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Abstract
Non-negative matrix factorization (NMF) is the problem of deter-
mining two non-negative low rank factors W and H, for the given
input matrix A, such that A ≈WH. NMF is a useful tool for many
applications in different domains such as topic modeling in text
mining, background separation in video analysis, and community
detection in social networks. Despite its popularity in the data min-
ing community, there is a lack of efficient distributed algorithms to
solve the problem for big data sets.

We propose a high-performance distributed-memory parallel al-
gorithm that computes the factorization by iteratively solving alter-
nating non-negative least squares (NLS) subproblems for W and
H. It maintains the data and factor matrices in memory (distributed
across processors), uses MPI for interprocessor communication,
and, in the dense case, provably minimizes communication costs
(under mild assumptions). As opposed to previous implementa-
tions, our algorithm is also flexible: (1) it performs well for both
dense and sparse matrices, and (2) it allows the user to choose any
one of the multiple algorithms for solving the updates to low rank
factors W and H within the alternating iterations. We demonstrate
the scalability of our algorithm and compare it with baseline imple-
mentations, showing significant performance improvements.

1. Introduction
Non-negative Matrix Factorization (NMF) is the problem of finding
two low rank factors W ∈ Rm×k

+ and H ∈ Rk×n
+ for a given input

matrix A ∈ Rm×n
+ , such that A ≈WH. Here, Rm×n

+ denotes the set of
m × n matrices with non-negative real values. Formally, the NMF
problem [24] can be defined as

min
W>0,H>0

‖A −WH‖F , (1)

where ‖X‖F = (
∑

i j x2
i j)

1/2 is the Frobenius norm.
NMF is widely used in data mining and machine learning as a

dimension reduction and factor analysis method. It is a natural fit
for many real world problems as the non-negativity is inherent in
many representations of real-world data and the resulting low rank
factors are expected to have natural interpretation. The applications
of NMF range from text mining [22], computer vision [11], and
bioinformatics [13] to blind source separation [3], unsupervised
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clustering [16, 17] and many other areas. In the typical case, k �
min(m, n); for problems today, m and n can be on the order of
millions or more, and k is on the order of tens or hundreds.

There is a vast literature on algorithms for NMF and their con-
vergence properties [15]. The commonly adopted NMF algorithms
are – (i) Multiplicative Update (MU) [24] (ii) Hierarchical Alterna-
tive Least Squares (HALS) [3, 10] (iii) NMF using Block Principal
Pivoting (ANLS-BPP) [14], and (iv) Stochastic Gradient Descent
(SGD) Updates [8]. Most of the algorithms in NMF literature are
based on alternately optimizing each of the low rank factors W and
H while keeping the other fixed, in which case each subproblem is
a constrained convex optimization problem. Subproblems can then
be solved using standard optimization techniques such as projected
gradient or interior point; a detailed survey for solving such prob-
lems can be found in [15, 26]. In this paper, our implementation
uses a fast active-set based method called Block Principal Pivoting
(BPP) [14], but the parallel algorithm proposed in this paper can be
easily extended for other algorithms such as MU and HALS.

Recently with the advent of large scale internet data and interest
in Big Data, researchers have started studying scalability of many
foundational machine learning algorithms. To illustrate the dimen-
sion of matrices commonly used in the machine learning commu-
nity, we present a few examples. Nowadays the adjacency matrix of
a billion-node social network is common. In the matrix representa-
tion of a video data, every frame contains three matrices for each
RGB color, which is reshaped into a column. Thus in the case of
a 4K video, every frame will take approximately 27 million rows
(4096 row pixels x 2196 column pixels x 3 colors). Similarly, the
popular representation of documents in text mining is a bag-of-
words matrix, where the rows are the dictionary and the columns
are the documents (e.g., webpages). Each entry Ai j in the bag-of-
words matrix is generally the frequency count of the word i in the
document j. Typically with the explosion of the new terms in social
media, the number of words spans to millions.

To handle such high dimensional matrices, it is important to
study low rank approximation methods in a data-distributed envi-
ronment. For example, in many large scale scenarios, data samples
are collected and stored over many general purpose computers, as
the set of samples is too large to store on a single machine. In this
case, the computation must also be distributed across processors.
Local computation is preferred as local access of data is much faster
than remote access due to the costs of interprocessor communica-
tion. However, for low rank approximation algorithms, like MU,
HALS, and BPP, some communication is necessary.

The simplest way to organize these distributed computations on
large data sets is through a MapReduce framework like Hadoop, but
this simplicity comes at the expense of performance. In particular,
most MapReduce frameworks require data to be read from and
written to disk at every iteration, and they involve communication-
intensive global, input-data shuffles across machines.



In this work, we present a much more efficient algorithm and
implementation using tools from the field of High-Performance
Computing (HPC). We maintain data in memory (distributed across
processors), take advantage of optimized libraries for local compu-
tational routines, and use the Message Passing Interface (MPI) stan-
dard to organize interprocessor communication. The current trend
for high-performance computers is that available parallelism (and
therefore aggregate computational rate) is increasing much more
quickly than improvements in network bandwidth and latency. This
trend implies that the relative cost of communication (compared to
computation) is increasing.

To address this challenge, we analyze algorithms in terms of
both their computation and communication costs. The two major
tasks of the NMF algorithm are (a) performing matrix multipli-
cations and (b) solving many Non-negative Least Squares (NLS)
subproblems. In this paper, we use a carefully chosen data dis-
tribution in order to use a communication-optimal algorithm for
each of the matrix multiplications, while at the same time exploit-
ing the parallelism in the NLS problems. In particular, our pro-
posed algorithm ensures that after the input data is initially read
into memory, it is never communicated; we communicate only the
factor matrices and other smaller temporary matrices among the
p processors that participate in the distributed computation. Fur-
thermore, we prove that in the case of dense input and under the
assumption that k 6

√
mn/p, our proposed algorithm minimizes

bandwidth cost (the amount of data communicated between pro-
cessors) to within a constant factor of the lower bound. We also
reduce latency costs (the number of times processors communi-
cate with each other) by utilizing MPI collective communication
operations, along with temporary local memory space, performing
O(log p) messages per iteration, the minimum achievable for ag-
gregating global data.

Fairbanks et al. [5] present a parallel NMF algorithm designed
for multicore machines. To demonstrate the importance of mini-
mizing communication, we consider this approach to parallelizing
an alternating NMF algorithm in distributed memory. While this
naive algorithm exploits the natural parallelism available within the
alternating iterations (the fact that rows of W and columns of H
can be computed independently), it performs more communication
than necessary to set up the independent problems. We compare
the performance of this algorithm with our proposed approach to
demonstrate the importance of designing algorithms to minimize
communication; that is, simply parallelizing the computation is not
sufficient for satisfactory performance and parallel scalability.

The main contribution of this work is a new, high-performance
parallel algorithm for non-negative matrix factorization. The algo-
rithm is flexible, as it is designed for both sparse and dense input
matrices and can leverage many different algorithms for determin-
ing the non-negative low rank factors W and H. The algorithm is
also efficient, maintaining data in memory, using MPI collectives
for interprocessor communication, and using efficient libraries for
local computation. Furthermore, we provide a theoretical commu-
nication cost analysis to show that our algorithm reduces commu-
nication relative to the naive approach, and in the case of dense
input, that it provably minimizes communication. We show with
performance experiments that the algorithm outperforms the naive
approach by significant factors, and that it scales well for up to 100s
of processors on both synthetic and real-world data.

