
ActorSpace: An Open Distributed Programming Paradigm

Gul Agha

Department of Computer Science

1304 W. Springfield Avenue

University of Illinois at Urbana-Champaign

Urbana, IL 61801, USA

Email: agha~cs. uiuc. edu

Abstract

We present a new programming paradigm called Ac-

torSpace. ActorSpace provides a new communication

model based on destination patt ems. An actorSpace

ia a computationally passive container of actors which

acts as a context for matching patterna. Patterns

are matched against listed attributes of actors and ac-

torSpacea that are visible in the actorSpace. Both vis-

ibility and attributes are dynamic. Messages may be

sent to one or all members of a group defined by a

pattern. The paradigm provides powerful support for

component-based construction of massively parallel and

distributed applications. In particular, it supports open

interfaces to servers and pattern-directed access to soft-

ware repositories,
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Introduction

goal is to develop a programming paradigm to

support scalable component-based software construc-

tion. We believe that large software systems can be

modelled as massively parallel, distributed, and open

systems. The task of mega-programrning [32] requires

support for coordinating autonomous software systems

which may, for example, consist of active processes, dis-

tributed databases, and intelligent problem-solving ex-

perts. Some of the key issues concerning composition in

such systems are related to reference and access scope

rules. We have developed the ActorSpace model to pro-
vide a potential method for addressing these problem

and for experimenting with different alternatives.
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ActorSpace extends actor-style point-tepoint asyn-

chronous communication with pattern-directed invoca-

tion and broadcasting. Point-t~point communication

provides efficiency in a distributed system by allowing

locahty to be directly expressed and optimized. On

the other hand, pattern-directed communication allows

abstract specification of a group of recipients. Ac-

tor groups are defined using attribute patterns, scoped

within a specified actorSpace: i.e., the potential targets

of a message maybe defined within a specific actorSpace

using destination patterna. Note that actorSpacea may

overlap, and in particular, maybe neated. The intuition

behind ActorSpace can be roughly given in terms of two

metaphors as follows.

In mathematim, a set maybe described in one of two

ways: by enumerating its elements, or by specifying a

characteristic function which defines a subset of a do-

main. Explicitly identifying objects corresponds to enu-

merating the elements whereas providing patterns of ob-

ject attributes corresponds to specifying a characteristic

function. Of course, in conventional mathematics the

two characterizations are equivalent as mathematical

objects are static. The mathematical metaphor breaks

down since computational objects, like real-world ob-

jects, may dynamically change their behavior while re-

taining their identity.

A second analogy is with mailing lists and telephone

directories in the real world. Individuals may appear

in many lists. Each list may contain a set of attributes

ssaociated with the individual – as viewed by that liit.

More complex databases may allow retrieval of individ-

uals using search based on patterns of attributes.

Broadcasting can be (and typically is) implemented

in terms of message passing and does not extend the

expressibility of the paradigm, but using the notion of a

group of receivers providea greater abstraction – a sys-

tem can hide the actual number of members and their
location from an application process. The application

may then leave it to the system to deliver a message to
all appropriate receivers. Thk provides an abstraction



that may be easily applied to replicating services, for

instance to enhance reliability y or increase performance.

Moreover, in ActorSpace, services may be structured

using nested actorSpaces; computations may then be

successively localized. Alternately, diffusion scheduling

may be obtained by successively transferring work using

actorSpaces representing local neighborhoods of proces-

sors.

The ActorSpace model allows open flexible interface

for pattern-directed retrieval from software repositories.

For example, pattern-directed communication provides

an appropriate model for supporting access to class li-

brariea in a concurrent object-oriented programming

environment. Consider each class as a ‘factory’ actor

which may return its instances. The interface specifica-

tions of classea may be represented as attribute which

are then used to dynamically access classes from the

library.

