Comparing the Performance of Different x86
SIMD Instruction Sets for a Medical Imaging
Application on Modern Multi- and Manycore Chips

Johannes Hofmann

Chair for Computer Architecture
University of Erlangen—Nuremberg

johannes.hofmann@fau.de

Abstract

Single Instruction, Multiple Data (SIMD) vectorization is a major
driver of performance in current architectures, and is mandatory for
achieving good performance with codes that are limited by instruc-
tion throughput. We investigate the efficiency of different SIMD-
vectorized implementations of the RabbitCT benchmark. RabbitCT
performs 3D image reconstruction by back projection, a vital oper-
ation in computed tomography applications. The underlying algo-
rithm is a challenge for vectorization because it consists, apart from
a streaming part, also of a bilinear interpolation requiring scattered
access to image data. We analyze the performance of SSE (128 bit),
AVX (256 bit), AVX2 (256 bit), and IMCI (512 bit) implementa-
tions on recent Intel x86 systems. A special emphasis is put on the
vector gather implementation on Intel Haswell and Knights Corner
microarchitectures. Finally we discuss why GPU implementations
perform much better for this specific algorithm.

Keywords SIMD, Intel MIC, gather, computed tomography, back
projection, performance

1. Introduction

Single Instruction, Multiple Data (SIMD) is a data-parallel execu-
tion model enabling to do more work with the same number of in-
structions. Because of its integration in existing microarchitectures
it is a standard technology for increasing performance in modern
processors. While the idea originated in the early seventies, the first
implementation in a commodity processor was Intel’s MMX in-
struction set extension for the x86 Pentium processor line in 1996.
With AltiVec/VMX (1998) for PowerPC and SSE (1999) for x86
more capable 128 bit-wide SIMD instruction set extensions fol-
lowed. For the software the introduction of SIMD was a paradigm
shift as in contrast to previous hardware optimizations, which were
designed to work transparently, the software must make explicit use
of the new instructions in order to leverage the full potential of new
processors. Vendors promised that optimizing compilers would en-
able the efficient use of the new instructions, but it soon turned

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

WPMVP ’14,  February 16, 2014, Orlando, FL, USA.

Copyright © 2014 ACM 978-1-4503-2653-7/14/02. .. $15.00.
http://dx.doi.org/10.1145/2568058.2568068

57

Gerhard Wellein

Erlangen Regional Computing Center
University of Erlangen—Nuremberg

Jan Treibig = Georg Hager

{jan.treibig,georg.hager,gerhard.wellein } Ofau.de

out that in many cases data structures must be adapted and kernels
must be rewritten with the help of compiler intrinsics or even in
assembly code. Intel incrementally updated the SIMD capabilities
by introducing new instruction set extensions. SSE comprised 70
instructions, SSE2 (2001) added 144, SSE3 (2004) 29, and SSE4
(2006) 54 new instructions, for a total of 297 instructions [2]. In
2011 Intel doubled the SIMD width to 256 bit with AVX. Still of the
total 349 instructions introduced with AVX only a subset of 92 in-
structions supported the 256 bit registers and only few new instruc-
tions were added. This was changed in 2013 with AVX2, which
promoted most instructions to 256 bit and again added new ones.
The new instructions can be grouped into complex instructions for
arithmetic targeted at specific application classes, horizontal oper-
ations, more powerful in-register reordering instructions, and oper-
ations promoted to vectorized execution. While most of this can be
seen as incremental improvements, AVX2 introduces instructions
that change the way SIMD can be employed. This is the gather
instruction together with the ability to mask out SIMD lanes with
predicate registers. The hope is that this enables the use of SIMD
in new application classes with more complex data access patterns
where SIMD could not be used efficiently up to now. The first im-
plementation of the AVX2 instruction set is in the Intel Haswell mi-
croarchitecture. Haswell also features Fused Multiply-Add (FMA)
instructions in a separate instruction set extension (FMA3).

In 2006 Intel started developing an x86 many-core design (co-
dename Larrabee), initially targeted as an alternative to existing
graphics processors. It uses a 512 bit SIMD instruction set called
IMCI (Initial Many Core Instructions). While in 2010 the usage as
a GPU was terminated, the design was refined and eventually re-
targeted as an accelerator card. The first product based on this de-
sign, the Intel Xeon Phi, was available in early 2013 with 60 cores
and 8 GB of main memory. IMCI already anticipated and imple-
mented many current developments in SIMD instruction sets and
allowed to gain experience with a working implementation. The
instruction set comprises gather/scatter instructions, predicate reg-
isters, and FMA.

This paper studies the efficiency of an important algorithm from
medical imaging when mapped to different Intel SIMD instruction
set extensions. We look at the Instruction Set Architecture (ISA)
interface as well as its implementation in a concrete microarchitec-
ture. Although we also present results for compiler-generated code,
a detailed analysis of the conditions under which a compiler would
be able to achieve the same performance level as hand-crafted as-
sembly is out of scope for this paper. Still we discuss how well an
instruction set extension is suited for automatic generation of effi-
cient code.



We have chosen the RabbitCT benchmarking framework as test
case [7]. RabbitCT implements volume reconstruction by back pro-
jection, which is the performance limiting part of many Computed
Tomography (CT) applications. This operation is well suited for
evaluating SIMD implementations, because it consists of streaming
as well as scattered data access patterns and is therefore non-trivial
to vectorize. Although a naive performance model suggests that the
runtime of the algorithm should be determined by main memory
bandwidth, its implementation with existing instruction sets intro-
duces so much overhead that instruction throughput becomes the
bottleneck. Therefore it can be seen as a prototype for applications
in which the data cannot be loaded block-wise, but instead requires
in-register shuffles. An interesting aspect of RabbitCT is that it is
also a popular target for GPU-based efforts and therefore provides
a good case to compare general purpose multi- and manycore de-
signs with GPUs.

