sequential run), all inputs dealt with in total lexicographic order.

performing changes to the solution set. As a basic change, of
course, the operations referring to TAM or the CM5 were to
be replaced to use the EARTH system. Because of the mu-
tual communication, we used EARTH Threaded-C for the
implemeutation. To allow evaluation of the results obtained,
we extracted the characteristics of the sequential algorithm,
as shown in Table 2. More specifically, communication in
this algorithm is applied for

●

●

●

●

b

distributing pairs,

caching polynomials, i.e. broadcasting them to all
nodes,

centrally making knowu the change to the set of poly-
nomials (maintenance at one node),

acquiring the lock (the lock data structure is main-
tained on one node, though performing normal pro-
cessing, too), and

detecting termination (performed by one node that is
currently not doing any other useful work).

The EARTH multithreading model supports asyn-
chronous processing and mmmunications very well. The
specific EARTH operations used for the communication pur-
poses deecribed above are

●

●

●

block moves for transferring the polynomials

individual — synchronizing — data load and stores for
centrally making known changes to the solution set, for
obtaining statua informat ion about the solution set, for
releasing the lock, and for setting the termination flag
per node

remote function calls (invokes) for broadcasting the in-
formation about chariges to the solution set,- for dis-
tributing pairs, for acquiring the lock, and for central
global termination checking.

Invokes are used at some points because they enable
several arguments to be p-d together and computations
on them to be processed within a noninterruptable thread.
(The original Multipol veraion already used remote invo-
cation of Multipol threads — being somehow in between
EARTH threaded functions invocations and threada — for
mutual communication.)

The main benefits of EARTH for this application are the
short communication start-up times. Furthermore, latenciea
for block moves and remote invokes are overlapped with lo-
cal computation. However, the major potential tbr overlap-
ping communication and computation is exploited here at

the higher algorithmic level — where the necessary semau-
tic knowledge is available. F@res 4 and 5 show performance
results. The mean speedups (Figure 4 a) are mostly ideal
for low numbers of nodes, but become increasingly sublinear
for larger numbers of nodes. The exact limit of obtainable
speedup dependa on the problem size, i.e, is about 9 on 11
nodea for Lazard, about 12 on 12 nodes for Katsura-4, and
about 12.5 on 14 nodes for Katzura-5. Thus, for larger prob-
lem sizes we can expect to obtain greater speedups, i.e. the
application is scalable to some extent. The overall commu-
nication cost is fairly small, and the reason for the limited
speedup, is therefore, probably the limited inherent degree of
parallelism. It may also be due in part, however, to the sim-
ple method of work distribution, although our tests showed
no significant idling times. A limited degree of parallelism
would, however, not be surprising, because processing baaed
on logical dependencies is largely sequential (similar limited
speedups for such kinds of AI problems were obtained in
[20]). Figure 4 b shows maximum and minimum values,
too, demoustrating the inherent nondeterminiam of the ap-
plication.

To evaluate the above performance results obtained on
EARTH, we have to compare them to more costly commu-
nication. This is especially important because. the ratio of
computation time to the number of communications is not
too bad here aud the positive influence of a low communi-
cation overhead is therefore not obvious. However, because
the selection heuristic plays a significant role and the inde-
terminism Cr-tea a wide range of results, speedups obtained
in other execution environments (like Multipol) would only
be comparable with exactly the same application configu-
ration and the same teat-evaluation criteria — but these
are not known for the other systems. We therefore “ simu-
lated” higher communication cost by artificially increasing
communication times to 300 pc, 500 paec and 1000 paw
at both sender and receiver side for synchronous commu-
nication, and to only 150 psec, 250 psec, and 500 psec at
the sender side if asynchronous communication can be used.
Furthermore, coat for copying to and from a message buffer
is added. The times can be considered to approximately
reflect the cost of efficient OS-specific message passing and
of standard-library message passing (like MPI). It also gives
an indication about the appropriateness for workstation net-
works where basic transfer cost is higher. “Messages” are
assumed to be immediately accepted (i.e. there is not any
further delay because of a busy receiver). Broadcasts are
assumed to be sent in sequence. The “simulation” and the
modeling of messag~passing systems as described can, of
course, provide a very coarse approximation only. Results
are shown in Figure 5. For low numbers of nodes there is
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Figure 4: a) Mean speedups for Grobner Basis with input baais Lazard, Katsura-4 and Katsura-5. b) Mean, minimum, and
maximum speedups for Grtibner Basis and inputs Lazard (middle), Katsurw4 (bottom, left), and Katsura-5 (bottom, right).
Speedup values are calculated on the basis of 20 ted runs. Note that one node is reserved for detecting termination; the
upper linear line represents ideal linear speedup taking into account this node that does not contribute to the computation;
the lower line represents ideal linear speedup ignoring it. The reason for showing the latter is that there is some hope of
improving the parallelization by letting the termination-detection node perform other work as well.