Outline of the Paper

Section 2 describes our view of open systems and why we

feel that openness in systems is useful. Section 3 briefly

meritions related work with respect to open systems,

process groups and broadcasting. Section 4 briefly d+

scribes the primitives of the Actor model. The following

section informally defines ActorSpace. By adding a few
primitives to the Actor model we obtain ActorSpace,

while still retaining Actors as a special case of Ac-

torSpace. Section 6 gives an example of an application,

which demonstrates how the programming paradigm el-

egantly solves a specific problem. Section 7 briefly de-

scribes ongoing work on a prototype implementation of

ActorSpace. The final section concludes the paper and

diacussm directions for future research.

2 Open Systems

We want to develop systems which offer resources to ap-

plications and reclaim resources after some application

has finished using them. A particular class of such a sys-

tem is distributed operating systems. Distributed oper-
ating systems provide resources to support the arrival,

creation and later termination of distributed applic>

tions. We think of distributed systems or applications

as being a set of active objects that compute and c-

ordinate. Moreover, we would like the system to allow

objects to exchange information even when the objects

do not know each other in advance. In our terminology,

each object plays the following roles during computation

of a given problem:

Client: A client requests service from a server in order

to perform a computation.

Server: A server provides a service to a (set of)

client(s).

Manager: A manager surveys the system and adjusts

it to suit needs as they arise.

Clients and servers are the “usual” clients and servers

in the client+erver model which can be implemented di-

rectly in language models such as Actors or Linda. Man-

agers are not necessary for computation per se: they

are needed in an administrative role to keep reaourcea

available in an open system and to maintain security

and safety. Note that the above are roles rather than

sorts or types; an active object maybe a client request-

ing service from servers, while at the same time offering

service to other clients, or a manager controlling other

active objects.

The role of managers is what is new in open sys-

tems; in an open system clients cannot be trusted (for

example, there is no way to know if they are buggy),

so security must be enforced in order to prevent clients

from contaminating a shared resource. Managers have

authorization to perform powerful operations such as

manipulating actorSpaces.

3 Related Work

Naming is a key issue in achieving opennees in object-

based systems that use sending of messages for coor-

dination. In order to coordinate with an object, the

“initiator” of the coordination must be able to name or

identify the objects with which the coordhation should

take place.

Concurrent programming systems such as Actors [1],

Emerald [21], Orca [6] and Concurrent Aggregates [11]

support an object-based programming model, where ob-

jects may invoke methods in other objects by giving a

reference to the object and parameters for the invoca-

tion. Open systems which use explicit references to ob-

jects and message passing as coordination primitives,

usually offer a global naming service to which all ob-

jects have a reference. This naming service can then

be queried for other references by accessing the accu-
mulated data. Objects may register themselves if they

want other objects to send messages to them.

On the other hand, ActorSpace supports open in-
terfaces that allow pattern-based communication be-

tween processes whkh have no explicit reference to each

other, Client applications may use the interface to ac-

cess the services provided and perform communication

with other applications, and terminate when their work

hzs finished by exiting the system in a coherent state.

24



In newer operating systems, object groups or pro-

cess groups are offered to support group-oriented appli-

cations, which are an important aspect of distributed

systems. Generally, object groups can be viewed aa an

association of one name with a set of names (correspond-

ing to members of the group), which when bundled with

primitives for manipulation of groups and extension of

communication prtiltives to groups of receivers sup-

port group oriented communication. Amoeba [22], the

V Dwtributed System [10], and the ISIS toolkit [7] of-

fer process or object groups, which for instance maybe

used for replication (to increase reliability or availabil-

ity), or for faster acceas to services through selection of

a local server instead of a non-local server.

Our work builds on the Actor model [1]. The locaiity

property of Actors states that an actor may only send a

meaaage to an actor whose mail address has been explic-

itly given [18]. Furthermore, because mail addresses of

new actors are unique, it is possible to reason it terms

of sub components without interference caused by po-

tential name collisions in an open system.

In other words, locality simplifies the task of reason-

ing about components in terms of their interfaces [4].