We picked an Intel Xeon IvyBridge-EP two-socket system for
executing the SSE and AVX code variants and an Intel Xeon Phi
accelerator card for the IMCI kernels. Unfortunately a multi-socket
system implementing AVX?2 and FMA3 is not yet available. There-
fore we choose a single socket Intel Xeon Haswell system to exe-
cute the AVX2/FMA3 kernel.

This paper is structured as follows. Section 2 gives an overview
of previous work about the performance optimization of this algo-
rithm. The test systems used are described in Section 3. Section 4
introduces the RabbitCT benchmark and motivates its use for this
study. Next we cover the SIMD kernel implementations in Section
5. We briefly introduce all optimizations applied and specifically
cover the SIMD vectorization with an emphasis on the gather in-
struction in IMCI and AVX2. The section closes with a detailed
instruction code analysis for the resulting kernels. The results are
presented in Section 6. We separate single core from full system
results to be able to clearly analyze the SIMD speedup efficiency.
We also present microbenchmarking results showing the instruc-
tion latency for different settings in the current gather implementa-
tions. In Section 7 we compare our results with the fastest published
GPU result and try to explain why this specific application is well
suited for GPUs. We also present performance numbers for gener-
ated code in Section 8. To conclude we summarize our results and
give an outlook.

2. Related Work

Due to its relevance in medical applications, reconstruction in com-
puted tomography is a well-studied problem. As vendors for CT
devices are constantly looking for ways to speed up the reconstruc-
tion time, many computer architectures have been evaluated over
time. Initial products in this field used special purpose hardware
based on FPGAs (Field Programmable Gate Arrays) and DSPs
(Digital Signal Processors) [1]. The Cell Broadband Engine, which
at the time of its release provided unrivaled memory bandwidth,
was also subject to experimentation [3, 8]. It is noteworthy that CT
reconstruction was among the first non-graphics applications that
were run on graphics processors [6]. However, the use of varying
data sets and reconstruction parameters limited the comparability
of all these implementations. In an attempt to remedy this prob-
lem, the RabbitCT framework [7] provides a standardized, freely
available CT scan data set and a uniform benchmarking interface
that evaluates both reconstruction performance and accuracy. Cur-
rent noteworthy entries in the RabbitCT ranking include Thumper
by Zinsser and Keck [11], a Kepler-based implementation which
currently dominates all other implementations, and fastrabbit by
Treibig et al. [10], a highly optimized CPU-based implementation.
The presented work is partly based on the results of fastrabbit, im-
proving it and providing an implementation for the Intel IMCI and
AVX2 instruction sets.

58

3. Experimental Testbed

A standard two-socket server based on the IvyBridge-EP microar-
chitecture was chosen for executing the SSE/AVX kernels. It em-
ploys two-way SMT and has ten moderately clocked (2.2 GHz base
frequency) cores per socket. Sixteen vector registers are available
for use with SSE and AVX. Using floating-point arithmetic, each
core can execute one multiply and one add instruction per cycle,
leading to a peak performance of eight Double Precision (DP) or
16 Single Precision (SP) Flops per cycle. Memory bandwidth is
provided by means of a ccNUMA memory subsystem with four
DDR3-1600 memory channels per socket.

For the AVX2/FMA3 kernel a single-socket Intel Xeon server
based on the Haswell microarchitecture was used. This system has
four cores (two-way SMT) and 8 MB of L3 cache.

The Intel Xeon Phi is located on a PCle card and runs its own
operating system. It consists of a single chip providing 60 low-
frequency cores with four-way SMT. The cores are based on a mod-
ified version of P54C design used in the original Pentium processor
(1995). Each core is in-order and two-way superscalar, featuring a
scalar pipeline (V-pipe) and a vector pipeline (U-pipe). The Vec-
tor Processing Unit (VPU) connected to the U-pipe features a total
of 32 512bit vector registers and is capable of FMA operations,
yielding a total of 16 DP (32 SP) Flops per cycle. The cores are
connected via a bidirectional ring bus. Eight GDDRS memory con-
trollers with two channels each are connected to the ring bus. The
Xeon Phi offers different settings for usage, such as offload (com-
mon for GPUs) and native mode. We have used the native execution
model in which everything is executed on the accelerator card and
data transfers to and from the card are not taken into account. An
overview of the test machine specifications is given in Table 1.

4. RabbitCT Benchmark

In CT an X-ray source and a flat-panel detector positioned on op-
posing ends of a gantry move along a defined trajectory—mostly a
circle—around the volume that holds the object to be investigated.
X-ray images are taken at regular angular increments along the way.
In general 3D image reconstruction works by back projecting the
information recorded in the individual X-ray images (also called
projection images) into a 3D volume, which is made up of individ-
ual voxels (volume elements). In medical applications, this volume
almost always has an extent of 5123 voxels. To obtain the intensity
value for a particular voxel of the volume from one of the recorded
projection images we forward project a ray originating from the
X-ray source through the center of the voxel to the detector; the in-
tensity value at the resulting detector coordinates is then read from
the recorded projection image and added to the voxel. This process
is performed for each voxel of the volume and all recorded projec-
tion images, yielding the reconstructed 3D volume as the result.
Performance comparisons of different optimized back projec-
tion implementations found in the literature can be difficult because
of variations in data acquisition and preprocessing, as well as dif-
ferent geometry conversions and the use of proprietary data sets.
The RabbitCT framework was designed as an open platform that
tries to remedy these problems. It features a benchmarking inter-
face, a prototype back projection implementation, and a filtered,
high resolution CT dataset of a rabbit; it also includes a reference
volume that is used to derive various image quality metrics. The
preprocessed dataset consists of 496 projection images that were
acquired using a commercial C-arm CT system. Each projection is
1248 %960 pixels wide and contains the filtered and weighted inten-
sity values as single-precision floating-point numbers. In addition,
each projection image p; comes with a separate projection matrix
A; € R3*4, which is used to perform the forward projection. The
framework takes care of all required steps to set up the benchmark,