not much Merence to the EARTH version, but the latter
scales much better. In other words, there is a medurn range
of numbers of nodes — for which parallelism is still available
in the application — in which EARTH allows the exploita-
tion of this parallelism, higher communication overhead as
“simulated” demolishing this potential. However, Katsura-
5 still performs well for 300 ~ and 500 psec because its
granularity is quite high. In the 300 psec case, Katsura-
5 is even faster, which can only be explained by the pair-
selection heuristic creating this astonishing efExt. For the
examples with a smaller computationlcommunication ratio,
EARTH clearly shows its superiority.

Figure 5 also shows minimum and maximum values for
checking our expectation of a smaller spread of values. For
Lazard, this expectation is met (in the range of mostly lin-
ear speedup, the spread of values is much smaller for the
EARTH version, especially when compared with the 300
psec and 500 psec version), but for Katsura-4 it is not
(spread is greater with EARTH). For Katsura-5 no specific
conclusion can be taken in this reaped. More tests are there-
fore needed to obtain reliable conclusions with respect to the
effect on spread.

To summarize, we can conclude that for a limited num-
ber of machine nodes, chosen in correspondence with the
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Fimme 5: Mean. minimum, and maximum sDeedurmof Grobner Basis with input basis Lazard (upper row), Katsura-4 (middle. .
row) and Katsura-5 (lower row) for different communication

problem size and the inherent degree of parallelism, good
speedups can be obtained for Grobner Basis on distributed
memory when using the EARTH multithreaded architec-
ture, whereas the exploitable degree of parallelism is lower
for systems with higher communication overhead (message
passing via a specific operating system or a standard li-
brary). For larger problem sizee as Katsura-5 with a bet-
ter ratio of computation to communication, the obtainable
speedup is even higher, but the difference to higher-overhead
communication systems then is less significant.

Because the completion procedure is a typical AI prob-
lem, multithreading can be expected to bring even greater
benefits for specific applications of this type that have a
worse ratio of computation to communication.

3.3 Neural Natwarks

Artificial neural networks are an application area of in-
creasing practical use. They come in two major forms:
feedforward and recurrent networka. The former are more
wid~pread, and they are the ones considered here. The
training phase in particular is very time-consuming and thus
intereating as regards speedup by parallelization. There are

overheads (300 ‘paec, 500 paec, 1000-paec from left to right),

two main levela for parallelization [19]: sample parallelism
and unit parallelism. In the training phase, the net is fed
thousands of teat cases (samples), and sample parallelism
means exploiting the inherent data parallelism and running
severaf neural networks in parallel, each processing different
subsets of the samples in batch mode (without any commu-
nication); only at the end of the training phase is informa-
tion exchanged. Unit parallelism parallelizes the network
itself. Beczv.m networks are not very large and their com-
putations are very closely coupled (see below), the degree of
parallelism obtainable is known to be limited. Here, how-
ever, updates of the net can be performed after each sample,
and there are several investigations in the literature showing
that such an approach usually converges faster than batch
processing (i.e. the overall amount of work to be performed
is then smaller). Thus, unit parallelism is interesting, too,
and could, for example, be exploited in a hybrid approach,
mixing unit and sample parallelism. This would support
the frequently used hybrid approach to updating, namely
repeatedly presenting small batches and performing an up-
date after every batch (this — depending on the view —
dividing an imaginary overall batch into several pieces or
collecting several sarnplea to one batch).
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Figure 6: Basic principle of feedforward-neursl-netwmk computation with potential grouping of units (a), and structure
resuking from partitioning units according to indicated potential grouping (b). c) shows forward-pass calculation per unit.