On the other hand, the locality property implies that
two actors may communicate only if they have a com-

mon ancestor in the partial order defined by the causal

chain of events. This has some drawbacks: for example,

because the recipients must be explicitly known in the

Actor model, changes in a group of potential receivers

must be explicitly communicated. We address these dif-

ficulties with the ActorSpace model.

Linda [8, 16] provides process interaction through a

globally shared memory with associative operations on

the contents. Thus information is available so that any-

one can potentially access it. Our goal is to provide an

open access similar to Linda. At the same time, we offer

locality for more efficient, secure communication.

Variations of the Linda model include first-class tu-

ple spacea embedded in Scheme [20]. In this model,

tuple spacea maybe created dynamically, paseed as ar-

guments or returned as results of functions, and used in
tuplea or data structures. The behavior of tuple spaces

may be customized, az tuple spaces define policies which

allow customization of matching rules, conditions for

automatic forwarding to other tuple spaces, blocking of

other processes and exception handling for failures in tu-

ple operations. Our notion of customizable actorSpace

managers incorporates the power of the first-class tuple

space model.

Note that in Linda and its variants (for example,

[8, 20, 27]), processes must actively poll a tuple space
and specify the type of tuple they want to retrieve. Thh+

model results in a number of significant differences with

the ActorSpace paradigm. First, race conditions may

occur as a result of concurrent access by different pro-

ceaaea to a tuple space. Second, communication cannot

be made secure against arbitrary readers – for example,

there is no way of abstractly specifying that a process

with certain attribute may not consume a tuple. In

ActorSpace, by contrast, the visible attributes of a mes-

sage’s recipient are specified by the sender. Finally, in

Linda, one cannot give an abstract specification whkh

guarantees that communication is locdlzed once initi-

ated using patterna.

An earlier proposal using pattern-based data stor-

age and retrieval was the Scientific Community

Metaphor [25]. The Scientific Community Metaphor

proposed problem-solving by pattern hazed access to

a shared knowledge base by a community of computw

tional agents, called Sprites. In fact, the Sprites model

and Linda are remarkably close: the main difference be-

tween them is that Linda allows communication objects

(tuples) to be removed from the tuple space whereas

Sprites support only a monotonically increasing knowl-
edge base [24].

Concurrent Aggregates [11] offers a communication
style similar to Linda; clients name a group of actors

when sending a message, and one of these actors will

actually receive the message. Furthermore, Concurrent

Aggregates supports nesting of aggregatea, so that an

entire group of aggregates may be targeted for a mes-

sage. Note that membership and containment relation-

ships in this model correspond to a strict Klerarchy. On

the other hand, actorSpacea may overlap arbitrarily.

The ActorSpace coordination primitives we develop

include broadcasting messages to groups of receivers,

also known as multicasting. Initial work was done on

extending RPC to support replication [12], on broad-

casting as a programming paradigm [15], and on prot-

cola for reliable broadcasting [9]. Later work haz focused

on protocol design [23, 28] and on improving and sup-

porting reliability of broadcasting protocols [7, 14, 22].

4 Actors

Actors are self-contained, interactive components of a
computing system that communicate by asynchronous

message passing. The bazic actor primitives are:

create: creating an actor from a behavior description

and a set of parameters, possibly including existing

actors;

send to: sending a meaaage to an actor; and,

become: an actor replacing its own behavior by a new

behavior.
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These primitives form a simple but powerful set upon

which to build a wide range of higher-level abstractions

and concurrent programming paradigms. The create

primitive is to concurrent programming what definition

of a lambda abstraction is to sequential programming:

it extenda the dynamic resource creation capability pro-

vided by function abstractions to concurrent compute

tion. Each actor has a unique mail address determined

at the time of its creation.

The become prirdive givea actors a history-eenaitive

behavior necessary for shared mutable data objects.

This is in contrast to a purely functional programming

model and generalize the Lisp/Scheme/ML sequential

style sharing to concurrent computation.

