
Towards an Energy Estimator for Fault Tolerance Protocols

Mohammed el Mehdi Diouri
Olivier Glück Laurent Lefèvre

INRIA Avalon Team
Laboratoire de l’Informatique du Parallelisme
CNRS, ENS Lyon, INRIA, Universite Lyon 1

{Mehdi.Diouri,Olivier.Gluck,Laurent.Lefevre}@ens-lyon.fr

Franck Cappello
Laboratoire de Recherche en Informatique - NCSA

INRIA and University of Illinois at Urbana-Champaign
cappello@illinois.edu

Abstract
Checkpointing protocols have different energy consumption de-
pending on parameters like application features and platform char-
acteristics. To select a protocol for a given execution, we propose
an energy estimator that relies on an energy calibration of the con-
sidered platform and a user description of the execution settings.

Categories and Subject Descriptors D.4.5 [Operating Systems]:
Reliability - Checkpoint/restart, Fault-tolerance.

Keywords Fault tolerance protocols; Checkpointing; Energy Con-
sumption; Estimation.

1. Introduction
Currently, in order to evaluate the power consumption of a fault
tolerant protocol for any particular execution, the only approach is
to pre-execute the application and monitor the energy consumption.
This approach is not practical for protocol selection since it does
not allow to evaluate power consumption before the execution.
To address this problem, this paper1 proposes an estimator of the
energy consumed by a particular fault tolerant protocol for a large
variety of execution configurations. It can also be used to compare
fault tolerant protocols from given execution configurations.

Our study focuses on the fault free execution of coordinated,
uncoordinated, and hierarchical [3] protocols. Checkpointing con-
sists in storing a snapshot image of the current application state that
can be later on used for restarting the execution in case of failure.
In uncoordinated protocols, message logging consists in saving on
each sender process the messages sent on a given storage media. In
coordinated protocols, a coordination consists in synchronizing the
processes before taking the checkpoints. If some processes have
inflight messages at the coordination time, all the other ones are
actively polling until these messages are sent.

Our energy estimation relies on an energy calibration of the
considered platform and a user description of the execution set-
tings. Section 2 presents the calibration approach while Section 3

1 This research is partially supported by the INRIA-Illinois Joint Laboratory
on Petascale Computing.

presents the estimation methodology. Section 4 concludes the paper
and presents some future works.

2. Calibration approach
Estimating the energy consumption of a given high-level opera-
tion op (message logging, coordination, or checkpointing) is really
complex as it depends on a large set of parameters. In message log-
ging, the basic operation is to write the message on a given media
storage. In checkpointing, the basic operation is to write the check-
point on a reliable media storage. In coordination, the basic opera-
tions are the active polling during the transmission of inflight mes-
sages and the synchronization that occurs when there is no more in-
flight message. These operations are associated to parameters that
depend not only on the protocols (checkpointing interval, check-
pointing storage destination, etc.) but also on the application fea-
tures (volume of messages exchanged between processes, etc.), and
on the hardware used (number of nodes, network technology, etc.).

In order to estimate accurately the energy consumption of a
high-level operation, our estimator needs to take into consideration
all the parameters. Our framework integrates an automated calibra-
tion. The goal of this calibration is to gather energy knowledge of
all the identified operations according to the hardware used in the
platform. At this end, we developed a set of simple benchmarks that
extracts for each node i, the energy consumption eiop for each op-
eration op encountered in fault tolerance protocols: eiop = piop · tiop
where tiop is the time required to perform op and piop the power
consumption during tiop.

2.1 Power consumption pop

For a node i, the power consumption of an operation op is:
piop = piidle + ∆piop

piidle is the power consumption when the node i is idle and
∆piop is the extra power cost due to op. In [1], we showed that piidle
may be different even for identical nodes. Thus, we gather piidle by
measuring the power consumption of each node while it is idle. We
also showed in [1] that for a given operation, ∆piop is the same on
identical nodes, and that ∆piop depends only on the hardware used
on the node. In order to take into account the impact of parallelism,
∆piop is calibrated by varying the number of cores that perform the
same op. In order to measure ∆piop experimentally, we isolate each
basic operation by instrumenting the implementation of each fault
tolerance protocol that we consider, and by using an external power
meter for gathering the power measurements.

2.2 Execution time top

For each operation op, tiop depends on different parameters. For
each node i, tiop is calibrated by considering different numbers of

Copyright is held by the author/owner(s). 
PPoPP’13, February 23–27 2013, Shenzhen, China.
ACM 978-1-4503-1922-5/13/02. 

313

´
´



processes per node. The time required for checkpointing a volume
of data or for logging a message is:

tickpt/logging = tiaccess + titransfer = tiaccess + Vdata

Ri
transfer

tiaccess is the time needed to access the storage media where the
checkpoint will be stored or where the message will be logged.
titransfer is the time needed to write a data on a given storage
media. To calibrate tickpt/logging , our framework automatically
runs a simple benchmark that measures the execution time for
different values of Vdata. This calibration process is performed
for the different storage medium (RAM, HDD, etc.) available in
the platform. For instance, Figure 1 presents calibration results
for checkpointing on HDD for a cluster composed of 64 nodes
of 2 CPU cores each. For different data sizes, we measure the
checkpointing time for each node of the considered cluster, by
considering one or both CPU cores. For each data size, we represent
in Figure 1, the mean checkpointing time and the standard deviation
over all the nodes.

