
Scheduling Directives for Shared-Memory
Many-Core Processor Systems

Oded Green*

Computational Science and Engineering
Georgia Institute of Technology

Atlanta, Georgia, USA
ogreen@gatech.edu

Yitzhak Birk

Electrical Engineering
Technion, Israel Institute of Technology

Haifa, Israel
birk@ee.technion.ac.il

Abstract

Abstract— We consider many-core processors with task-oriented
programming, whereby scheduling constraints among tasks are
decided offline, and are then enforced by the runtime system.
Here, exposing and beneficially exploiting fine grain data and
control parallelism is increasingly important. Therefore, high
expressive power for stating such constraints/directives, along
with the ability to implement them in fast, simple hardware, is
critical for success. In this paper, we focus on the relationship
between duplicable tasks, which are used to express and exploit
data parallelism. We extend the conventional Start-After-
Complete (precedence) constraint to also be usable between
replicas of different such tasks rather than only between entire
tasks, thereby increasing the exposable parallelism. Additionally,
we propose the parameterized Start-After-Start constraint, which
can be used to control the degree of “lockstep” among multiple
such tasks, e.g., in order to improve cache performance when the
tasks work on the same data. Also, we briefly describe several
additional interesting directives. Finally, we show that the
directives can be supported efficiently in hardware. Hypercore, a
very efficient CREW PRAM-like shared-cache architecture,
which is very challenging because it has extremely fast
dispatching for basic constraints, is used in the discussion.
However, the new directives have broader applicability.

 Categories and Subject Descriptors B.6.0 [Logic Design]:
General. C.1.3 [Other Architecture Styles]: Data-flow
architectures. C.4 [Performance of Systems]: Performance
attributes. F.2.2 [Non numerical Algorithms and Problems]:
Sequencing and scheduling. D.1.3 [Concurrent Programming]:
Parallel programming

General Terms Management, Measurement, Performance,

Design.

Keywords Scheduling and task partitioning; Shared memory;

Parallel processor; Data dependencies

1. Introduction

We consider programs that comprise a set of serial tasks along
with a set of scheduling relations among them. These may
represent data dependences and ensure correct execution, or aim
to govern the scheduling for other reasons such as efficient
resource utilization. This programming model is sometimes
referred to as task-oriented programming. It is essentially a coarse
grain (task granularity) dataflow machine.

The partitioning of a program into tasks aims to expose
parallelism and enable the exploitation of many compute cores.
When considering two tasks, one of the following holds:

- The two tasks carry out the same operations but on
different data (data parallelism). E.g., summing up
different rows of a matrix.

- The two tasks perform different operations using the same
data (program parallelism). E.g., searching for different
virus signatures in the same data.

- The two tasks perform different operations on different
data (unrelated tasks).

We consider a shared-memory (no private caches) many-core
architecture. A program comprises a set of serial tasks along with
a set of precedence relations among them, which represent data
dependences and ensure correct execution.

For reasons such as programming convenience and reduced
code foot print, multiple-instance (“duplicable”) tasks are used in
data-parallel situations such as summing up the rows of a matrix.
Tasks are dispatched to cores by hardware within very few clock
cycles and at a very high rate. This is thus a dataflow machine at
the inter-task level, with conventional control flow within each
task. The Plurality Hypercore [1, 2] is such an architecture.

XMT (Explicit Multi-Threading) architecture [3, 4] also
supports fast dispatching of duplicable tasks to the many-core
system. Each of the XMT's cores, however, has a private cache, so
cache coherency protocols are needed. The referred XMT is not
the same as the Cray XMT which is an entirely different system.

The precedence constraints guarantee correctness, and the
absence of private caches obviates the need to consider which
core should execute any given task. However, one must still
decide the dispatching order whenever the number of runnable

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PMAM'2013, February 23, 2013, Shenzhen [Guangdong, China]
Copyright © 2013 ACM 978-1-4503-1908-9/13/02... $15.00

————————————————

* This work was done while Oded was at the Technion.

115

tasks exceeds that of available cores. This choice among correct
execution orders can impact performance: 1) it can mitigate
bottlenecks, namely situations wherein a task that must precede
many others is scheduled later than it could have been and now
causes cores to be idle awaiting its completion, and 2) it can
impact the instantaneous memory footprint of the program and its
data, thereby affecting the hit rate of the shared cache.