Microarchitecture Intel IvyBridge-EP Intel Haswell Intel Knights Corner
Model Xeon E5-2660 v2 Xeon E3-1240 v3 Xeon Phi 5110P
Base/Max. Turbo Clock Speed 2.2GHz/3.0GHz 3.4 GHz/3.8 GHz 1.053 GHz/-
Sockets/Cores/Threads per Node 2/20/40 1/4/8 1/60/240

SIMD Support SSE (128 bit), AVX (256 bit) AVX2 (256 bit), FMA3 (256 bit) IMCI (512 bit)
Vector Register File 16 Registers 16 Registers 32 Registers

Node L1/L2/L3 Cache 20%x32kB/20x256 kB/2x25 MB 4x32kB/4%x256kB/8 MB 60%32kB/60x512kB/-
Node Main Memory Configuration 8 channels DDR3-1866 2 channels DDR3-1600 16 channels GDDRS5 5GHz
Node Peak Memory Bandwidth 119.4 GB/s 25.6 GB/s 320GB/s

Node Update Benchmark Bandwidth 98 GB/s (81%)

23 GB/s (90%) 168 GB/s (53%)

Table 1. Test machine specifications. “Node Update” is a streaming multi-threaded benchmark that modifies an array in memory.

so the programmer can focus entirely on the actual back projection
implementation, which is provided as a module (shared library) to
the framework.

4.1 Algorithm

A slightly compressed version of the unoptimized reference imple-
mentation that comes with RabbitCT is shown in Listing 1. This
code is called once for every projection image. The three outer for
loops (lines 1-3) are used to iterate over all voxels in the volume;
note that we refer to the innermost x-loop, which updates one “line”
of voxels in the volume, as the “line update kernel.” The loop vari-
ables x, y, and z are used to logically address all voxels in mem-
ory. To perform the forward projection these logical coordinates
used for addressing must first be converted to the World Coordi-
nate System (WCS), whose origin coincides with the center of the
voxel volume; this conversion happens in lines 6-8. The variables
0 and MM that are required to perform this conversion are precalcu-
lated by the RabbitCT framework and made available to the back
projection implementation in a struct pointer that is passed to the
back projection function as a parameter.

After this the forward projection is performed using the corre-
sponding projection matrix in lines 10—12. In order to transform the
affine mapping that implements the forward projection into a lin-
ear mapping homogeneous coordinates are used. Thus the detector
coordinates are obtained in lines 14 and 15 by dehomogenization.

The next step is a bilinear interpolation, which requires con-
verting the previously obtained detector coordinates from floating-
point to integer (lines 17—18) to address the intensity values in the
projection image buffer I. The interpolation weights scalex and
scaley are calculated in lines 20-21.

The four intensity values needed for the bilinear interpolation
are fetched from the buffer containing the intensity values in lines
26-36. The if statements ensure that the image coordinates lie
inside the projection image; in case the ray does not hit the detector,
i.e., if the coordinates lie outside the projection image, an intensity
value of zero is assumed (lines 24-25). Note that the projection
image is linearized, which is why we need the projection image
width in the variable width (also made available by the framework
via the struct pointer passed to the function) to correctly address
data inside the buffer.

The actual bilinear interpolation is performed in lines 39-41.
Before the result is written back into the volume, it is weighted
according to the inverse-square law (line 43). The variable w holds
the homogeneous coordinate, which is an approximation of the
distance from the X-ray source to the voxel under consideration,
and can be used to perform the weighting.

For all further analysis we will structure the overall algorithm
in three main parts. Part 1 consists of the geometry computation
involving the calculation of the index in detector coordinates. Part 2
involves of the actual loading of the intensity values from the

59

for (z=0; z<L; ++z) { // iterate over all wozels
for (y=0; y<L; ++y) {
for (x=0; x<L; ++x) {

// PART 1

// convert from VCS to WCS

float wx = 0 + x *x MM;

float wy = 0 + y * MM;

float wz = 0 + z *x MM;

// convert from WCS to ICS

float u = wx*A[0] + wy*A[3] + wzxA[6] + A[9];
float v = wx*A[1] + wy*A[4] + wzxA[7] + A[10];
float w = wx*A[2] + wy*A[5] + wzxA[8] + A[11];
// de-homogenize

float ix = u / w;

float iy = v / w;
// integer indices to access projection image
int iix = (int)ix;
int iiy = (int)iy;
// calculate interpolation weights
float scalex =
float scaley = iy - iiy;
// PART 2
// load four values for bilinear interpolation
float valbl = 0.0f; float valbr = 0.0f;
float valtr = 0.0f; float valtl = 0.0f;
if (iiy>=0 && iiy<width && iix>=0 && iix<height)

valbl = I[iiy * width + iix];
if (iiy>=0 && iiy<width && iix+1>=0

&& iix+1<height)

valbr = I[iiy * width + iix + 1];

if (iiy+1>=0 && iiy+1<width && iix>=0
&& iix<height)

valtl = I[(iiy + 1) * width + iix];

if (iiy+1>=0 && iiy+1<width && iix+1>=0
&& iix+1i<height)

ix - iix;

valtr = I[(iiy + 1)* width + iix + 1];
// PART 3
// perform bilinear interpolation
float valb = (l1-scalex)*valbl + scalex*valbr;
float valt = (l1-scalex)*valtl + scalex*valtr;
float val = (1-scaley)*valb + scaley*valt;

// add weighted results to wvozel
VOL [z*L*L+y*L+x] += val / (w * w);
Y // z-loop
} // y-loop
} // z-loop

Listing 1. Unoptimized reference back projection implementation
processing a single projection image.



projection image. Finally in Part 3 the bilinear interpolation and
the update of the voxel data is performed.