2. Preliminaries
2.1 Notation
Table 1 summarizes the notation we use throughout this paper.
We use upper case letters for matrices and lower case letters for
vectors. We use both subscripts and superscripts for sub-blocks of

A Input matrix
W Left low rank factor
H Right low rank factor
m Number of rows of input matrix
n Number of columns of input matrix
k Low rank
Mi ith row block of matrix M
Mi ith column block of matrix M
Mi j (i, j)th subblock of M
p Number of parallel processes
pr Number of rows in processor grid
pc Number of columns in processor grid

Table 1: Notation

matrices. For example, Ai is the ith row block of matrix A, and
Ai is the ith column block. Likewise, ai is the ith row of A, and
ai is the ith column. We use m and n to denote the numbers of
rows and columns of A, respectively, and we assume without loss
of generality m > n throughout.

2.2 Communication model
To analyze our algorithms, we use the α-β-γ model of distributed-
memory parallel computation. In this model, interprocessor com-
munication occurs in the form of messages sent between two pro-
cessors across a bidirectional link (we assume a fully connected
network). We model the cost of a message of size n words as α+nβ,
where α is the per-message latency cost and β is the per-word band-
width cost. Each processor can compute floating point operations
(flops) on data that resides in its local memory; γ is the per-flop
computation cost. With this communication model, we can predict
the performance of an algorithm in terms of the number of flops it
performs as well as the number of words and messages it communi-
cates. For simplicity, we will ignore the possibilities of overlapping
computation with communication in our analysis. For more details
on the α-β-γ model, see [2, 25].

2.3 MPI collectives
Point-to-point messages can be organized into collective commu-
nication operations that involve more than two processors. MPI
provides an interface to the most commonly used collectives like
broadcast, reduce, and gather, as the algorithms for these collectives
can be optimized for particular network topologies and proces-
sor characteristics. The algorithms we consider use the all-gather,
reduce-scatter, and all-reduce collectives, so we review them here,
along with their costs. Our analysis assumes optimal collective al-
gorithms are used (see [2, 25]), though our implementation relies
on the underlying MPI implementation.

At the start of an all-gather collective, each of p processors owns
data of size n/p. After the all-gather, each processor owns a copy of
the entire data of size n. The cost of an all-gather is α·log p+β· p−1

p n.
At the start of a reduce-scatter collective, each processor owns data
of size n. After the reduce-scatter, each processor owns a subset of
the sum over all data, which is of size n/p. (Note that the reduction
can be computed with other associative operators besides addition.)
The cost of an reduce-scatter is α · log p + (β + γ) · p−1

p n. At the
start of an all-reduce collective, each processor owns data of size
n. After the all-reduce, each processor owns a copy of the sum
over all data, which is also of size n. The cost of an all-reduce
is 2α · log p + (2β + γ) · p−1

p n. Note that the costs of each of the
collectives are zero when p = 1.



3. Related Work
In the data mining and machine learning literature there is an
overlap between low rank approximations and matrix factorizations
due to the nature of applications. Despite its name, non-negative
matrix “factorization” is really a low rank approximation.

The recent distributed NMF algorithms in the literature are
[6, 8, 18, 19, 29]. Liu et al. propose running Multiplicative Update
(MU) for KL divergence, squared loss, and “exponential” loss func-
tions [19]. Matrix multiplication, element-wise multiplication, and
element-wise division are the building blocks of the MU algorithm.
The authors discuss performing these matrix operations effectively
in Hadoop for sparse matrices. Using similar approaches, Liao et
al. implement an open source Hadoop based MU algorithm and
study its scalability on large-scale biological data sets [18]. Also,
Yin, Gao, and Zhang present a scalable NMF that can perform fre-
quent updates, which aim to use the most recently updated data
[29]. Gemmula et al. propose a Generic algorithm that works on
different loss functions, often involving the distributed computa-
tion of the gradient [8]. According to the authors, the formulation
presented in the paper can also be extended to handle non-negative
constraints. Similarly Faloutsos et al. propose a distributed, scal-
able method for decomposing matrices, tensors, and coupled data
sets through stochastic gradient descent on a variety of objective
functions [6]. The authors also provide an implementation that can
enforce non-negative constraints on the factor matrices.

We note that Spark [30] is a popular big-data processing infras-
tructure that is is generally more efficient for iterative algorithms
such as NMF than Hadoop, as it maintains data in memory and
avoids file system I/O. Although Spark has collaborative filtering li-
braries such as MLlib [21], which use matrix factorization and can
impose non-negativity constraints, none of them implement pure
NMF, and so we do not have a direct comparison against NMF
running on Spark. The problem of collaborative filtering is differ-
ent from NMF because non-nonzero entries are treated as missing
values rather than zeroes, and therefore different computations are
performed at each iteration.

Apart from distributed NMF algorithms using Hadoop, there are
also implementations of the MU algorithm in a distributed memory
setting using X10 [9] and on a GPU [20].

4. Foundations
In this section, we will introduce the Alternating-Updating NMF
(AU-NMF) framework, multiple methods for solving NMF and
details on ANLS-BPP (Alternating Non-negative Least Squares -
Block Principal Pivoting). We also present a straightforward ap-
proach to parallelization of the framework.

4.1 Alternating-Updating NMF Algorithms
NMF algorithms take a non-negative input matrix A ∈ Rm×n

+ and a
low rank k and determine two non-negative low rank factors W ∈

Rm×k
+ and H ∈ Rk×n

+ such that A ≈ WH. We define Alternating-
Updating NMF algorithms as those that alternate between updating
W for a given H and updating H for a given W. In the context
of our parallel framework, we restrict attention to the class of NMF
algorithms that use the Gram matrix associated with a factor matrix
and the product of the input data matrix A with the corresponding
factor matrix, as we show in Algorithm 1.

The specifics of lines 3 and 4 depend on the NMF algorithm. In
the block coordinate descent framework where two blocks are the

Algorithm 1 [W,H] = AU-NMF(A, k)

Require: A is an m × n matrix, k is rank of approximation
1: Initialize H with a non-negative matrix in Rn×k

+ .
2: while stopping criteria not satisfied do
3: Update W using HHT and AHT

4: Update H using WT W and WT A
5: end while

unknown factors W and H, we solve the following subproblems,
which have a unique solution for a full rank H and W:

W← argmin
W̃>0

∥∥∥A − W̃H
∥∥∥

F
,

H← argmin
H̃>0

∥∥∥A −WH̃
∥∥∥

F
.

(2)

Since each subproblem involves nonnegative least squares, this
two-block BCD method is also called the Alternating Non-negative
Least Squares (ANLS) method [15]. Block Principal Pivoting
(BPP), discussed more in detail at Section 4.2, is an algorithm
that solves these NLS subproblems. In the context of the AU-NMF
algorithm, this ANLS method maximally reduces the overall NMF
objective function value by finding the optimal solution for given
H and W in lines 3 and 4 respectively.

