
Active Pebbles: A Programming Model For Highly
Parallel Fine-Grained Data-Driven Computations

Jeremiah Willcock
Indiana University

150 S. Woodlawn Ave
Bloomington, IN 47405, USA
jewillco@cs.indiana.edu

Torsten Hoefler
University of Illinois at

Urbana-Champaign
1205 W. Clark St.

Urbana, IL 61801, USA
htor@illinois.edu

Nicholas Edmonds
Andrew Lumsdaine

Indiana University
150 S. Woodlawn Ave

Bloomington, IN 47405, USA
{ngedmond,lums}@cs.indiana.edu

Abstract
A variety of programming models exist to support large-scale, dis-
tributed memory, parallel computation. These programming mod-
els have historically targeted coarse-grained applications with natu-
ral locality such as those found in a variety of scientific simulations
of the physical world. Fine-grained, irregular, and unstructured ap-
plications such as those found in biology, social network analy-
sis, and graph theory are less well supported. We propose Active
Pebbles, a programming model which allows these applications to
be expressed naturally; an accompanying execution model ensures
performance and scalability.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel Programming

General Terms Performance, Design

Keywords Irregular applications, programming models, active
messages

1. Introduction
High-performance computing (HPC) traditionally focuses on prob-
lems with a static communication and computation schedule. This
is reflected in today’s de facto benchmark (HPL, High-Performance
Linpack) and programming model (MPI, Message Passing Inter-
face). Many problems, such as the solution of partial differential
equations as used in numerous simulation techniques, fit this cat-
egory. Less regular computations, such as adaptive mesh refine-
ment, often use unstructured meshes to better represent physical
phenomena. The resulting unstructured grids require more dynamic
communication and computation schemes. However, such physical
models still have a natural locality related to the properties of the
modeled systems. Recently, a new class of dynamic and unstruc-
tured problems has emerged from areas such as biology, social net-
work modeling, and graph theory. The most difficult instances of
these problems require fine-grained, unstructured, data-driven ac-
cesses, as can be found in the solution of many graph problems such
as betweenness centrality [3] or parallel shortest path search [5].

Traditional coarse-grained HPC applications can be expressed
efficiently in the bulk synchronous parallel (BSP) model. How-
ever, the irregular, data-driven structure of graph applications pre-
vents them from being statically coarsened to fit the BSP model
well. Approaches which perform coarsening at run-time group op-
erations based on concurrent execution and not necessarily actual

Copyright is held by the author/owner(s).
PPoPP’11, February 12–16, 2011, San Antonio, Texas, USA.
ACM 978-1-4503-0119-0/11/02.

computational dependencies. The fine-grained computational de-
pendencies of these irregular, data-driven problems necessitate a
data-driven programming model. We propose Active Pebbles (AP),
a flexible programming model for fine-grained data-driven compu-
tations. AP allows the programmer to implement algorithms at their
natural granularities (e.g., with billions of vertices, each of only a
few bytes).

The AP programming model is related to Active Messages
(AM) in that it utilizes fine-grained method invocation targeting
globally-addressable objects. The two main differences between
AP and AM are that AP implements transparent object addressing
(and allows various object distribution schemes) and that objects
are handled in bulk, i.e., they have no individual identity and may
be processed in parallel. This enables the implementation of fine-
grained algorithms at their natural levels of granularity and allows
AP to fully capture their fine-grained dependency structures.

We also specify an execution model for AP which is crucial
to achieving high performance at large process counts. In order to
achieve this, AP exploits four main techniques:

1. Message Coalescing
2. Active Routing
3. Message Reductions
4. Termination Detection

The programming model ensures easy and abstract specification
of parallel algorithms and is independent of the underlying execu-
tion architecture. However, the flexible execution model ensures the
performance and scalability of the final AP application. The phi-
losophy of the execution model is to transform the fine-grained un-
structured specification into a representation that efficiently lever-
ages the underlying architecture. Message coalescing can be used
to adapt the message size to the network, active routing can trans-
form all-to-all communication patterns into optimized collective
patterns (similar to MPI collective operations), and message reduc-
tions can be used to spread the computational load and reduce net-
work traffic.

2. Related Work
Several parallel programming models and languages have been
designed in the recent past to address the challenges of data-
intensive computing. PGAS languages such as Unified Parallel
C [7] and Co-Array Fortran [6] allow shared access to distributed
data, but they provide no method for invoking remote computa-
tions. Charm++ allows message-driven programming of relatively
coarse-grained objects and supports advanced techniques such as
redistribution and migration. Recently developed HPCS languages
like Chapel [1] and X10 [2] allow the expression of distributed
computations. However, it is unclear if these languages readily
support fine-grained applications, e.g., billions of “places” in X10.
We claim that if they were to support a similar fine-grained model

305



then they would need to use the same techniques as we define in
our execution model.

3. The Active Pebble Model

P0 P1

P2 P3

0 1

F

table.insert(0, F)

table.insert(6, D)

4 5

table.insert(7,B)

table.insert(6,A)
7 B

6 A

6 D
2 3

table.insert(6,A)

table.insert(...)