4.2 Code Analysis

One voxel sweep incurs a data transfer volume which consists
of the loads from the projection image and an update operation
(VOL [1]+=s for all i) to the voxel array. The latter causes 8 bytes
of traffic per voxel and for the medically relevant problem size of
5123 voxels results in a data volume of 1 GB per projection image,
or 496 GB for all projections. The main memory traffic caused by
loading the intensity values from the projection images is hard to
quantify since it is not a simple stream; it is defined by a “beam”
of locations slowly moving over the projection image as the voxel
update loop nest progresses. It exhibits some temporal locality,
which allows for a certain degree of caching, since neighboring
voxels are projected on proximate regions in the image, but there
may also be multiple streams with large strides if the beam sweeps
across the image orthogonal to the rows. On the computational
side, the basic version of this algorithm performs 13 additions, 5
subtractions, 17 multiplications, and 3 divides.

5. Implementation

Task parallel programming is based on OpenMP: The voxel volume
is segmented into voxels planes that can be processed independent
from each other. All line update kernels (SSE, AVX, AVX2/FMA3,
IMCI) are written in assembly language and use all of the optimiza-
tions found in the original fastrabbit implementation [10].

The presented work improves on these achievements. The orig-
inal algorithm calculating the clipping mask! had minor flaws,
which have been remedied. For a 5123 volume we can reduce the
number of voxels that have to be processed by almost 10% when
using the improved instead of the original clipping mask. More-
over parameter handling and instruction scheduling inside the ker-
nel was improved leading to an overall speedup of a factor of 1.25
compared to the original fastrabbit implementation.

5.1 SIMD Vectorization

Part 1 of the algorithm is straightforward to vectorize. A viable
optimization on all architectures is to replace the divide with a re-
ciprocal instruction. The reciprocal is pipelined with a throughput
of one cycle and has a lower latency compared to the standard di-
vide. On KNC the reciprocal provides full accuracy; on the CPU,
however, it has a reduced accuracy (11 bits of mantissa). Neverthe-
less, the quality of the resulting reconstruction is similar to that of
GPU implementations. As a result of Part 1, the detector indices
have been computed and are located in SIMD registers.

Part 2 is the most difficult part of the algorithm, because the
required detector values are not contiguous in memory. Moreover,
the contents of a SIMD register cannot be used for addressing
(i.e., as pointers or offsets) in SSE and AVX. Therefore the SIMD
register containing the indices must be stored back to memory and
loaded again into a general purpose register for addressing. Since
two adjacent values are always needed (cf. bilinear interpolation),
the image data can be loaded in pairs. The interpolation weights
need to be rearranged to match the order of the intensity values.
While Part 2 looks simple in C code, it requires a lot of instructions
to implement it efficiently using SSE and AVX. This part therefore
does not scale very well with increased register width.

In Part 3 the actual bilinear interpolation is performed. It re-
quires some additional reordering of the data in the SIMD regis-
ters, but is otherwise straightforward to vectorize. The SSE and

! For some projection angles several voxels are not projected onto the flat-
panel detector. For these voxels a zero intensity is assumed. Such voxels can
be “clipped” off by providing proper start and stop values for each x-loop.

I Y T

60

AVX implementations are very similar, the latter requiring more
reordering and adding more overhead for loading the data due to its
doubled SIMD width.

The main difference between SSE/AVX and AVX2/IMCI is the
availability of FMA and gather instructions in the latter. A signif-
icant part of the arithmetic operations can be mapped to FMAs.
The gather instruction simplifies the implementation considerably,
since it enables using the indices in the SIMD register directly for
addressing. However, some peculiarities of the IMCI ISA diminish
this benefit. The AVX?2 implementation is very similar to IMCI but
provides a much simpler interface to the gather instruction, saving
50% instructions compared to the IMCI version. Instruction set-
wise, the gather instruction is a main benefit for this algorithm, so
we introduce it in more detail in the following section.

5.1.1 Gather Instruction Interfaces

kxnor k2, k2

..L100: vgatherdps zmm13{k2}, [rdi + zmml7 * 4]
jkzd k2, ..L101
vgatherdps zmm13{k2}, [rdi + zmml7 * 4]
jknzd k2, ..L100

..L101:

Listing 2. Gather instruction interface in IMCI.

Listing 2 shows the instruction code for one gather construct
with IMCI. The vgatherdps instruction loads 16 single-precision
values (or fewer, depending on which bits of the mask register—k2
in our example—are set) into a register from the 16 addresses spec-
ified in its second argument. Instead of fetching all data with one
instruction, vgatherdps works by getting the data cache line-wise
per invocation; this means that every time the gather instruction is
used, it will fetch only one cache line (CL), load all the values that
it is supposed to gather from it, store them in the destination vector
register, and finally zero out the bits of the components that have
been filled in the vector mask register. As a consequence, the num-
ber of gather instruction depends on the distribution of the data:
If all data resides in one CL then one gather instruction is suffi-
cient; in the worst case, each value is located in a different CL,
which will require sixteen gather instructions. The jkzd instruc-
tion in line 3 checks the contents of the vector mask register that
was updated in the line before by the vgatherdps instruction. If
the mask register is zero, i.e., all zero bits indicating that all data
has been gathered, control flow continues at label . .L101 in line
6; if the mask register is non-zero, i.e., if one or more bits are set,
indicating that there is still data to be fetched, no jump is performed
and the vgatherdps in line 4 is scheduled next. After more data
has been gathered and k2 has been updated, the vector mask regis-
ter is tested again for zero by the jknzd in line 5. If there is still data
to be fetched, control flow will jump back to label . .L100 in line
2, starting the gather construct all over. If all data has been fetched,
the construct is left. This two-stage strategy was obtained by exam-
ining the compiler output for non-contiguous data access and turns
out to be faster than a simple loop with only one gather instruction.
The authors have as yet no plausible explanation for this.

vpcmpeqw
vgatherdps

ymm7, ymm7, ymm7
ymm15, [rdi + ymmil * 4], ymm7

Listing 3. Gather instruction interface in AVX2.

Listing 3 shows the respective code for AVX2. In contrast to
IMCI, no loop construct is required and a single instruction is
sufficient. This allows for a very compact and elegant code. Instead



of using dedicated vector mask registers, AVX2 uses regular vector
registers (supplied as third argument) as mask for the operation.