There are other popular NMF algorithms that update the fac-
tor matrices alternatively without maximally reducing the objec-
tive function value each time, in the same sense as in ANLS. These
updates do not necessarily solve each of the subproblems (2) to
optimality but simply improve the overall objective function (1).
Such methods include Multiplicative Update (MU) [24] and Hi-
erarchical Alternating Least Squares (HALS) [3], which was also
independently proposed as Rank-one Residual Iteration (RRI) [10].
To show how these methods can fit into the AU-NMF framework,
we discuss them in more detail.

In the case of HALS/RRI, individual columns of W and rows
of H are updated with all other entries in the factor matrices fixed.
This approach is a block coordinate descent method with 2k blocks,
set to minimize the function

f (w1, · · · ,wk,h1, · · · ,hk) =

∥∥∥∥∥∥∥A −
k∑

i=1

wihi

∥∥∥∥∥∥∥
F

, (3)

where wi is the ith column of W and hi is the ith row of H. The
update rules can be written in closed form:

wi ←

[
wi +

(AHT )i −W(HHT )i

(HHT )ii

]
+

,

hi ←

[
hi +

(WT A)i − (WT W)iH
(WT W)ii

]
+

.

(4)

Note that the columns of W and rows of H are updated in order,
so that the most up-to-date values are always used, and these 2k
updates can be done in an arbitrary order. However, if all the W
updates are done before H (or vice-versa), the method falls into the
AU-NMF framework. After computing the matrices HHT , AHT ,
WT W, and WT A, the extra computation is 2(m + n)k2 flops for
updating both W and H.

In the case of MU, individual entries of W and H are updated
with all other entries fixed. In this case, the update rules are

wi j ← wi j
(AHT )i j

(WHHT )i j
,

hi j ← hi j
(WT A)i j

(WT WH)i j
.

(5)



Instead of performing these (m + n)k in an arbitrary order, if all of
W is updated before H (or vice-versa), this method also follows
the AU-NMF framework. The extra cost of computing W(HHT )
and (WT W)H is 2(m + n)k2 flops to perform updates for all entries
of W and H.

The convergence properties of these different algorithms are dis-
cussed in detail by Kim, He and Park [15]. We emphasize here that
both HALS/RRI and MU require computing Gram matrices and
matrix products of the input matrix and each factor matrix. There-
fore, if the update ordering follows the convention of updating all of
W followed by all of H, both methods fit into the AU-NMF frame-
work. Our proposed parallel algorithm (presented in Section 5) can
be extended to these methods (or any other AU-NMF method) with
only a change in local computation.

4.2 Block Principal Pivoting
In this paper, we focus on and use the BPP method [14] to solve
the NLS problem, as it is the fastest algorithm (in terms of number
of iterations). As argued in Section 4.1, we note that many NMF
algorithms, including MU and HALS, can be used within our
parallel frameworks (Algorithms 2 and 3).

BPP is the state-of-the-art method for solving the NLS subprob-
lems in Eq. (2). The main subroutine of BPP is the single right-hand
side NLS problem

min
x>0
‖Cx − b‖2. (6)

The Karush-Kuhn-Tucker (KKT) optimality conditions for
Eq. (6) are as follows

y = CT Cx − CT b (7a)
y > 0 (7b)
x > 0 (7c)

xiyi = 0 ∀i. (7d)

The KKT conditions (7) states that at optimality, the support sets
(i.e., the non-zero elements) of x and y are complementary to each
other. Therefore, Eq. (7) is an instance of the Linear Complemen-
tarity Problem (LCP) which arises frequently in quadratic program-
ming. When k � min(m, n), active-set and active-set-like methods
are very suitable because most computations involve matrices of
sizes m × k, n × k, and k × k which are small and easy to handle.

If we knew which indices correspond to nonzero values in the
optimal solution, then computing the solution is an unconstrained
least squares problem on these indices. In the optimal solution, call
the set of indices i such that xi = 0 the active set, and let the remain-
ing indices be the passive set. The BPP algorithm works to find this
final active set and passive set. It greedily swaps indices between
the intermediate active and passive sets until finding a partition that
satisfies the KKT condition. In the partition of the optimal solu-
tion, the values of the indices that belong to the active set will take
zero. The values of the indices that belong to the passive set are
determined by solving the unconstrained least squares problem re-
stricted to the passive set. Kim, He and Park [14], discuss the BPP
algorithm in further detail. We use the notation

X← SolveBPP(CT C,CT B)

to define the (local) function for using BPP to solve Eq. (6) for
every column of X. We define CBPP(k, c) as the cost of SolveBPP,
given the k×k matrix CT C and k×c matrix CT B. SolveBPP mainly
involves solving least squares problems over the intermediate pas-
sive sets. Our implementation uses the normal equations to solve
the unconstrained least squares problems because the normal equa-
tions matrices have been pre-computed in order to check the KKT
condition. However, more numerically stable methods such as QR
decomposition can also be used.

Algorithm 2 [W,H] = Naive-Parallel-NMF(A, k)

Require: A is an m × n matrix distributed both row-wise and
column-wise across p processors, k is rank of approximation

Require: Local matrices: Ai is m/p×n, Ai is m×n/p, Wi is m/p×k,
Hi is k × n/p

1: pi initializes Hi

2: while stopping criteria not satisfied do
/* Compute W given H */

3: collect H on each processor using all-gather
4: pi computes Wi ← SolveBPP(HHT ,AiHT )

/* Compute H given W */
5: collect W on each processor using all-gather
6: pi computes (Hi)T ← SolveBPP(WT W, (WT Ai)T )
7: end while

Ensure: W,H ≈ argmin
W̃>0,H̃>0

‖A − W̃H̃‖

Ensure: W is an m × k matrix distributed row-wise across pro-
cessors, H is a k × n matrix distributed column-wise across
processors

4.3 Naive Parallel NMF Algorithm
In this section we present a naive parallelization of NMF algorithms
[5]. Each NLS problem with multiple right-hand sides can be paral-
lelized on the observation that the problems for multiple right-hand
sides are independent from each other. That is, we can solve several
instances of Eq. (6) independently for different b where C is fixed,
which implies that we can optimize row blocks of W and column
blocks of H in parallel.

Algorithm 2 presents a straightforward approach to setting up
the independent subproblems. Let us divide W into row blocks
W1, . . . ,Wp and H into column blocks H1, . . . ,Hp. We then
double-partition the data matrix A accordingly into row blocks
A1, . . . ,Ap and column blocks A1, . . . ,Ap so that processor i owns
both Ai and Ai (see Figure 1). With these partitions of the data and
the variables, one can implement any ANLS algorithm in parallel,
with only one communication step for each solve.

The computation cost of Algorithm 2 depends on the local
NLS algorithm. For comparison with our proposed algorithm, we
assume each processor uses BPP to solve the local NLS problems.
Thus, the computation at line 4 consists of computing AiHT , HHT ,
and solving NLS given the normal equations formulation of rank k
for m/p columns. Likewise, the computation at line 6 consists of
computing WT Ai, WT W, and solving NLS for n/p columns. In the
dense case, this amounts to 4mnk/p+ (m+n)k2 +CBPP((m+n)/p, k)
flops. In the sparse case, processor i performs 2(nnz(Ai)+nnz(Ai))k
flops to compute AiHT and WT Ai instead of 4mnk/p.