The send to primitive is the asynchronous analog

of function application. It is the basic communication

primitive, causing a message to be put in an actor’s

mailbox (message queue). To send a message, the tar-

get of a communication needs to be specified. Finally,

note that the arrival order of meaaages is nondetermin-

iatic but every message sent to an actor is guaranteed

to be eventually delivered.

Practical actor languages incorporate a number of

high-level abstractions such as higher order functions,

inheritance, local synchronization constraints, RPC-

style message-passing, and implicit functional paral-

lelism (see, for example, [3, 19]).

5 ActorSpace

ActorSpace providea a set of coordination primitives

that are independent of any specific architecture. More

over, in the tradition of Linda and Actors, our intention

is not to provide a programming language; rather we

want to provide a set of coordination primitives that can

be used for communication between concurrent com-

putations. The computations themselves may be ex-
pressed in different programming notationa. The run-

time system for ActorSpace will support heterogeneity

by selecting transport protocols and data reprezenta

tion formats at run-time, a task we feel is possible to

perform automatically with good efficiency. By letting

the communication primitives be identical on all archi-
tecture, ActorSpace provides powerful abstraction over

the communication architecture.

ActorSpace adds several new concepts to Actors:

● Attributes are patterns which provide an abstract

external description or view of an actor, Attributes

may be generalized and specialized through con-

junction and disjunction, respectively. Thus at-

tributes may be embedded in a description lattice

●

●

(e.g., see [5]), We do not further specify the repre-

sentation of attributes, but as a simple realization,

they may be baaed on the farnihr property lists in

Lisp. Pattern matching may be used to pick actors

whose attributea satisfy a given pattern.

actorSpaces axe a scoping mechanism for pattern

matching. Actors and actorSpaeea may be made

visible or invisible in an actorSpace. VKlbility al-

lows association of the mail addrmaee of actors with

their attributes (ae viewed by some registrar).

Capabilities provide keys for secure access control,

for-example,-in validating requests for viaibiMy or

attribute change requests.

Note that corresponding to each actorSpace is a man-

ager who validatea capabilities and enforces visibility

changes. Although we describe default policies for ac-

torSpacez, further customization may be obtained by

manipulating managers (as we discuss later). We give

an overview of the ActorSpace constructs and dwcuaa

some of the ieauea involved below.

5.1 Attributes and Pattern-Matching

ActorSpace providea two kinds of handles to access an

actor: the usual actor mail address, whkh corresponds

to the identity of an actor, and the attributea for an

actor that are visible in some actorSpace. Patterna may

be used to define groups of actors using their visible

attributes. Abstractly, each actorSpace maps a pattern

to a set of actor mail addresses by matchg on its list

of registered attributes of visible actors.

5.2 ActorSpaces

An actorSpace is a computationally passive container

of actors and acts as a context for matching patterna.
Patterns will only be matched againat lizted attributea

of actors and actorSpacea that are visible in a specified

actorSpace. An actorSpace is created by the expression

createactorSpace( capability) which returna a unique ac-

torSpace mail address. The specified capability may

be used to authenticate visibility operations in the ac-

torSpace created. As with actors, actorSpacea may be

visible in other actorSpacea. Thus, actorSpaces can be

referred to by their actorSpace mail address or by a pat-

tern.

5.3 Communication

ActorSpace communication is done using one of two

primitives: send or broadcast. Both the prirnitivea aend

26



a mewage asynchronously to the specified receiver(s).

The sender specifies a set of receivers by giving a pat-

tern and an actorSpace. The pattern is matched against

all listed attributes of actors visible in the specified ac-

torSpace.

When send(pattern@actorSpace, message) is used to

send a message, a single target actor is non-

deterministically chosen out of the group of potential r+

ceivers. This is useful when several actors are replicating

a service offered to clients. For example, as the messages

to the servers are d~tributed non-deterministically, the

load may be balanced automatically by an implemen-

tation, and none of the clients need to know the ex-

act number of potential receivers. Note that the ac-

torSpace specification, here and below, may itself be

pattern based.