c Application characteristic For unit parallelism in neu-
ral networks and the current sizes of networks, the
amount of local work per unit is fairly low, where~ the
amount of communication is very high (in the standard
full linkage between the units of two adjacent layers).
Thus, unit parallelism is at the very end of the spec-
trum of PamNelizable programs, with a very critical
ratio of computation to communication.

Artificial neural networks (see Figure 6 a) consist of a
set of units (representing neurons) organized in several lay-
ers (typically 3: input layer, output layer and one hidden
layer), and — in the basic case — all units of one layer are
linked to all units of the next one. Each unit calculates a
scalar vector product on the vector of input or previous-layer
data and on a vector of local weights. Thus, although neu-
ral networks can be applied to the solution of non-numerical
problems (like classification or pattern matching), they in-
terndy are a numeric problem (pertlmning floating-point
operations). For each sample, these calculations are per-
formed at each unit per layer with an information flow from
the input to the output layer. Afterwards, the weights are
updated by an information flow in the opposite direction
(backpropagation), realizing the learning of the net. Paral-
lelization at the unit level means performing the unit cal-
culations per layer in parallel. Typical numbers of units
per layer in currently existing practical systems are between
80 and 200 [17]. Larger nets are not used, because of the
computational cost in the sequential case, and because it is
unclear whether larger numbers of units would really be of
benefit; we did, however, add a test with 720 units per layer.

Several units can be grouped per machine node (which
means “slicing” the layer), this increasing the amount of
work per node while reducing the overall number of com-
munications (eee Figure 6 b). However, for the current sizes
of networks, either the potential of grouping or the degree
of parallelism is low. This is even true for shared-memory
environments (involving proocew/thread management and
synchronization overhead, too).

Thble 3 shows the characteristics of the application. We
tested firat the forward pass separately, and then both for-
ward and backward pass together inclusive update of the
weights. Performance results are shown in Figures 7 and 8.
Communication is centralized: all nodes receive the input
data for the next layer from one central node and send the
result back to it. This reduces the overall number of commu-
nications on the network, and at the same time synchronizes
the layer computations. In order to further improve perfor-
mance, a tree organization (as described in [6]) is used for
the communication. In comparison to an ealier version us-
ing sequential communications, speedups increased — for
80 units from a maximum of 8 to a maximum of 12. We
used 3 layers, resulting in 2 computation phases. The num-
ber of units is the same per layer, and full linkage is used.
In the forward pass, communication takes place for a call
of the computation phase per layer, a data transfer from
hidden to output layer, and a data transfer from the out-
put layer to the central node (usually calculating a global
error value of the current net status then). The backward
pass being added, there is another initiation of a compu-
tation phase (the forward and the backward computation
at the output units can be comb&d) and one additional
data exchange of error valuea from output to hidden layer.
Communication is more costly in the backpropagation be-

1umts I sequent ml I rutlme I

Thble 3: Characteristic of neural network computation, for-
ward paas (all computations using floats fir the operands).
Runtimes for forward and backpropagation together is about
twice the time in our test settings.
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F@ure 7: Speedup for forward pace only in neural network
computation (using different sizes of networks and different
numbers of machine nodes).

cause there is not a simple broadcaat of the same value, but
different values need to be communicated to different units.
EARTH Threaded-C is used for the implementation because
we wanted to perform subtle tuning and experiments. The
algorithm, however, in the organization described above, is
transformed to a tredike one. Except that some short-term
data is collected and distributed centrally (the data flowing
along the links), long-term data (the weights and accumu-
lated errors) is maintained per node being exclusively used
by the nodee and surviving the individual layer activations.