The communication cost of the all-gathers at lines 3 and 5, based
on the expression given in Section 2.3 is α · 2 log p + β · (m + n)k.
The local memory requirement includes storing each processor’s
part of matrices A, W, and H. In the case of dense A, this is
2mn/p + (m + n)k/p words, as A is stored twice; in the sparse case,
processor i requires nnz(Ai) + nnz(Ai) words for the input matrix
and (m+n)k/p words for the output factor matrices. Local memory
is also required for storing temporary matrices W and H of size
(m + n)k words.

We summarize the algorithmic costs of Algorithm 2 in Table 2.
This naive algorithm [5] has three main drawbacks: (1) it requires
storing two copies of the data matrix (one in row distribution and
one in column distribution) and both full factor matrices locally,
(2) it does not parallelize the computation of HHT and WT W
(each processor computes it redundantly), and (3) as we will see
in Section 5, it communicates more data than necessary.



Algorithm Flops Words Messages Memory
Naive-Parallel-NMF 4 mnk

p + (m + n)k2 + CBPP

(
m+n

p , k
)

O((m + n)k) O(log p) O
(

mn
p + (m + n)k

)
HPC-NMF (m/p > n) 4 mnk

p +
(m+n)k2

p + CBPP

(
m+n

p , k
)

O(nk) O(log p) O
(

mn
p + mk

p + nk
)

HPC-NMF (m/p < n) 4 mnk
p +

(m+n)k2

p + CBPP

(
m+n

p , k
)

O
(√

mnk2

p

)
O(log p) O

(
mn
p +

√
mnk2

p

)
Lower Bound − Ω

(
min

{√
mnk2

p , nk
})

Ω(log p) mn
p +

(m+n)k
p

Table 2: Leading order algorithmic costs for Naive-Parallel-NMF and HPC-NMF (per iteration). Note that the computation and memory
costs assume the data matrix A is dense, but the communication costs (words and messages) apply to both dense and sparse cases.

A

A0

A1

A2

A0 A1 A2W

W0

W1

W2

H H0 H1 H2k

m

↑

↓

m
p

k n← →

n
p

Figure 1: Distribution of matrices for Naive-Parallel-NMF (Algo-
rithm 2), for p = 3. Note that Ai is m/p × n, Ai is m × n/p, Wi is
m/pr × k, and Hi is k × n/p.

5. High Performance Parallel NMF
We present our proposed algorithm, HPC-NMF, as Algorithm 3.
The main ideas of the algorithm are to (1) exploit the indepen-
dence of NLS problems for rows of W and columns of H and (2)
use communication-optimal matrix multiplication algorithms to set
up the NLS problems. The naive approach (Algorithm 2) shares
the first property, by parallelizing over rows of W and columns
of H, but it uses parallel matrix multiplication algorithms that
communicate more data than necessary. The central intuition for
communication-efficient parallel algorithms for computing HHT ,
AHT , WT W, and WT A comes from a classification proposed by
Demmel et al. [4]. They consider three cases, depending on the rel-

ative sizes of the dimensions of the matrices and the number of
processors; the four multiplies for NMF fall into either the “one
large dimension” or “two large dimensions” cases. HPC-NMF uses
a careful data distribution in order to use a communication-optimal
algorithm for each of the matrix multiplications, while at the same
time exploiting the parallelism in the NLS problems.

The algorithm uses a 2D distribution of the data matrix A across
a pr × pc grid of processors (with p = pr pc), as shown in Figure
2. Algorithm 3 performs an alternating method in parallel with
a per-iteration bandwidth cost of O

(
min

{ √
mnk2/p, nk

})
words,

latency cost of O(log p) messages, and load-balanced computation
(up to the sparsity pattern of A and convergence rates of local BPP
computations).

To minimize the communication cost and local memory require-
ments, in the typical case pr and pc are chosen so that m/pr ≈

n/pc ≈
√

mn/p, in which case the bandwidth cost is O
( √

mnk2/p
)
.

If the matrix is very tall and skinny, i.e., m/p > n, then we choose
pr = p and pc = 1. In this case, the distribution of the data matrix
is 1D, and the bandwidth cost is O(nk) words.

The matrix distributions for Algorithm 3 are given in Figure 2;
we use a 2D distribution of A and 1D distributions of W and H.
Recall from Table 1 that Mi and Mi denote row and column blocks
of M, respectively. Thus, the notation (Wi) j denotes the jth row
block within the ith row block of W. Lines 3–8 compute W for a
fixed H, and lines 9–14 compute H for a fixed W; note that the
computations and communication patterns for the two alternating
iterations are analogous.

In the rest of this section, we derive the per-iteration compu-
tation and communication costs, as well as the local memory re-
quirements. We also argue the communication-optimality of the al-
gorithm in the dense case. Table 2 summarizes the results of this
section and compares them to Naive-Parallel-NMF.

Computation Cost Local matrix computations occur at lines 3, 6,
9, and 12. In the case that A is dense, each processor performs

n
p
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pr

n
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k +
m
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k2 + 2
m
pr

n
pc

k = 4
mnk

p
+

(m + n)k2

p

flops. In the case that A is sparse, processor (i, j) performs (m +
n)k2/p flops in computing Ui j and Xi j, and 4nnz(Ai j)k flops in com-
puting Vi j and Yi j. Local non-negative least squares problems oc-
cur at lines 8 and 14. In each case, the symmetric positive semi-
definite matrix is k× k and the number of columns/rows of length k
to be computed are m/p and n/p, respectively. These costs together
require CBPP(k, (m + n)/p) flops. There are computation costs asso-
ciated with the all-reduce and reduce-scatter collectives, both those
contribute only to lower order terms.

Communication Cost Communication occurs during six collec-
tive operations (lines 4, 5, 7, 10, 11, and 13). We use the cost ex-
pressions presented in Section 2.3 for these collectives. The com-
munication cost of the all-reduces (lines 4 and 10) is α · 4 log p +



Algorithm 3 [W,H] = HPC-NMF(A, k)

Require: A is an m × n matrix distributed across a pr × pc grid of
processors, k is rank of approximation

Require: Local matrices: Ai j is m/pr×n/pc, Wi is m/pr×k, (Wi) j
is m/p × k, H j is k × n/pc, and (H j)i is k × n/p

1: pi j initializes (H j)i
2: while stopping criteria not satisfied do

/* Compute W given H */
3: pi j computes Ui j = (H j)i(H j)i

T

4: compute HHT =
∑

i, j Ui j using all-reduce across all procs
. HHT is k × k and symmetric

5: pi j collects H j using all-gather across proc columns
6: pi j computes Vi j = Ai jHT

j
. Vi j is m/pr × k

7: compute (AHT )i=
∑

j Vi j using reduce-scatter across proc
row to achieve row-wise distribution of (AHT )i

. pi j owns m/p × k submatrix ((AHT )i) j

8: pi j computes (Wi) j ← SolveBPP(HHT , ((AHT )i) j)
/* Compute H given W */

9: pi j computes Xi j = (Wi) j
T (Wi) j

10: compute WT W=
∑

i, j Xi j using all-reduce across all procs
. WT W is k × k and symmetric

11: pi j collects Wi using all-gather across proc rows
12: pi j computes Yi j = Wi

T Ai j
. Yi j is k × n/pc

13: compute (WT A) j =
∑

i Yi j using reduce-scatter across proc
columns to achieve column-wise distribution of (WT A) j

. pi j owns k × n/p submatrix ((WT A) j)i

14: pi j computes ((H j)i)T ← SolveBPP(WT W, (((WT A) j)i)T )
15: end while
Ensure: W,H ≈ argmin

W̃>0,H̃>0
‖A − W̃H̃‖

Ensure: W is an m × k matrix distributed row-wise across pro-
cessors, H is a k × n matrix distributed column-wise across
processors

β · 2k2; the cost of the two all-gathers (lines 5 and 11) is α · log p +
β · ((pr−1)nk/p + (pc−1)mk/p); and the cost of the two reduce-
scatters (lines 7 and 13) is α·log p+β·((pc−1)mk/p + (pr−1)nk/p).