Note that for our application we always gather all vector com-
ponents without checking whether the intensity values are located
inside the projection images or not. This is achieved by setting
the vector (mask) registers to all one bits (kxnor, vpcmpeqw). We
found that copying the projection images into a zero-padded buffer
and removing the conditionals (cf. lines 26-36 in Listing 1) re-
sulted in a better performance than setting the mask registers, which
causes too much instruction overhead.

5.2 Instruction Code Analysis

The main benefit of SIMD is that a given amount of work can be
finished with fewer instructions than with scalar execution. There-
fore the number of instructions and their composition in terms of
instruction types (memory, in-register, arithmetic, etc.) are interest-
ing metrics for our case. These are influenced by the register width
and by the availability of instruction types, such as FMA or gather
instructions. Table 2 shows an overview for the three parts of this
algorithm for all five hand-written assembly implementations. Note
that for Haswell in addition to an AVX2 version we also devised an
AVX/FMA3 implementation that uses Haswell’s FMA3 instruction
but is otherwise identical to the AVX implementation—i.e. it uses
no gather instructions.

Part 1 is trivial to vectorize and exhibits good scalability: In
Table 2 this is reflected by the fact that hardly any additional in-
structions are required when switching from SSE to AVX. Apart
from reducing the total number of arithmetic instructions, the use
of FMA has the additional benefit of reducing memory instruction
in Part 1: Because a FMA doesn’t require an intermediate regis-
ter for the result of the multiplication, register pressure and—as
a consequence—the amount of register spilling is lower. In con-
trast to the first part, the second part of the algorithm scales poorly
instruction-wise. Due to the sequential loads, the number of mem-
ory operations almost doubles when switching from SSE to AVX.
For IMCI the gather instruction simplifies the implementation, be-
cause no additional in-register reordering is necessary. In contrast
to the slim AVX?2 gather interface, the bold IMCI loop interface
cancels out the advantage instruction-wise and ends up with an in-
struction count similar to AVX. In Part 3, while in theory simple
to vectorize, all non-gather implementations suffer from in-register
reordering overhead.

Overall, the overhead of switching from SSE to AVX is 19
instructions. IMCI roughly ends up with the same instruction count
as the SSE code. While we would anticipate a lower instruction
count for IMCI considering FMA and gather, the fact prefetching
has to be implemented in software and the design of the gather
interface cause a lot of instruction overhead. The AVX?2 gather
interface does not suffer from this shortcoming and has the lowest
instruction count.

In Table 3 we compare the number of instructions required by
different SIMD instruction sets compared to baseline scalar code.
The baseline code was generated using the Intel 13.1 compiler to-
gether with the -03 -no-vec -x flag for each of the instruction
sets. This means that for AVX and AVX2 the scalar version makes
use of the new VEX (vector extensions) prefix introduced by AVX,
allowing instructions to use more than two operands; the AVX2
and AVX/FMA3 versions use FMA instructions. We omit IMCI in
this comparison, because there exist no dedicated scalar instruc-
tions in this instruction set. The “instruction count efficiency” met-
ric is the ratio of instruction counts between the scalar and the
vectorized code versions—e.g. an efficiency of 100% means that
both versions require the same amount of instructions, whereas an
efficiency of 50% means that the vectorized code requires twice
as many instructions as the scalar code. Additionally we also list

61

Type SSE AVX AVX2 AVX/FMA3 IMCI
Part 1  Memory 4 3 0 3 0
Arith. 17 17 12 12 15
All 21 20 12 15 15
Part2  Memory 18 34 4 34 16
Shuffle 6 10 0 10 0
Arith. 2 2 12 2 24
All 26 46 16 46 40
Part3  Memory 2 2 2 2 2
Arith. 20 20 15 16 12
All 22 22 17 18 14
Other  All 4 4 4 3 8
Total 73 92 49 82 77

Table 2. Instruction count and composition. The instruction types
are categorized into three classes: memory for all instructions with
a memory reference, shuffle for register manipulation instructions,
and arithmetic for computational instructions. All remaining in-
structions such as, e.g., loop instructions are contained in other.

SSE  AVX AVX2 AVX/FMA3
Voxels per Vectorized Loop 4 8 8 8
Instr. per Loop (SIMD) 73 92 49 82
Instr. per Voxel (Scalar) 57 46 41 46
Instr. Count Efficiency 78%  50% 84% 56%
SIMD Runtime Efficiency 82%  51% 33% 42%

Table 3. Overview of static instruction code analysis. Runtime
Efficiency results pertain to one core using SMT.

the “SIMD runtime efficiency,” which we define as the achieved
runtime speedup divided by the number of SIMD lanes. Interest-
ingly, the SIMD efficiency numbers for SSE and AVX are almost
identical to the respective instruction count efficiencies. For both
the AVX2 and AVX/FMA3 implementations the baseline scalar
code was generated using the -xCORE-AVX2, which is why the
AVX/FMA3 code shows a lower runtime efficiency than AVX. In-
terestingly we find that while instruction count efficiency is higher
using AVX2, AVX/FMA3 provides better runtime efficiency, i.e.
performance. The reason for this is the high latency of the gather
instruction that is used in the AVX?2 variant (cf. Section 6.3).

6. Results

Section 5.2 has already described the SIMD efficiency of various
implementations in terms of instruction overhead. Here we present
results illustrating how well the instruction set was implemented in
the microarchitectures and how efficient the implementation is in
terms of speedup. To do so we distinguish two cases: Single core
(to pinpoint the SIMD influence alone) and full-system scaling.
It was shown previously [10] that the performance of the code is
limited by instruction execution, and that data transfers through the
cache hierarchy do not play a significant role on modern multi-core
architectures. Thread pinning was done with likwid-pin [9].