When broadcast(pattern@actorSpace,message) is used

to send a message, all of the actors whose attributes

match the pattern receive the message. A reason for in-

troducing broadcasts is that we want to allow the sender

to specify the kind of potential receivers which should

receive a message, without having to also worry about

the number of receivers. Broadcasting could be simu-

lated by explicitly sending amessage to all actors in the

group, but thu requires that the sender know each of

these actors. By simply specifying a pattern, the sender

leavea it to the system to determine exactly which ac-

tors should receive the message. The broadcast primi-

tive greatly simplifies expressing many applications. For

instance, in search problems such as the Traveling Sales-

man, a new lower bound can be broadcast to all nodes

participating in the search for the shortest route.

In ActorSpace, broadcasting is done by specifying a

group of receivers that should receive a message. The

run-time system then carries out the message deliv-

ery. We assume that message delivery is only finitely

delayed, but that the message order is not necessar-

ily preserved; thus, unlike other broadcast implement

tions [7, 22], we do not guarantee a global or partial or-

der on broadcast messages. Broadcasts maybe received

by two actors in a different order and point to point

messages may be interleaved between two broadcasts.

If a global order on broadcasts to a specific group is d-
sired, it can be obtained by sending all messages that

are to be broadcast to a special actor whose sole pur-

pose is to receive messages from group members, and

then broadcast these serially to the group using some

agreed upon protocol (cf. sequenced send in the actor

language HAL [19]). However, better performance may

be obtained by not guaranteeing any order on broad-

cast messages, when such an ordering is not necessary
or dcaimble [7, 29], which is why we do not enforce any

ordering of broadcasts.

5.4 Visibility in ActorSpace

When an actor or an actorSpace is created, it is not au-

tomatically placed in an actorSpace; thus it may not be

subject to pattern matching on its attribut-. Actors

and actorSpacea must be made explicitly vtilble to be

subject to pattern matching; thus the default preserves

the locality properties of the Actor model. Actors are

autonomous entities, so they are able to make them-

selves visible or invisible given an actorSpace. Since

actorSpaces are computationally passive, however, they

cannot make themselves visible or invisible in a given

actorSpace. Visibility leads to the issue of security and

the role of managers in the system. Managers are sup-

posed to control the system and we clearly do not want

every actor to have the ability to change the visibility

of another actor or actorSpace.

We provide security by the standard technique of in-

troducing capabilities: only the holder of the capability

for an actor or an actorSpace can change its visibility.

Capabilities are unforgeable unique keys that can only

be created by calling the underlying system with the

primitive new-capabilityo. Capabilities can be stored,

compared, copied and, in some systems, communicated

in messages. When creating an actor or an actorSpace,

a capability may be bound to it, and only if thw capa-

bility is presented, may an actor’s visibility be changed.

A capability may also be bound to more than one actor

or actorSpace.

We introduce two new primitives for controlling visi-

bility: mak~visible(a,attributas~space,capability), which

explicitly subjects the actor or actorSpace a to pat-

tern rnatcbg inside a specified space, and mak-

invisible(actor, space, capability), whkh removes actors

from the specified actorSpaces - and thus any other
enclosing actorSpace. Finally, note that attributes of

visible actors or actorSpaces may change. Such changea

may be made with the chang-attributes operation, us-

ing the same parameters as mak-visible.

5.5 Garbage Collection

The presence of actorSpaces tiects the garbage collec-

tion of both actors and actorSpacea. As long as an actor

(or actorSpace) is visible in an actorSpace, it maybe

potentially reachable and thus cannot be garbage col-

lected until the container actorSpace has been garbage

collected. An actorSpace may be deleted if no actor has

a way of accessing it (and, as with actors, no messages

containing its mail address are pending).

However, when an actorSpace is garbage collected,

the actors contained in that actorSpace thernselvea are

not deleted, rather, they are no longer vtilble using the

actorSpacea (which is moot since the actorSpace itself
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is no longer accessible). Conversely, when an actor is

no longer reachable, and furthermore cannot potentially

reach a reachable actor, a garbage collection algorithm

may be able to delete it. Note that since actorSpacea are

viewed as passive containers, garbage collecting them is

simpler than actors: inverse reachability need not be

considered. We will not discuss garbage collection fur-

ther, but we expect that a garbage collection algorithm

for the Actor model [30] may be adapted in designing a

garbage collector for ActorSpace.