In the case that m/p < n, we choose pr =
√

np/m > 1 and
pc =

√
mp/n > 1, and these communication costs simplify to

α·O(log p)+β·O(mk/pr+nk/pc+k2) = α·O(log p)+β·O(
√

mnk2/p+

k2). In the case that m/p > n, we choose pc = 1, and the costs
simplify to α · O(log p) + β · O(nk).

Memory Requirements The local memory requirement includes
storing each processor’s part of matrices A, W, and H. In the case
of dense A, this is mn/p + (m + n)k/p words; in the sparse case,
processor (i, j) requires nnz(Ai j) words for the input matrix and
(m + n)k/p words for the output factor matrices. Local memory is
also required for storing temporary matrices W j, Hi, Vi j, and Yi j,
of size 2mk/pr + 2nk/pc) words.

In the dense case, assuming k < n/pc and k < m/pr, the local
memory requirement is no more than a constant times the size of the
original data. For the optimal choices of pr and pc, this assumption
simplifies to k < max

{ √
mn/p,m/p

}
.

We note that if the temporary memory requirements become
prohibitive, the computation of ((AHT )i) j and ((WT A) j)i via all-
gathers and reduce-scatters can be blocked, decreasing the local
memory requirements at the expense of greater latency costs. While
this case is plausible for sparse A, we did not encounter local
memory issues in our experiments.
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Figure 2: Distribution of matrices for HPC-NMF (Algorithm 3), for
pr = 3 and pc = 2. Note that Ai j is m/pr × m/pc, Wi is m/pr × k,
(Wi) j is m/p × k, H j is k × n/pc, and (H j)i is k × n/p.

Communication Optimality In the case that A is dense, Algo-
rithm 3 provably minimizes communication costs. Theorem 5.1 es-
tablishes the bandwidth cost lower bound for any algorithm that
computes WT A or AHT each iteration. A latency lower bound of
Ω(log p) exists in our communication model for any algorithm that
aggregates global information [2], and for NMF, this global aggre-
gation is necessary in each iteration. Based on the costs derived
above, HPC-NMF is communication optimal under the assumption
k <

√
mn/p, matching these lower bounds to within constant fac-

tors.

Theorem 5.1 ([4]). Let A ∈ Rm×n, W ∈ Rm×k, and H ∈ Rk×n

be dense matrices, with k < n 6 m. If k <
√

mn/p, then any
distributed-memory parallel algorithm on p processors that load
balances the matrix distributions and computes WT A and/or AHT

must communicate at least Ω(min{
√

mnk2/p, nk}) words along its
critical path.

Proof The proof follows directly from [4, Section II.B]. Each ma-
trix multiplication WT A and AHT has dimensions k < n 6 m,
so the assumption k <

√
mn/p ensures that neither multiplication

has “3 large dimensions.” Thus, the communication lower bound
is either Ω(

√
mnk2/p) in the case of p > m/n (or “2 large dimen-

sions”), or Ω(nk), in the case of p < m/n (or “1 large dimension”).
If p < m/n, then nk <

√
mnk2/p, so the lower bound can be written

as Ω(min{
√

mnk2/p, nk}).



We note that the communication costs of Algorithm 3 are the
same for dense and sparse data matrices (the data matrix itself is
never communicated). In the case that A is sparse, this communi-
cation lower bound does not necessarily apply, as the required data
movement depends on the sparsity pattern of A. Thus, we cannot
make claims of optimality in the sparse case (for general A). The
communication lower bounds for WT A and/or AHT (where A is
sparse) can be expressed in terms of hypergraphs that encode the
sparsity structure of A [1]. Indeed, hypergraph partitioners have
been used to reduce communication and achieve load balance for a
similar problem: computing a low-rank representation of a sparse
tensor (without non-negativity constraints on the factors) [12].

6. Experiments
In this section, we describe our implementation of HPC-NMF and
evaluate its performance. We identify a few synthetic and real world
data sets to experiment with HPC-NMF as well as Naive-Parallel-
NMF, comparing performance and exploring scaling behavior.

In the data mining and machine learning community, there has
been a large interest in using Hadoop for large scale implementa-
tion. Hadoop requires disk I/O and is designed for processing gi-
gantic text files. Many of the real world data sets that are available
for research are large scale sparse internet text data, recommender
systems, social networks, etc. Towards this end, there has been in-
terest towards Hadoop implementations of matrix factorization al-
gorithms [8, 18, 19]. However, the use of NMF extends beyond
sparse internet data and is also applicable for dense real world data
such as video, images, etc. Hence in order to keep our implementa-
tion applicable to wider audience, we choose to use MPI for our dis-
tributed implementation. Apart from the application point of view,
we use an MPI/C++ implementation for other technical advantages
that are necessary for scientific applications such as (1) the ability
to leverage recent hardware improvements, (2) effective communi-
cation between nodes, and (3) the availability of numerically stable
and efficient BLAS and LAPACK routines.

6.1 Experimental Setup
6.1.1 Data Sets
We used sparse and dense matrices that are either synthetically
generated or from real world applications. We will explain the data
sets in this section.

• Dense Synthetic Matrix (DSyn): We generate a uniform random
matrix of size 172,800 × 115,200 and add random Gaussian
noise. The dimensions of this matrix is chosen such that it
is uniformly distributable across processes. Every process will
have its own prime seed that is different from other processes to
generate the input random matrix A.
• Sparse Synthetic Matrix (SSyn): We generate a random sparse

Erdős-Rényi matrix of the dimension 172,800 × 115,200 with
density of 0.001. That is, every entry is nonzero with probability
0.001.
• Dense Real World Matrix (Video): NMF can be performed in

the video data for background subtraction to detect moving
objects. The low rank matrix Â = WHT represents background
and the error matrix A−Â represents moving objects. Detecting
moving objects has many real-world applications such as traffic
estimation [7], security monitoring, etc. In the case of detecting
moving objects, only the last minute or two of video is taken
from the live video camera. The algorithm to incrementally
adjust the NMF based on the new streaming video is presented
in [15]. To simulate this scenario, we collected a video in a
busy intersection of the Georgia Tech campus at 20 frames per
second for two minutes. We then reshaped the matrix such that

every RGB frame is a column of our matrix, so that the matrix
is dense with dimensions 1,013,400 × 2400.
• Sparse Real World Matrix Webbase : This data set is a very

large, directed sparse graph with nearly 1 million nodes (1,000,005)
and 3.1 million edges (3,105,536), which was first reported by
Williams et al. [27]. The NMF output of this directed graph
helps us understand clusters in graphs.

The size of both real world data sets were adjusted to the nearest
dimension for uniformly distributing the matrix.