6.1 Analysis of SIMD and SMT Speedup

Figure 1 shows the results for single core performance. Again,
scalar code was generated using the Intel 13.1 compiler. It is in-
structive to analyze the benefit of Simultaneous Multi-Threading
(SMT) together with SIMD, since a considerable speedup with
SMT points to inefficient pipeline utilization. On IvyBridge-EP,
SSE yields a 3.3x speedup with SMT (out of a possible 4x). As



Performance [GUP/s]

0 ‘ OI.1 ‘ 0;2 ‘ 0;3 ‘ 0;4 ‘ 0;5
S—IJ Scalar []+27%
(0]
2 ssE
@
2 AVX

Scalar

SSE

Haswell

AVX

AVX/FMA3

AVX2/FMA3

Figure 1. Single core performance of different SIMD implemen-
tations on IvyBridge-EP, Haswell and Knights Corner (KNC) in
billions of voxel updates per second (GUP/s). The black bars are
sequential results. The yellow bar is the speedup using all available
SMT threads. The scalar version on IvyBridge-EP based on AVX
and on Haswell on AVX2.

expected, the AVX kernel is significantly less efficient, with 4.1x
out of 8. It is known that the AVX kernel suffers from critical path
dependencies [10], which is confirmed by the large benefit gained
with SMT. In a sense, inefficient SIMD code can be partly com-
pensated by multi-threading in this particular case. On Haswell the
SSE kernel performs surprisingly well, even without SMT, but the
best possible variant is AVX/FMA3 with SMT. The AVX2 kernel
is the slowest of all variants despite its instruction count advantage:
The bilinear interpolation requires four intensity values for each
voxel, which results in four gather instructions. These incur a la-
tency of about 42 clock cycles (cf. Sec. 6.3). In contrast the AVX
and AVX/FMA3 implementations use 16 pairwise loads to gather
the intensity values; although these version require about 10 addi-
tional in-register shuffling instructions overall this approach yields
a much better performance. On KNC the SIMD speedup is 10x out
of a possible 16x. This result emerges from a combination of slow
scalar code (see above) with an inefficient and dominating gather
instruction in the SIMD case. We will analyze the latter in more
depth in Section 6.3.

6.2 Full Device Results

Figure 2 shows the performance of scalar and vectorized implemen-
tations on IvyBridge-EP and KNC. Results for Haswell are omitted
because at the time of writing no two-socket system was available.
The full system results were measured with Turbo mode enabled
and all available SMT threads. A naive peak performance compar-
ison gives reason to expect a 3x advantage for KNC. For our algo-
rithm, one KNC device is only 1.2x faster than one IvyBridge-EP
node. This is a disappointing result, considering that IvyBridge-EP
is also available with 12 instead of 10 cores and with a faster clock
speed. Both architectures suffer from the impact of the inefficient
Part 2 execution, but this problem is more severe on KNC, as will
be demonstrated in Section 6.4.

62

Performance [GUPS/s]
01 2 3 4 5 6 7 8 9

IvyBridge-EP

KNC

0 1

> 3 4 5 6 7 8 9

Figure 2. Full system performance on IvyBridge-EP and KNC

Scalability across the cores is very similar on both systems, with
a parallel efficiency of 93%.2 This corroborates the expectation that
code execution is highly core-bound.

6.3 Detailed Performance Analysis of Vector Gather
Implementations

The vector gather instruction in the KNC microarchitecture has
attracted major attention as it is the first gather implementation in
an x86-based design. In this section we conduct a more detailed
analysis of the gather performance on KNC, and compare with the
situation on Haswell (with AVX2).

As introduced in Section 5.1.1 the KNC ISA requires the gather
instructions to be invoked multiple times in order to load all re-
quired data elements. The exact number of executions depends on
the total number of cache lines the data is loaded from. Using the
likwid-bench tool [9] we implemented a microbenchmark which al-
lows to measure the average instruction latency depending on how
many values are loaded per call (cache line). All hardware threads
of a single core were used to measure the latencies to gather 16 el-
ements from L1 cache and L2 cache, depending on how the data is
distributed. The results are shown in Table 4.

We find that the latency for a single vgatherdps instruction on
KNC varies depending on how many elements it has to fetch from
a cache line. The reason for this effect is that the vgatherdps in-
struction itself is implemented as another loop, not visible on the
ISA level: the more elements it has to fetch from a single CL, the
higher the latency. Nevertheless we find that it is beneficial for the
data to reside in as few CLs as possible: Although the latency for
a single vgatherdps instruction increases with the number of el-
ements per cache line, the impact of calling the vgatherdps in-
struction multiple times is generally more severe. On the Haswell
microarchitecture, the gather latency is largely independent of the
number of cache lines touched when data is in the L1 or the L2
cache. From the numbers it is evident that it may be faster in some
cases to ignore the hardware-based gather. The good performance
of the AVX/FMA3 algorithm implementation on Haswell com-
pared to AVX2 (see Fig. 1) is a direct consequence of this.

On KNC, which has no L1 hardware prefetcher, there is a no-
ticeable impact when dropping from L1 to L2 cache. Due to the
streaming access pattern in the microbenchmark we find that on
Haswell there is almost no difference in latency depending on
whether data is gathered from L1 or L2 cache due to hardware
prefetching. Overall, the performance impact of the gather oper-
ation is much more severe on KNC than on Haswell. In Section 6.4
we will show that the gather instructions do indeed account for the
dominant part of the kernel runtime on KNC, leading to the ob-
served mediocre KNC performance.

2To obtain results unbiased by Turbo mode artifacts we disabled Turbo
mode on IvyBridge during the scalability measurements.



Microarchitecture Knights Corner Haswell
Distribution L1 Cache L2 Cache L1 Cache L2 Cache
Instruction Loop  Instruction Loop Instruction  Instruction
16 per CL 9.0 9.0 13.6 13.6
8 per CL 4.2 8.4 9.4 18.8 10.0 10.0
4 per CL 3.7 14.8 9.1 36.4 11.0 11.2
2 per CL 29 232 8.6 68.8 10.0 12.0
1 per CL 23 36.8 8.1 129.6 11.2 11.2

Table 4. Latencies in clock cycles encountered when gathering data from different levels of the memory hierarchy for different distributions
of the data to be gathered. “Instruction” and “Loop” refer to the average latency of a single vgatherdps instruction and the total time

required to gather all 16 (IMCI) or 8 (AVX2) elements, respectively.