6 D

6 7

table.insert(4,A)

table.insert(4,B)

4 B A

SINGLE-SOURCE REDUCTION

COALESCING

HYPERCUBE
ROUTING

Figure 1. Overview of the Active Pebbles programming model.
3.1 Active Pebble Terminology
The primary abstractions in the AP model are pebbles and targets.
Pebbles are light-weight active messages that operate on targets
(which can, transparently, be local or remote). Targets are created
by binding together a data object with a message handler, through
the use of a distribution object. In Figure 1, targets are the desti-
nation buckets of a hash table, and hash values are used directly
as destination addresses. The distribution object in this example
would map each key i to process bi/2c. Each pebble flows through
the network from its source rank to its destination rank (determined
by the distribution object). Handler functions can be multi-threaded
and process incoming pebbles in any order; thus, the Active Peb-
bles model allows for an optimized implementation on multi-core
nodes and accelerators. The techniques for optimized pebble trans-
port and processing are discussed in detail in the following sections.
3.2 Fine-grained Pebble Addressing
Because AP is intended for problems with unstructured data, fine-
grained addressing of pebbles based on their targets is essential. By
making this addressing transparent to the user, local data can be
treated similarly to remote data, avoiding special-casing for local
and remote data. The method by which addressing is performed
can be specified by the application programmer; both static and
dynamic addressing is supported.
3.3 Message Coalescing
Modern networks are poorly suited for sending large numbers of
small messages. They become injection-rate-limited before becom-
ing bandwidth-limited. In order to overcome the injection rate lim-
itation and achieve higher bandwidth utilization, message coalesc-
ing is necessary. By performing message coalescing at run-time,
AP increases both message latency and network bandwidth utiliza-
tion. The degree of message coalescing is selectable by the appli-
cation programmer. This in effect coarsens the application at run
time to better fit the parameters of the network. Taking the fine-
grained application specification provided by the programmer and
performing the minimal level of coarsening necessary to achieve
good network bandwidth utilization minimizes the increase in mes-
sage latency as well as enabling the application specification to be
portable across hardware platforms.

3.4 Active Routing
In applications with good locality, the communication pattern
(which processes communicate with which others) is generally
sparse. By contrast, because data-driven applications are fine-
grained and unstructured, the communication patterns are often
dense. As process counts become large, maintaining O(P ) com-
munication buffers and their associated channels per process be-
comes infeasible. Active Routing simulates a virtual topology on
top of the physical network topology and reduces the number of
peers each process communicates with to O(log P ) or even O(1).

3.5 Message Reductions
It is often the case that multiple messages are sent to the same target
by a single process. In some cases these messages may be redun-
dant, while in other cases they may able to be combined via some
reduction operation. Performing these reductions at the sender re-
duces network bandwidth utilization, as well as processing time at
the target. Duplicate message elimination and message reductions
are transparent to the application programmer, while the reduction
operation to utilize for a given message type is user-specified. The
effectiveness of message reductions is directly proportional to the
number of messages they operate on, with higher degrees of coa-
lescing increasing the effectiveness of reductions.

3.6 Termination Detection
Because AP utilizes a fully-general messaging model which sup-
ports sending messages from message handlers, it is not necessarily
the case that the length of the longest chain of recursive messages
is known at compile-time. Detecting delivery of all outstanding
messages requires distributed termination detection [4]. The most
efficient termination detection algorithm depends on whether de-
pendent messages are known to be of a fixed-depth or may be of
unbounded depth, as well as available features of the underlying
network such as message counting or acknowledgment.

4. Conclusion
Active Pebbles consists of two parts, a programming model which
allows fine-grained, unstructured, data-driven applications to be ex-
pressed at their natural level of granularity, and an execution model
which maps this fine-grained expression to an efficient implemen-
tation. Separating expression from implementation allows the ap-
plication specification to be portable across hardware platforms.
Utilizing the four techniques described, the execution model allows
the application specification to be adapted to the properties of the
underlying physical network to enable maximum performance.

References
[1] D. Callahan, B. L. Chamberlain, and H. P. Zima. The Cascade High

Productivity Language. In Ninth Intl. Workshop on High-Level Par.
Prog. Models and Supportive Environments, pages 52–60, April 2004.

[2] P. Charles, C. Grothoff, V. A. Saraswat, et al. X10: An object-oriented
approach to non-uniform cluster computing. In Object-Oriented Pro-
gramming, Systems, Languages and Apps., pages 519–538, 2005.

[3] N. Edmonds, T. Hoefler, and A. Lumsdaine. A space-efficient parallel
algorithm for computing betweenness centrality in distributed memory.
In Int.l Conf. on High Performance Computing, Goa, India, Dec. 2010.

[4] F. Mattern. Algorithms for distributed termination detection. Dis-
tributed Computing, 2(3):161–175, 1987.

[5] U. Meyer and P. Sanders. ∆-stepping: A parallelizable shortest path
algorithm. J. Algorithms, 49(1):114–152, 2003. ISSN 0196-6774.

[6] R. W. Numrich and J. Reid. Co-array Fortran for parallel programming.
SIGPLAN Fortran Forum, 17(2):1–31, 1998.

[7] UPC Consortium. UPC Language Specifications, v1.2. Technical
report, Lawrence Berkeley National Laboratory, 2005. LBNL-59208.

306