6.1.2 Machine
We conducted our experiments on “Edison” at the National Energy
Research Scientific Computing Center. Edison is a Cray XC30
supercomputer with a total of 5,576 compute nodes, where each
node has dual-socket 12-core Intel Ivy Bridge processors. Each of
the 24 cores has a clock rate of 2.4 GHz (translating to a peak
floating point rate of 460.8 Gflops/node) and private 64KB L1 and
256KB L2 caches; each of the two sockets has a (shared) 30MB
L3 cache; each node has 64 GB of memory. Edison uses a Cray
“Aries” interconnect that has a dragonfly topology. Because our
experiments use a relatively small number of nodes, we consider
the local connectivity: a “blade” comprises 4 nodes and a router,
and sets of 16 blades’ routers are fully connected via a circuit board
backplane (within a “chassis”). Our experiments do not exceed 64
nodes, so we can assume a very efficient, fully connected network.

6.1.3 Software
Our objective of the implementation is using open source software
as much as possible to promote reproducibility and reuse of our
code. The entire C++ code was developed using the matrix library
Armadillo [23]. In Armadillo, the elements of the dense matrix
are stored in column major order and the sparse matrices in Com-
pressed Sparse Column (CSC) format. For dense BLAS and LA-
PACK operations, we linked Armadillo with OpenBLAS [28]. We
use Armadillo’s own implementation of sparse matrix-dense matrix
multiplication, the default GNU C++ Compiler and MPI library on
Edison.

6.1.4 Initialization and Stopping Criteria
To ensure fair comparison among algorithms, the same random
seed was used across different methods appropriately. That is, the
initial random matrix H was generated with the same random seed
when testing with different algorithms (note that W need not be
initialized). This ensures that all the algorithms perform the same
computations (up to roundoff errors), though the only computation
with a running time that is sensitive to matrix values is the local
NNLS solve via BPP.

In this paper, we used number of iterations as the stopping cri-
teria for all the algorithms. For fair comparison, all the algorithms
in the paper were executed for 10 iterations.

6.2 Algorithms
For each of our data sets, we benchmark and compare three algo-
rithms: (1) Algorithm 2, (2) Algorithm 3 with pr = p and pc = 1
(1D processor grid), and (3) Algorithm 3 with pr ≈ pc ≈

√
p (2D

processor grid). We choose these three algorithms to confirm the
following conclusions from the analysis of Section 5: the perfor-
mance of a naive parallelization of Naive-Parallel-NMF (Algorithm
2) will be severely limited by communication overheads, and the
correct choice of processor grid within Algorithm 3 is necessary
to optimize performance. To demonstrate the latter conclusion, we
choose the two extreme choices of processor grids and test some
data sets where a 1D processor grid is optimal (e.g., the Video ma-



trix) and some where a squarish 2D grid is optimal (e.g., the Web-
base matrix).

While we would like to compare against other high-performance
NMF algorithms in the literature, the only other distributed-
memory implementations of which we’re aware are implemented
using Hadoop and are designed only for sparse matrices [18], [19],
[8], [29] and [6]. We stress that Hadoop is not designed for high
performance computing of iterative numerical algorithms, requir-
ing disk I/O between steps, so a run time comparison between a
Hadoop implementation and a C++/MPI implementation is not a
fair comparison of parallel algorithms. A qualitative example of
differences in run time is that a Hadoop implementation of the MU
algorithm on a large sparse matrix of dimension 217 × 216 with
2×108 nonzeros (with k=8) takes on the order of 50 minutes per it-
eration [19], while our implementation takes a second per iteration
for the synthetic data set (which is an order of magnitude larger in
terms of rows, columns, and nonzeros) running on only 24 nodes.

6.3 Time Breakdown
To differentiate the computation and communication costs among
the algorithms, we present the time breakdown among the various
tasks within the algorithms for both performance experiments. For
Algorithm 3, there are three local computation tasks and three
communication tasks to compute each of the factor matrices:

• MM, computing a matrix multiplication with the local data
matrix and one of the factor matrices;
• NLS, solving the set of NLS problems using BPP;
• Gram, computing the local contribution to the Gram matrix;
• All-Gather, to compute the global matrix multiplication;
• Reduce-Scatter, to compute the global matrix multiplication;
• All-Reduce, to compute the global Gram matrix.

In our results, we do not distinguish the costs of these tasks for W
and H separately; we report their sum, though we note that we do
not always expect balance between the two contributions for each
task. Algorithm 2 performs all of these tasks except Reduce-Scatter
and All-Reduce; all of its communication is in All-Gather.

6.4 Algorithmic Comparison
Our first set of experiments is designed primarily to compare the
three parallel implementations. For each data set, we fix the num-
ber of processors to be 600 and vary the rank k of the desired fac-
torization. Because most of the computation (except for NLS) and
bandwidth costs are linear in k (except for the All-Reduce), we ex-
pect linear performance curves for each algorithm individually.

The left side of Figure 3 shows the results of this experiment
for all four data sets. The first conclusion we draw is that HPC-
NMF with a 2D processor grid performs significantly better than
the Naive-Parallel-NMF; the largest speedup is 4.4×, for the sparse
synthetic data and k = 10 (a particularly communication bound
problem). Also, as predicted, the 2D processor grid outperforms
the 1D processor grid on the squarish matrices. While we expect the
1D processor grid to outperform the 2D grid for the tall-and-skinny
Video matrix, their performances are comparable; this is because
both algorithms are computation bound, as we see from Figure 3g,
so the difference in communication is negligible.

The second conclusion we can draw is that the scaling with k
tends to be close to linear, with an exception in the case of the
Webbase matrix. We see from Figure 3e that this problem spends
much of its time in NLS, which does not scale linearly with k. Note
that for a fixed problem, the size of the local NLS problem remains
the same across algorithms. Thus, we expect similar timing results
and observe that to be true for most cases.

We can also compare HPC-NMF with a 1D processor grid
with Naive-Parallel-NMF for squarish matrices (SSyn, DSyn, and
Webbase). Our analysis does not predict a significant difference
in communication costs of these two approaches (when m ≈ n),
and we see from the data that Naive-Parallel-NMF outperforms
HPC-NMF for two of the three matrices (but the opposite is true
for DSyn). The main differences appear in the All-Gather versus
Reduce-Scatter communication costs and the local MM (all of
which are involved in the WT A computation). In all three cases, our
proposed 2D processor grid (with optimal choice of m/pr ≈ n/pc)
performs better than both alternatives.

6.5 Strong Scalability
The goal of our second set of experiments is to demonstrate the
strong scalability of each of the algorithms. For each data set, we
fix the rank k to be 50 and vary the number of processors (this is a
strong-scaling experiment because the size of the data set is fixed).
We run our experiments on {24, 96, 216, 384, 600} processors/cores,
which translates to {1, 4, 9, 16, 25} nodes. The dense matrices are
too large for 1 or 4 nodes, so we benchmark only on {216, 384, 600}
cores in those cases.