6.4 Performance Analysis for Knights Corner

We start by estimating how many cycles are needed to execute one
loop iteration of the kernel. Neglecting the variable influence of the
gather constructs in Part 2 for the time being, we created a variant
of the full kernel without gather instructions.

Based on a static instruction code analysis taking into account
instruction pairing (superscalar execution) we estimate 34 cycles
for the gather-less kernel. This was verified by measurement which
resulted in about 37.5 cycles. For our model, we use the measured
value of 37.5 clock cycles because it contains non-negligible over-
head such as backing up caller-save registers when calling the line
update kernel that was not accounted for in the analytical predic-
tion.

By instrumentation of the gather loops it was determined that
for one loop iteration the gather instruction was executed 16 times
on average. Distributing that number over the four gather loop con-
structs (one for each of the four values required for the bilinear
interpolation) we arrive at 4 gather instructions per gather loop—
indicating that the data is, on average, distributed across four CLs.
From this we can infer the runtime contribution based on our pre-
vious findings (cf. Table 4). The latency of each gather instruc-
tion in the situation where the data is distributed across four CLs is
3.7 clock cycles. With a total of 16 gather instructions per iteration,
the contribution is 59.2 clock cycles. Together with the remaining
part of one kernel loop iteration (37.5 clock cycles), the total exe-
cution time is approximately 97 clock cycles.

Up until now we assumed that all data is already located in
the L1 cache. Using likwid-perfctr [9] we found that 88.5% of the
projection data can be serviced from the local L1 cache and the
remaining 11.5% can be serviced from the local L2 cache. Since
each gather transfers a full CL, this amounts to approximately
16CLs - 64 byte/CL - 11.5% =~ 118byte. We estimate the effective
L2 bandwidth in conjunction with the gather instruction to be
the following: The latency of a single gather instruction (with
data distributed across four CLs) was previously measured to be
3.7 clock cycles with data in L1 cache, respectively 9.1 clock cycles
with data in the L2 cache (cf. Table 4). Assuming the difference of
5.4 clock cycles to be the exclusive L2 cache contribution, we arrive
at an effective bandwidth of 64byte/5.4cycle = 11.85byte/cycle.
The additional cost is thus 118byte/11.85byte/cycle = 10cycles,
resulting in a total runtime of 107 clock cycles.

Several unsuccessful attempts to improve the L1 hit rate of
the gather instructions were made. We found that the gather hint
instruction, vgatherpfOhintdps, is implemented as a dummy
operation—it has no effect whatsoever apart from instruction over-
head. Another prefetching instruction, vgatherpfOdps, appeared
to be implemented exactly the same as the actual gather instruc-
tion, vgatherdps: Instead of returning control back to the hard-
ware context after the instruction is executed, we found that control

63

was relinquished only affer the data has been fetched into the L1
cache, rendering the instruction useless. Finally, scalar prefetching
using the vprefetchO instruction was evaluated. Unfortunately
the instruction overhead of moving the offsets from vector regis-
ters onto the stack to get them into general purpose registers for
scalar prefetching far outweighed the benefit of improving the L1
hit rate (even when prefetching only the CLs containing every sec-
ond, forth, or even eight value).

To summarize, out of the 107 clock cycles 69 can be attributed
to gathering the required data, clearly indicating that the gather
implementation is the factor limiting SIMD scalability. If pairwise
loads and an adequate latency hiding mechanism were available,
this could be reduced to a mere 32 cycles (2x 16 pairwise loads for
the 16 voxels that are processed in one loop iteration).

7. Comparison to GPU Implementations

In order to integrate our findings with today’s state-of-the-art in
CT image reconstruction, a comparison with the fastest currently
available GPU implementation called Thumper [11] shows that the
GeForce GTX 680 is almost 8 x faster than KNC, although Intel
had originally intended the KNC to compete with GPU accelerators
from other vendors. This discrepancy can not be explained by
simply examining the platforms’ specifications such as peak Flop/s
and memory bandwidth.

Two of the main causes contributing to the GPU’s superior
performance in this particular application are:

1. Most computations involved in the reconstruction kernel, such
as the projection of voxels onto the detector panel or the bilinear
interpolation, are typical for graphics applications (which GPUs
are designed for). While the matrix-vector multiplication is per-
formed efficiently on both the GPU and the KNC, the bilinear
interpolation is much faster on the GPU: GPUs have additional
hardware (texture units) that can perform multiple bilinear in-
terpolations in each clock cycle for data in the texture cache.
To emphasize the implications, consider that out of the total of
107 clock cycles for one loop iteration of the kernel, 94 clock
cycles, i.e., almost 90%, are spent on the bilinear interpolation,
which can be performed with a single instruction on a GPU.

2. Given a sufficient amount of work, Nvidia’s CUDA program-
ming model does a better job at hiding latencies. As seen be-
fore, even in the ideal case, where all data can be serviced from
the L1 cache, on average each of the gather instructions has a
latency of 3.7 clock cycles. Although the KNC can hide the la-
tencies of most instructions when using all four hardware con-
texts of a core, 4-way SMT is not sufficient to hide latencies
caused by loading non-contiguous data, and is still plagued by
excess traffic due to the cache line concept. The massive thread-
ing on Nvidia’s multiprocessors ensures that there is always a



I icc
8 B OpenMP 4

ISPC

w | BN Assembly

-

o

2

36

0]

g

< 4

IS

=

o

5

a2

Of

Haswell

IvyBridge-

Figure 3. Performance comparison of different programming
models on full systems.

sufficient number of warps to choose from when a particular
warp stalls. This approach can hide much longer latencies than
the 4-way SMT in-order approach of KNC.