5.6 Fairness and Asynchrony

Generally, ActorSpace meaaagea have the same proper-

ties as Actor messages: delivery is asynchronous, but ia

guaranteed to eventually happen. However, there are,

a few exceptions which we describe briefly. Consider a

meaaage sent using a pattern which is not satisfied by

any visible actor’s attributea. In this case, the pattern

matching may be suspended until at least one actor ap-

pears whose attribute is matched by the pattern. This

allows aaynchrony in attribute updates and pattern-

baaed message pazaing. On the other hand, such a mes-

sage could be considered an error - forcing additional

synchronization.

Again, if a message was sent using the broadcast prim-

itive and there is no actor whose name is matched by the

pattern, there are several poaaibilitiea, including: the

broadcast is discarded, the broadcast is suspended until

there is at least one actor whose attributea match the

pattern, or broadcasting could be persistent, so that any

actor (existing or created in the future) whose attributea

match the pattern, will receive the broadcast message

ezactiy once. The last case may be useful in enforcing

a protocol or assuming some other common knowledge

in a group.

In our current implementation, send and broadcast

meaaagea are suspended until at least one actor arrives
whose attribute matches the pattern for the broadcast.

This is the cheapest option that avoids repeated syn-

chronization that would otherwise be needed to address

the asynchrony in the system. However, a particular

choice of semantics cannot satisfy all requirements. By

allowing actorSpace managers to be customized, we can

vary the temporal constraints on the matching rules.

5.7 The Problem of Cycles

The consequence of an actorSpace being visible in itself

can be quite catastrophic: if its attributea are matched

by some broadcast message, an infinite number of mea-

sagea may be generated by the message. In case of a

pattern directed aend, the damage is leas significant:

the message could be simply lost in an infinite forward-

ing loop. Aa part of the aemantia of mak~visible we

do not allow an actorSpace to be made visible in itself,

or recursively in any contained actorSpace. Thw avoids

cycles in the directed acyclic graph defined by the visi-

bility relation between actorSpacea.

In implementation terms, avoiding such cycles means

that a visibility relation graph must be constructed be

fore an actorSpace ia allowed to be visible. Further-

more, since actors are encapsulated and should not be

sent arbitrary bookkeeping messages, type information

must be maintained to determine whether a mail ad-

dress refers to an actor or an actorSpace.

An alternate strategy is to tag message and com-

pare tags with those of previously sent messages. This

may offer a way of trapping cycles of measagea simply

forwarded by actors as well. Again, we believe no sin-

gle strategy will provide a universally desirable solution.

The problem is probably beat addressed by customizing

actorSpace managers.

6 Example: A Dynamic Process

Pool

This section presents an example of an application that

can be efficiently expressed in the ActorSpace paradigm.

We have chosen a dynamic process pool to demonstrate
how ActorSpace elegantly aolvea some particular prob-

lems and how ActorSpace providea an open system for

computing.

Consider a parallel system with a number of pro-

cessors in a pool that can be allocated to solve prob-

lems. We consider algorithms for parallel problem-

solving based on divideaud-conquer. Specifically, we

envision a number of actors (which for efficiency reasons

could be located on different nodes), which participate
in solving the problem. All these actors reside in an

actorSpace, and new actors may come along while the

system is running to help to solve the problem. This ia

shown in figure 1.

The figure shows a processor pool located in a local
actorSpace, which is not vtilble except to the client.

Assume that an actorSpace called ProcPool contains a ,

pool of available processors. The client could contain

code as follows:
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“ ProcPool”

c&@
Figure 1: A processor pool where the actors participate

in solving a problem. The Client starts by

aendlng a problem into the pool, which is di-

vided among the processors. The lighter cir-

cles denote newly arrived processes.