The right side of Figure 3 shows the scaling results for all four
data sets, and Table 3 gives the overall per-iteration time for each
algorithm, number of processors, and data set. We first consider the
HPC-NMF algorithm with a 2D processor grid: comparing the per-
formance results on 25 nodes (600 cores) to the 1 node (24 cores),
we see nearly perfect parallel speedups. The parallel speedups are
23× for SSyn and 28× for the Webbase matrix. We believe the su-
perlinear speedup of the Webbase matrix is a result of the running
time being dominated by NLS; with more processors, the local NLS
problem is smaller and more likely to fit in smaller levels of cache,
providing better performance. For the dense matrices, the speedup
of HPC-NMF on 25 nodes over 9 nodes is 2.7× for DSyn and 2.8×
for Video, which are also nearly linear.

In the case of the Naive-Parallel-NMF algorithm, we do see
parallel speedups, but they are not linear. For the sparse data, we see
parallel speedups of 10× and 11× with a 25× increase in number
of processors. For the dense data, we observe speedups of 1.6×
and 1.8× with a 2.8× increase in the number of processors. The
main reason for not achieving perfect scaling is the unnecessary
communication overheads.

6.6 Weak Scalability
Our third set of experiments shows the weak scalability of each of
the algorithms. We consider only the synthetic data sets so that we
can flexibly scale the dimensions of the data matrix. Again, we run
our experiments on {24, 96, 216, 384, 600} processors/cores. We fix
the input data size per processor in this scaling experiment: mn/p is
the same across all experiments (dense and sparse). The data matrix
dimensions range from 57600 × 38400 on 24 cores up to 288000 ×
192000 on 600 cores; for HPC-NMF with a 2D processor grid, the
local matrix is always 9600 × 9600. The dimensions are chosen so
that this experiment matches the strong-scaling experiment on 216
processors. Figure 4 shows our results.

We emphasize that while this experiment fixes the amount of
input matrix data per processor, it does not fix the amount of
factor matrix data per processor (which decreases as we scale up).
Likewise, it fixes the number of MM flops performed by each
processor but not the number of NLS flops; the latter also decreases
as we scale up. Thus, if communication were free, we would expect
the overall time to decrease as we scale to more processors, at a
rate that depends on the relative time spent in MM and NLS. This
behavior generally holds true in Figure 4: in the dense case, since
most of the time is in MM, the time generally holds steady as the
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Figure 3: Comparison and strong-scaling experiments on sparse and dense data sets for three algorithms: Naive (N), HPC-NMF-1D (1D),
HPC-NMF-2D (2D). Plots on the left vary the low rank k for fixed p = 600, and plots on the right vary the number of processes (cores) p for
fixed k = 50. The reported time is the average over 10 iterations.
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(b) Sparse Synthetic (SSyn) Weak Scaling
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Figure 4: Weak-scaling experiments on dense (left) and sparse (right) synthetic data sets for three algorithms: Naive (N), HPC-NMF-1D
(1D), HPC-NMF-2D (2D). The ratio mn/p is fixed across all data points (dense and sparse), with data matrix dimensions ranging from
57600 × 38400 on 24 cores up to 288000 × 192000 on 600 cores. The reported time is the average over 10 iterations.

Naive-Parallel-NMF HPC-NMF-1D HPC-NMF-2D
Cores DSyn SSyn Video Webbase DSyn SSyn Video Webbase DSyn SSyn Video Webbase

24 6.5632 48.0256 5.0821 52.8549 4.8427 84.6286
96 1.5929 18.5507 1.4836 14.5873 1.1147 16.6966

216 2.1819 0.6027 2.7899 7.1274 2.1548 0.9488 4.7928 9.2730 1.5283 0.4816 1.6106 7.4799
384 1.2594 0.6466 2.2106 5.1431 1.2559 0.7695 3.8295 6.4740 0.8620 0.2661 0.8963 4.0630
600 1.1745 0.5592 1.7583 4.6825 0.9685 0.6666 0.5994 6.2751 0.5519 0.1683 0.5699 2.7376

Table 3: Average per-iteration running times (in seconds) of parallel NMF algorithms for k = 50.

number of processors increases, while in the sparse case, more time
is spent in NLS and times decrease from left to right.

We also point out that we used the same matrix dimensions in
the dense and sparse cases; because the communication does not
depend on the input matrix sparsity, we see that the communication
costs are same (for each algorithm and number of processors). The
main difference in running time comes from MM, which is much
cheaper in the sparse case.

In the case of HPC-NMF-2D, the weak scaling is nearly perfect
as the time spent in communication is negligible. This is explained
by the theory (see Table 2): if mn/p is fixed, then the bandwidth
cost O(

√
mnk2/p) is also fixed, so we expect HPC-NMF-2D to

scale well to much larger numbers of processors. In the case of
Naive-Parallel-NMF and HPC-NMF-1D, we see that communica-
tion costs increase as we scale up. Again, Table 2 shows that the
bandwidth costs of those algorithms increase as we scale up, so we
don’t expect those to scale as well in this case. We note that this is
only one form of weak scaling; for example, if we were to fix the
quantity m/p, then we would expect HPC-NMF-1D to scale well
(though Naive-Parallel-NMF would not). The best overall speedup
we observe from this experiment is in the sparse case on 600 pro-
cessors: HPC-NMF-2D is 2.7× faster than Naive-Parallel-NMF.

7. Conclusion
In this paper, we propose a high-performance distributed-memory
parallel algorithm that computes an NMF by iteratively solving
alternating non-negative least squares (ANLS) subproblems. We
carefully designed a parallel algorithm which avoids communica-
tion overheads and scales well to modest numbers of cores.

For the data sets on which we experimented, we showed that
an efficient implementation of a naive parallel algorithm spends
much of its time in interprocessor communication. In the case of
HPC-NMF, the problems remain computation bound on up to 600
processors, typically spending most of the time in local matrix
multiplication or NLS solves.

We focus in this work on BPP, because it has been shown to
reduce overall running time in the sequential case by requiring
fewer iterations [14]. Because much of the time per iteration of
HPC-NMF is spent on local NLS, we believe further empirical
exploration is necessary to understand the proposed HPC-NMF’s
advantages for other AU-NMF algorithms such as MU and HALS.
We note that if we use the MU or HALS approach for determining
low rank factors, the relative cost of interprocessor communication
will grow, making the communication efficiency of our algorithm
more important.

In future work, we would like to extend HPC-NMF algorithm to
dense and sparse tensors, computing the CANDECOMP/PARAFAC
decomposition in parallel with non-negativity constraints on the
factor matrices. We would also like to explore more intelligent dis-
tributions of sparse matrices: while our 2D distribution is based on
evenly dividing rows and columns, it does not necessarily load bal-
ance the nonzeros of the matrix, which can lead to load imbalance
in MM. We are interested in using graph and hypergraph parti-
tioning techniques to load balance the memory and computation
while at the same time reducing communication costs as much as
possible. Finally, we have not yet reached the limits of the scala-
bility of HPC-NMF; we would like to expand our benchmarks to
larger numbers of nodes on the same size data sets to study perfor-
mance behavior when communication costs completely dominate
the running time.
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[12] O. Kaya and B. Uçar. Scalable sparse tensor decompositions in dis-
tributed memory systems. In Proceedings of SC, pages 77:1–77:11.
ACM, 2015. URL http://doi.acm.org/10.1145/2807591.
2807624.

[13] H. Kim and H. Park. Sparse non-negative matrix factorizations
via alternating non-negativity-constrained least squares for microar-

ray data analysis. Bioinformatics, 23(12):1495–1502, 2007. URL
http://dx.doi.org/10.1093/bioinformatics/btm134.