Figure 1. Calibration of the
HDD Checkpointing time

Figure 2. Energy estimator
framework components

First, the curve shapes consolidate our linear approach to cali-
brate checkpointing. Then, the significant differences between the
checkpointing times of nodes from a same cluster demonstrate why
we need to calibrate execution times for all the nodes.

Since checkpointing is considered at the system level, the co-
ordinated checkpointing requires an extra synchronization between
the processes. The time required for a process coordination is:

ticoordination = tisynchro + tipolling = tisynchro + Vdata

Ri
transfer

tsynchro is the time needed to exchange a marker among all the
processes. It is calibrated by measuring the time required to per-
form a synchronization barrier among processes that are already
synchronized meaning tipolling is equal to zero (the best case).
tipolling is the time necessary to finish transfers of inflight mes-
sages. It is calibrated by measuring for different message size val-
ues, the mean transfer time of this message. Ri

transfer is the trans-
fer rate of the network infrastructure used.

3. Estimation methodology
Once this calibration is completed, the energy framework can esti-
mate the energy consumption of fault tolerance protocols. The user
provides information related to the execution context and to the ap-
plication he wants to run. This information is taken as an input by
the calibrator. As an output, the calibrator provides the calibration
data on which the framework relies on to estimate the energy con-
sumed by fault tolerance protocols. Figure 2 shows the components
of our framework and their interactions.

To estimate the energy consumed by checkpointing, the estima-
tor collects from the user the total memory size required by the
application to run, the total number of nodes and the number of
processes per node. From this information, the estimator computes
the mean memory size V mean

mem required by each node. The estima-
tor collects also the number of checkpoints to perform during the
application execution. Besides, it collects from the calibrator the
checkpoint times corresponding to the calibrated checkpoint sizes.

The estimator calculates the checkpoint times tickpt corresponding
to V mean

mem . If V mean
mem is not a size recorded by the calibrator, the es-

timator computes the equation that gives tickpt according to V mean
mem ,

and adjusts the equation using the method of least squares.
To estimate the energy consumed by message logging, the es-

timator collects from the user the number of processes per node,
the total number and size of the messages sent during the applica-
tion. From this information, it computes the mean volume of data
V mean
data sent (so logged) by each node. Similarly to checkpointing,

it collects from the calibrator the logging time tilogging correspond-
ing to V mean

data for each node and according to the number of pro-
cesses per node.

To estimate the energy consumed by coordination, the estimator
uses the mean message size V mean

message as the total size of messages
divided by the total number of messages. It also uses the number
of checkpoints C, the total number of nodes N and the number
of processes per node that are provided for message logging and
checkpointing estimations. From the calibration output, it collects
the synchronization time tsynchro corresponding to the number of
processes per node and the total number of nodes specified by the
user. tsynchro corresponds to one synchronization among all the
processes. Similarly to checkpointing, the estimator calculates the
message transfer time tipolling corresponding to the mean message
size V mean

message.
The estimated energy of one basic operation op (checkpointing,

logging, polling or synchronization) is:
Eop =

∑N
i=1 e

i
op =

∑N
i=1 p

i
op · tiop

The total estimated energy consumption of checkpointing is
obtained by multiplying Eckpt by the number of checkpoints C.
The estimator calculates the estimated energy of all coordinations
as follows: Ecoordinations = C · (Epolling + Esynchro).

To estimate the energy consumed by hierarchical checkpointing,
the estimator collects from the user the composition of each cluster
(i.e the list of processes in each cluster).

4. Conclusion
This paper presents a framework that estimates the energy con-
sumption of three families of fault tolerance protocols: coordinated,
uncoordinated and hierarchical protocols. To provide accurate es-
timations, it relies on an energy calibration of the considered plat-
form and a user description of the execution settings. Thanks to
our approach based on a calibration process, this framework can be
used in any monitored platform.

To obtain a coherent global state, checkpointing is combined
with message logging in uncoordinated protocols and with coordi-
nation in coordinated protocols. Therefore, to compare the energy
consumed by coordinated and uncoordinated protocols, we com-
pare the energy cost of coordinations to message logging. By pro-
viding energy estimations before pre-executing the HPC applica-
tion, we can select the less energy consuming fault tolerant proto-
col. As a future work, we plan to extend our framework to more
services needed at extreme-scale [2] such as data management pro-
tocols.

References
[1] MM. Diouri et al. Energy considerations in checkpointing and fault

tolerance protocols. In FTXS 2012, Boston, MA, USA, June 2012.
[2] MM. Diouri, O. Glück and L. Lefèvre. Towards a novel smart and

energy-aware service-oriented manager for extreme-scale applications.
In PFGC 2012, San Jose, CA, USA, June 2012.

[3] T. Ropars et al. On the use of cluster-based partial message logging to
improve fault tolerance for MPI HPC applications. In Euro-Par 2011,
Bordeaux, France, 2011.

314