EARTH performs astonishingly well for this
communication-critical application. For networks of
the size currently in practical use (i.e. 80 and 200),
speedups of 10 on 16 nodes for 80 units and of about 14.5
on 20 nodes for 200 units were achieved. When considering
the forward pass only, speedups of 11 on 16 nodes (runtime
458 paec) are obtainable for 80 units, and for 200 units per
layer speedups of 17 are achieved on 20 nodes (rnntime
1.59 msec). Achieving these speedups despite the high
interconnection in communication exchange and the overall
short runtime, demonstrates the effectiveness of EARTH’s
communication and that only systems with such a low
overhead can lead to significant speedups for small-sized
neural networks often being practically in use. Note that
the network as described is just one basic instance of
feedfbrward networks. The number of units may differ per
layer and the linkage may be partial only. Furthermore,
the El function (see F@re 6 c) was set to a quite simple
one in our test and may be more costly, or the error calcu-
lation performed differently. Compilers for neuraLnetwork
description languages [15] might perform the appropriate
generation of EARTH code and then well exploit EARTH’s
potential for parallelizing even small nets.

4 Related Work

Instanca of search applications — for example, chess [14] —
have already been successfully parallelized on other systems,
and there are several publications on problems of this sort
(e.g. [16]). However, the lower the overhead in communica-
tion, dynamic load balancing and thread management, the
more problems of this sort we can expect to parallelize ef-
fectively. Furthermore, in most tree-like search applications,
the individual steps are very small, and thus a partitioning
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Figure 8: Speedup for combination of forward and backward
paas in neural network computation (using different sizes of
networks and different numbers of machine nodes).

grouping several individual steps — even if overhead is kept
VeIY iow — is additionally required, as diac~d in several

of the papers on parallel search and in [20]. This subject is
also addressed in the implementation of functional languages
[11]. Despite partitioning, in functional languages there is
potentially still much fin-grained tree-liie parallelism and
functional languages, too, were shown to be supported by
multithreading approaches [10]).

For Grobner-Basis computation, there exist different ap-
proaches besides the one Yelick et al. have used here. For
example, a recent paper of Amrhein et al. [1] proposes a
VeI’Y different approach, currently running on shared mem-
ory only. It is not, however, our intention to compare dif-
ferent Grtibner-Basis algorithms with respect to their effec-
tiveness, but rather to show the influence of communication
cost. The approach of Yelick uses an abstract data-structure
library, providing convenience of use but inherently impos-
ing extra overhead. Amrhein et al. also discuss the inde-
terminism etkt in depth. For neural networks, most ap-
proaches choose sample parallelism, but some have experi-
mented with unit parallelism, as reported in the summary
given by [19]. However, no systematic performance tests are
presented there.