// Create a processor pool
. .

// Create the job to be done

. .

send(*QProcPool, job, self);

II Wait for the answer to return

. .

The client starts the data-processing by sending a

message to an arbitrary processor inside the ActorSpace

Procpool and a return address for answers. Note that *

in this example is a pattern that matches any attribute.

Now, each of the processing actors might contain code

as follows:

II Receive a new job

. .

if job-too-big( j ob) then

sub jobs = divide-into-sub j obs ( j ob);

II distribute the jobs among neighbors

for i in “all sub j ohs” do

send(*WylighbrProcs, sub jobs [i], self );

I/ Collect answers and merge
. .

else

result = process (job);

endif

// Return the answer
send(ansuer-dest inat ion, result);

The first processor which receives the job may decide

that the job is too large to handle; it then divides the

job into smaller subjobs, sends them to one of the other

actors in its neighborhood processor pool and waits for

the partial answers. Note that lIylighbrProcs is an iden-

tifier bound to some actorSpace. The binding will d~

penal on the code for the particular processor – different

processors may refer to different actorSpaces.

In particular, depending on the organization of the

actorSpaces, the above divide and conquer can be done

within a nested subspace. Thus, the broadcast can hap-

pen to representatives of a WAN whereas the subsequent

distribution can be localized to be within a LAN.

Note that the processors in the pool do not have to
know how many processors participate in solving the

problem, and indeed, the number may vary during the

computation. By only specifying that a message should

be sent to one of the actors in the “current” actorSpace,

one of the visible processors will receive the message,

thereby receiving part of the problem. By letting the

processors divide the job as the problem is aruilyzed,

we remove a bottleneck around a master process in the

more traditional “one master, multiple slaves” approach

to parallelize problems. And by using patterns, the
number of processors allocated to the task can be ad-

justed during execution - without having to stop the

system.

7 A Prototype Implementation

The implementation of the first prototype for Ac-

torSpace focuses on making a small system for ini-

tial experimentation with the ActorSpace coordination

paradigm. We want to keep the prototype implemen-

tation small, thus we have limited its extent and kept

the system simple. Instead of building a compiler which

will compile the programming language, we have chosen

to build a small sequential interpreter for interpreting

the code associated with each method definition. An

interpreter gives us the additional flexibility of easily

loading behaviors at run-time. A future extension will

include a byte-compiler which will compile the code into

an intermediary form, similar to early implementations

of other object-oriented programming languages (such

as SmallTalk).

The system is designed in an object-oriented manner

to allow maximal flexibility. To provide for an easy ex-

tension to accommodate heterogeneous computing, cer-

tain system-classes may be subclaased to provide trans-

portation and data representation suitable for other ar-

chitectures. The overall design of the prototype can be

separated into two parts: the design of a single node,

and the design of inter-node coordination.
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7.1 Representation of Attributes

In our current prototype, attributea are concatenations

of atoms, and patterna are regular expressions over

atoms – rather analogous to the structure of files and

directories in UNIX. Actors are actually created in-
side an actorSpace (their host space), although they

are not visible in this actorSpace unless explicitly made

SO. Furthermore, they may be made vtilble in other ac-

torSpaces, regardless of whether or not they are visible

in their “hostn actorSpace.

Patterna are resolved inaide the sender’s hoat ac-

torSpace, unless the pattern explicitly refers to another

actorSpace. This providea a structural communication

hierarchy. The attributea of actorSpacea and actors may

be combined to form a structured attribute (with a spe-

cial combination operator ‘/’), much as is the case with

file names in a conventional file-system such as in the

UNIX file-system. In the same manner, a globally vis-

ible actorSpace which is the ‘root” of the tree of ac-

torSpacea, ia created automatically by the run-time sys-

tem. This ensurea that the first actorSpacea created

by the users may be made visible to other users. On

the other hand, such global visibility makes automatic

garbage collection of actorSpacea generally infeasible,

and therefore the current prototype provides explicit

means of destroying actorSpaces.