[14] J. Kim and H. Park. Fast nonnegative matrix factorization: An active-
set-like method and comparisons. SIAM Journal on Scientific Comput-
ing, 33(6):3261–3281, 2011. URL http://dx.doi.org/10.1137/
110821172.

[15] J. Kim, Y. He, and H. Park. Algorithms for nonnegative matrix
and tensor factorizations: A unified view based on block coordinate
descent framework. Journal of Global Optimization, 58(2):285–319,
2014. URL http://dx.doi.org/10.1007/s10898-013-0035-4.

[16] D. Kuang, C. Ding, and H. Park. Symmetric nonnegative matrix
factorization for graph clustering. In Proceedings of SDM, pages 106–
117, 2012. URL http://epubs.siam.org/doi/pdf/10.1137/1.
9781611972825.10.

[17] D. Kuang, S. Yun, and H. Park. SymNMF: nonnegative low-rank
approximation of a similarity matrix for graph clustering. Journal of
Global Optimization, pages 1–30, 2013. URL http://dx.doi.org/
10.1007/s10898-014-0247-2.

[18] R. Liao, Y. Zhang, J. Guan, and S. Zhou. CloudNMF: A MapReduce
implementation of nonnegative matrix factorization for large-scale
biological datasets. Genomics, proteomics & bioinformatics, 12(1):
48–51, 2014. URL http://dx.doi.org/10.1016/j.gpb.2013.
06.001.

[19] C. Liu, H.-c. Yang, J. Fan, L.-W. He, and Y.-M. Wang. Distributed
nonnegative matrix factorization for web-scale dyadic data analysis
on MapReduce. In Proceedings of the WWW, pages 681–690. ACM,
2010. URL http://dx.doi.org/10.1145/1772690.1772760.

[20] E. Mejı́a-Roa, D. Tabas-Madrid, J. Setoain, C. Garcı́a, F. Tirado, and
A. Pascual-Montano. NMF-mGPU: non-negative matrix factorization
on multi-GPU systems. BMC bioinformatics, 16(1):43, 2015. URL
http://dx.doi.org/10.1186/s12859-015-0485-4.

[21] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu,
J. Freeman, D. B. Tsai, M. Amde, S. Owen, D. Xin, R. Xin, M. J.
Franklin, R. Zadeh, M. Zaharia, and A. Talwalkar. MLlib: Machine
Learning in Apache Spark, May 2015. URL http://arxiv.org/
abs/1505.06807.

[22] V. P. Pauca, F. Shahnaz, M. W. Berry, and R. J. Plemmons. Text
mining using nonnegative matrix factorizations. In Proceedings of
SDM, 2004.

[23] C. Sanderson. Armadillo: An open source C++ linear algebra library
for fast prototyping and computationally intensive experiments. Tech-
nical report, NICTA, 2010. URL http://arma.sourceforge.net/
armadillo_nicta_2010.pdf.

[24] D. Seung and L. Lee. Algorithms for non-negative matrix factoriza-
tion. NIPS, 13:556–562, 2001.

[25] R. Thakur, R. Rabenseifner, and W. Gropp. Optimization of collec-
tive communication operations in MPICH. International Journal of
High Performance Computing Applications, 19(1):49–66, 2005. URL
http://hpc.sagepub.com/content/19/1/49.abstract.

[26] Y.-X. Wang and Y.-J. Zhang. Nonnegative matrix factorization: A
comprehensive review. TKDE, 25(6):1336–1353, June 2013. URL
http://dx.doi.org/10.1109/TKDE.2012.51.

[27] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel.
Optimization of sparse matrix-vector multiplication on emerging mul-
ticore platforms. Parallel Computing, 35(3):178 – 194, 2009.

[28] Z. Xianyi. Openblas, Last Accessed 03-Dec-2015. URL http:
//www.openblas.net.

[29] J. Yin, L. Gao, and Z. Zhang. Scalable nonnegative matrix factoriza-
tion with block-wise updates. In Machine Learning and Knowledge
Discovery in Databases, volume 8726 of LNCS, pages 337–352, 2014.
URL http://dx.doi.org/10.1007/978-3-662-44845-8_22.

[30] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Sto-
ica. Spark: Cluster computing with working sets. In Proceedings
of the 2nd USENIX Conference on Hot Topics in Cloud Comput-
ing, HotCloud’10, pages 10–10. USENIX Association, 2010. URL
http://dl.acm.org/citation.cfm?id=1863103.1863113.

http://doi.acm.org/10.1145/2755573.2755613
http://dx.doi.org/10.1002/cpe.1206
http://dx.doi.org/10.1109/IPDPS.2013.80
http://dx.doi.org/10.1016/j.parco.2015.03.002
http://epubs.siam.org/doi/abs/10.1137/1.9781611973440.13
http://epubs.siam.org/doi/abs/10.1137/1.9781611973440.13
http://dx.doi.org/10.1016/j.procs.2014.05.108
http://dx.doi.org/10.1016/j.procs.2014.05.108
http://dx.doi.org/10.1145/2020408.2020426
http://dx.doi.org/10.1145/2020408.2020426
http://doi.acm.org/10.1145/2627373.2627380
http://doi.acm.org/10.1145/2627373.2627380
www.jmlr.org/papers/volume5/hoyer04a/hoyer04a.pdf
www.jmlr.org/papers/volume5/hoyer04a/hoyer04a.pdf
http://doi.acm.org/10.1145/2807591.2807624
http://doi.acm.org/10.1145/2807591.2807624
http://dx.doi.org/10.1093/bioinformatics/btm134
http://dx.doi.org/10.1137/110821172
http://dx.doi.org/10.1137/110821172
http://dx.doi.org/10.1007/s10898-013-0035-4
http://epubs.siam.org/doi/pdf/10.1137/1.9781611972825.10
http://epubs.siam.org/doi/pdf/10.1137/1.9781611972825.10
http://dx.doi.org/10.1007/s10898-014-0247-2
http://dx.doi.org/10.1007/s10898-014-0247-2
http://dx.doi.org/10.1016/j.gpb.2013.06.001
http://dx.doi.org/10.1016/j.gpb.2013.06.001
http://dx.doi.org/10.1145/1772690.1772760
http://dx.doi.org/10.1186/s12859-015-0485-4
http://arxiv.org/abs/1505.06807
http://arxiv.org/abs/1505.06807
http://arma.sourceforge.net/armadillo_nicta_2010.pdf
http://arma.sourceforge.net/armadillo_nicta_2010.pdf
http://hpc.sagepub.com/content/19/1/49.abstract
http://dx.doi.org/10.1109/TKDE.2012.51
http://www.openblas.net
http://www.openblas.net
http://dx.doi.org/10.1007/978-3-662-44845-8_22
http://dl.acm.org/citation.cfm?id=1863103.1863113

	Introduction
	Preliminaries
	Notation
	Communication model
	MPI collectives

	Related Work
	Foundations
	Alternating-Updating NMF Algorithms
	Block Principal Pivoting
	Naive Parallel NMF Algorithm

	High Performance Parallel NMF
	Experiments
	Experimental Setup
	Data Sets
	Machine
	Software
	Initialization and Stopping Criteria

	Algorithms
	Time Breakdown
	Algorithmic Comparison
	Strong Scalability
	Weak Scalability

	Conclusion