For Griibner, our comparison to message-passing cost is
a bit pessimistic with respect to broadcasting dat% some
operating systems offer special optimized broadcasting op-
erations (for example, [6] reports that broadcasting cost is
reduced to be even less than logarithmic in the number of
machine nodes by organizing communication M a special
tree). Broadcasting cost makes up a significant amount of
the overall communication overhead in Grobner. On the
other hand, we were quite optimistic assuming the receiver
to handle the message immediately. At least, for EARTH
it is less important to think about optimizations for specific
communication structures, although for the critical Neural
Networks we could achieve some improvement this way. Fur-
thermore, some modern operating systems like PEACE [9]
[4] or Nexus [8] offer more efficient communication for spe-
cial cases. PEACE — requiring 210 psec for a synchronous
remote call (involving two-way communication) — providea
asynchronous one-way communication, too. This could be
exploited for some of the communications in Grobner. Nexus
provides — in addition to standard bufTering messages —
one-way messages in the form of so-called active m-agea,
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which avoid buffering, and are thus basically faster but lead
to Ims of safety. There are special features in PE.ACE,
too, that allow us to avoid buffering for large messages and
transfer data directly to the desired data space (requiring
two messages then, however) — as this is the standard case
in EARTH. Thus, both PEACE and Nexus are mixed ap-
proaches evolving to integrate features originally provided
by fine-grtined multithreaded systems, although still pay-
ing some price for their generality as an operating system.
Message-passing libraries like MPI involve much higher over-
head (being multiples of that of basic message passing),
though they offer the significant benefit of portability. As
in the case of the examples presented, the overhead is too
high for applications with a high ratio of communication
to computation. In general, message passing libraries such
as usually provided by operating systems often provides —
similar to abstract data-structure libraries — convenience
of use and mechanisms for supporting safety (like checking
access rights to data). These benefits, of course, have to be
paid for by some cost. Multithreaded systems like EARTH
are highly tuned for maximum efficiency, but require more
support by a compiler, ensuring e.g. to some degree correct-
ness of data accemes.

There are other multit breaded systems at the same fine
grained level as EARTH. e.g. TAM [7] or Cilk [3] which
have slightly different features. They run on different ma-
chines, and it was therefore not possible to quantitatively
compare their performance to that of EARTH for the exam-
ples shown, but our concern was to compare EARTH with
coarser level systems anyway.

5 Summary and Future Work

EARTH was shown to effectively support applications that
have a fairly critical computation/ communication ratio and
may additionally require asynchronous communication, dy-
namic thread creation, and dynamic load balancing. Thus,
EARTH allows us to parallelize applications or application
subcenters on distributed memory that otherwise are not
parailelizable or with much less speedup. Experimental re-
sults are presented for an Eigenvalue massive search prob-
lem, the computer-algebra problem of Grobner Basis com-
putation, and unit parallelism in feedforward artificial neu-
raf networks. Grobner Basis is an application belonging to
the category of complex reasoning or transformations, in-
volving shared data structures and strong internal control
dependencies. Speedup here is inherently limited, but the
speedups obtained — in the range of 5 to 20 — are never-
theless of great significance because of the potentially large
probIem sizes. Furthermore, there is a trend toward building
more complex hybrid symbolic/numeric applications, and
such computations may appear as subcenters of large pro
grams. While isolated problems — because of their limited
degree of parallelism — can also be run on shared-memory
machines, for hybrid applications it is advantageous not to
be dependent on static organizations with perhaps shared-
memory subclusters, but to have the option of flexible par-
titioning and assignment of processing power to match the
concrete application structure (although cluster organiza-
tions of machine nodee [2] impose differences in transfer time
for inter- and intra-cluster communication, especially when
the amount of data is large). Mixed programs with fre-
quent smaIl communications, on the one hand, and rare large
communications, on the other, require effective support of

both types of communications, as provided by EARTH’s
polling watchdog [18]. Moreover, in tbe Grobner Basis we
dealt with the runtime-indeterminism problem, which, how-
ever, showed further investigation to be needed. Unit paral-
lelism in neural networks involves very intensive data link-
ing, thus coming close to the limits of parallelizability, even
on shared-memory architectures. Still significant speedup
that makes it worth considering parallelization was obtained
on EARTH.

Furthermore, the results show that when overhead is
critical it is worth having highly optimized code. In other
words, the overhead that has to be paid for the general-
ity of libraries may then be too high just as the price that
has to be paid for the convenience and generality provided
by messagepassing systems is not affordable in overhead-
critical applications. It is therefore desirable to have com-
pilers supporting typical computation/communication pat-
terns other than tree-like structures, so that more specialized
library routines can be used in a safe way or directly code be
generated using more low-level mechanisms. Then both user
convenience and efficiency can be provided and fine-grained
multithreaded systems become fully accepted for practical
use. The EARTH-C compiler is an important step in this
direction.
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