7.2 Single-node Design

The single-node design associates all the executing ac-

tors on a node with a single local coordinator. Each

node in our prototype implementation contains the fol-

lowing:

●

●

●

A small sequential interpreter for the computa-

tions.

An ActorInterface which allows methods defined in

the actor behaviors to be invoked.

A Coordinator which providea the main run-time

support and carries out the ActorSpace coordina-

tion primitives.

A major goal of the implementation was to make the

design of the interpreter, the ActorInterface and the Co-

ordinator as modular as possible. We have achieved this

by defining a communications format between the inter-

preter, the ActorInterface and the Coordinator. As far as

the Actor Interface is concerned, behaviors allow the ini-

tialization of variablea and parameterized invocation of

methods. The Coordinator is only concerned with receiv-

ing requests, carrying them out, and possibly returning

meeaagea to the Actor Interface or the interpreter. The

interpreter uses a parsed representation of the behavior

specification for interpretation and occasionally accesaea

the Actorlnterface for sending and receiving meeeagea

from the Coordinator.

The Coordinator and the executing actors communi-

cate through abstract transport objects which are sub-

claased to use a specific message passing mechanism;

the mechanism may be selected at run-time. By us-

ing transport objects for communication between actors

and the coordinator, we enhance portability and obtain

a good abstraction: actors communicate explicitly with

the local coordinator which carriea out the ActorSpace

primitives. This is illustrated in figure 2.

I Tmasport
Acti-bCbmdinkv

Figure 2: An overview of the design of a single node in

ActorSpace.

The executing actors are supplied with three different

message ports, each of which has a different purpose.

The Behavior-port is used for sending the actor its next

behavior. The Invocation-port is used for aending the

actor any messagea sent to it using send or broadcast.

The RPC-port is used when an actor performs a system
call that expects a return value, such as the creation of

a new actor. In this case, the name of the new actor

must be returned. All meaaagea from an actor are sent

to the coordinator’s single port where the message, in

turn, will be processed by the local coordinator.

7.3 Inter-node Design

The local coordinator connects to coordinators on other

nodes using a (virtual) coordinator bus. Thw providea

a transparent interface to actors that are located on
other nodes in a network, The network is illustrated in

figure 3.

A coordinator process usea the network connection

to broadcast information to other coordinators in order
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participant whenever it enters au existing group.

Node Multiprocessor Node

I I 1

Coordinator
I

Bus

Node

Figure 3: The connection of several coordinators on a

(virtual) coordinator bus.

to maintain coherence of the state of ActorSpace. This

state includes “liven actors and actorSpaces aa well as

visibility of actors. The coordinators automatically de-

termine the location of an actor given its name and for-

wards any outgoing messages to the appropriate node

using the network connection. The broadcast network

does not rely on having a network with a hardware

broadcast facility at its disposal. However, the current

design needs a global ordering on individual broadcasts

between coordinators to order visibility changes glob-

ally, so that all nodes have the same view of visibility in

ActorSpace (although not necessarily the same order on

broadcasts to actors). The broadcasting between the co-

ordinators could, for instance, be done using either the

Amoeba broadcast protocol [23] or a centralized broad-

caster and sequencer [9]; both have orderings of some

sort on broadcast messages.

8 Conclusions and Research Di-

rect ions

Our ongoing work and further research includes a formal

definition of ActorSpace based on a semantic definition

of Actors and their MetaArchitectures [4, 31]. We in-

tend to develop customizable managers to allow exper-

imentation with different coordination and scheduling

mechanisms. For example, this would allow experimen-

tation with arbitration mechanisms which may be used

instead of the current indeterminate choice that hap-

pens when a single actor is selected out of a group of

actors. More powerful managers could use dzemons to

monitor actors in an actorSpace and update attributes

in order to maintain specified coordination constraints

[2, 13]. Finally, it maybe useful to allow persistent mes-

sagea that would be automatically received by a new
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