8. Performance Comparison to Generated Code

Figure 3 compares our best implementations on the three platforms
with compiler-generated code. We consider three different variants:
C code, C code with the #pragma simd directive from the latest
OpenMP 4 standard [4], and ISPC [5]. The Intel C compiler version
13.1.3 with optimization flags -03 -xHost was used on all sys-
tems. It is noteworthy that the performance using #pragma simd
is worse than without the directive. ISPC (Intel SPMD Program
Compiler, Version 1.5.0) is an Open Source implementation of the
SPMD programming model. It provides the same performance as
the Intel C compiler on KNC but on both CPUs it offers perfor-
mance superior to that of the commercial Intel compiler.

The hand-written assembly kernels outperform compiler-gener-
ated code on every architecture. On IvyBridge the AVX version
is 10% faster than the ISPC-generated code. The effect is more
pronounced on Haswell: Because the ISPC-generated code makes
use of the vector gather instruction, the hand-written assembly
using pairwise loads is 22% faster. On KNC the Intel compiler
provided the fastest auto-vectorized code; the hand-written IMCI
version is 34% faster.

9. Conclusion

We have implemented the RabbitCT benchmark algorithm using
different SIMD instruction set extensions and have benchmarked
the resulting kernels on three recent Intel x86 architectures. The
SIMD instruction sets exhibit different register widths ranging from
128 to 512 bits. Moreover, AVX2/FMA3 and IMCI provide instruc-
tions for vector gather and FMA. Using an instruction code analysis
we have shown that it is not efficient to employ wider SIMD widths
for this algorithm due to its partially scattered data access pattern.
We also show that FMA and gather have a significant impact on
the implementation, not only with regard to instruction count but
also in terms of simplicity. By far the most compact and straight-
forward variant is the AVX2/FMA3 kernel. From the ISA point of
view we think this is instruction code which is well suited to be
automatically generated. We have then benchmarked the kernels to
test the hardware implementations. The advantages at the ISA level
of the gather-enabled SIMD instruction sets are currently thwarted
by inefficient hardware implementations. On KNC and Haswell
the current gather throughput is the dominating performance bot-
tleneck for these kernels. An in-detail microbenchmarking analysis

64

on these two systems revealed that the implementations suffer from
significant overhead. Another issue is the fact that there is no func-
tional latency hiding for the gather operation on KNC.

Still the new instruction sets make it easier for a compiler to
generate competitive code. Therefore we think that the problem is
solved on the ISA side and the vendors have to provide improved
implementations to further increase the benefit of using these in-
structions. The advantage of GPUs for this algorithm can be ex-
plained by the bilinear interpolation being implemented completely
in hardware. The second advantage is the more robust and easier to
use latency hiding strategies on GPUs compared to the available
multi- and many-core architectures.

We believe that RabbitCT is a very good benchmarking case to
test the efficiency of available instruction sets, code generators, and
microarchitectures. Future work will cover the port of our kernels
on further SIMD instruction sets such as IBM VSX.

Acknowledgments

We thank IBM Research for giving Jan Treibig the opportunity for
a scientific visit at the T.J.Watson Research Center, which was the
starting point for this work. Special acknowledgments go to Jose
Moreira for fruitful discussions.

References

[1] B. Heigl and M. Kowarschik. High-speed reconstruction for C-arm
computed tomography. In In Proceedings Fully 3D Meeting and HPIR
Workshop, pages 25-28, July 2007.

[2] Intel Corporation. Intel® 64 and IA-32 Architectures Software Devel-
opers Manual. Number 325462-048US. September 2013.

[3] M. Kachelriess, M. Knaup, and O. Bockenbach. Hyperfast parallel-
beam and cone-beam backprojection using the cell general purpose
hardware. Med Phys, 34(4):1474-86, 2007. ISSN 0094-2405.

[4] OpenMP Architecture Review Board. OpenMP Application Program
Interface — Version 4.0. July 2013.

[5] M. Pharr and W. R. Mark. ispc: A SPMD Compiler for High-
Performance CPU Programming. In In Proceedings Innovative Paral-
lel Computing (InPar), San Jose, CA, May 2012.

[6] G. Pratx and L. Xing. Gpu computing in medical physics: A

review. Medical Physics, 38(5):2685-2697, 2011. URL
http://link.aip.org/link/7MPH/38/2685/1.
[7]1 C. Rohkohl, B. Keck, H. Hofmann, and J. Hornegger. RabbitCT

- an open platform for benchmarking 3D cone-beam reconstruction
algorithms. Medical Physics, 36(9):3940-3944, 2009. .

H. Scherl, M. Kowarschik, H. G. Hofmann, B. Keck, and
J. Hornegger. Evaluation of state-of-the-art hardware archi-
tectures for fast cone-beam ct reconstruction.  Parallel Com-
put., 38(3):111-124, Mar. 2012. ISSN 0167-8191. URL
http://dx.doi.org/10.1016/j.parco.2011.10.004.

J. Treibig, G. Hager, and G. Wellein. LIKWID: A lightweight
performance-oriented tool suite for x86 multicore environments.
In PSTI2010, the First International Workshop on Parallel
Software Tools and Tool Infrastructures, pages 207-216, Los
Alamitos, CA, USA, 2010. IEEE Computer Society. URL
http://dx.doi.org/10.1109/ICPPW.2010.38.

J. Treibig, G. Hager, H. G. Hofmann, J. Hornegger, and G. Wellein.
Pushing the limits for medical image reconstruction on recent standard
multicore processors. Int. J. High Perform. Comp. Appl., 27(2):162—
177,2013. .

T. Zinsser and B. Keck. Systematic Performance Optimization of
Cone-Beam Back-Projection on the Kepler Architecture. In F. com-
mittee, editor, Proceedings of the 12th Fully Three-Dimensional Im-
age Reconstruction in Radiology and Nuclear Medicine, page 225228,
2013.

[8]

[9

—

[10]

(11]