For a given number of cores and a specific program with
known task execution times, one could simply add precedence
relations in order to enforce the desired scheduling order. This,
however, is more difficult in the general case wherein some of the
runtime parameters such as execution time are data dependent.
The problem is most acute with duplicable tasks, as the “basic”
precedence constraints apply jointly to all task instances.

For synchronization purposes, each duplicable task has an
entry point (fork) and an exit point (join), as depicted in Figure 1.
The entry point states that all replicas can be dispatched; this can
be thought of as a fork. The exit point refers to the fact that the
duplicable task is considered complete only after its replicas have
been completed; this can be thought of as a join.

Using duplicable tasks has several advantages: task graphs are
simple to create, changing the number of replicas is simple
(allowing portability), and efficient task dispatching. On the other
hand, there are also limiting factors when using duplicable tasks
instead of regular tasks and applying scheduling constraints
jointly to all the replicas of a duplicable task. These include a loss
of expressive power, out of order completion and reduced
portability when optimizations have been made.

This work focuses on scheduling constructs (“directives”) that
can be used by programmers and by automatic optimization tools
to further direct the runtime dispatcher, with special attention to
duplicable tasks. Such constructs must express relations that
occur in real programs and whose translation into scheduling
directives impacts performance. Yet, they must lend themselves to
efficient implementation in hardware. We present several such
directives, along with illustrative examples in which they increase
performance. We also outline their implementation in the context
of a Hypercore-like system, thereby proving them to be practical.

The remainder of the paper is organized as follows. We briefly
discuss related works on scheduling problems. Section II presents
Hypercore in some detail. In Section III we consider regular tasks,
and present Start-After Start (SAS), a new type of scheduling
directive that offers a level of priority that lies between
precedence and priority. In Section IV we present our main
contribution, new scheduling directives for duplicable tasks. In
Section V we present a simple hardware mechanism that supports
the new scheduling directives. Finally, Section VI offers
concluding remarks.

1.1 Related Works

In this subsection we give a short overview of scheduling and
scheduling schemes. We give this discussion for the sake of
completeness, yet, we note that our work does not focus on
scheduling schemes; rather it focuses on creating scheduling
directives that increase the expressive power available to the
programmer and application designer.

Scheduling has received much attention in the past half
century due to its significance. Two seminal papers, the first by
Graham [5] presented scheduling anomalies that can occur when
there is a slight change to the program and system parameters and
the second by Ullman [6] showed that even some of the simplest
scheduling problems are NP -complete.

While this might imply that all scheduling problems are NP-
complete, this is not the case. The time complexity of a

scheduling scheme is based on numerous parameters and
constraints which include: the optimality criteria, systems
parameters, and the ability to do context switches. These
characteristics are reflected by 3-field problem classification
�|�|� that can be found in Graham et al. [7]. An extended list of
scheduling schemes based on this classification can be found in
Brucker [8] and Sinnen [9].

It is well worth noting that many scheduling schemes work
offline and assume having knowledge on the tasks that make up
the applications. As such, they have the ability to make wiser
scheduling choices as they are able to go over the full or partial
search space. In contrast, online schedulers have to make the
scheduling decisions quickly as otherwise the system utilization
can be significantly reduced. Furthermore, online schedulers
usually have less information on which they base their decision to
dispatch a specific task. Because of this, online scheduling
schemes require simplicity and make scheduling decisions that are
not optimal. Further, hardware schedulers require even a higher
level of simplicity.

Applications can be represented using Directed Acyclic
Graphs (DAG) in which the vertices represent the tasks and the
edges represent the task interdependencies. The incoming edges
are known as the tasks dependencies or its precedence constraints.
The dependences can be for either control flow or data flow. The
vertex weight is the expected amount of time that the task will
need for its execution. The edge weights refer to the
communication costs between two tasks. By scheduling tasks that
have sort of communication cost between them on the same
processor, the communication can be avoided as the data has
already been fetched.

The critical path of the DAG is defined as the longest path
between any entry vertex (vertices that do not have any
dependencies) and any exit vertex (vertices that are not
dependencies for other tasks). Two notable papers that deal with
critical path scheduling problem are by Sih and Lee [10] and
Kwok and Ahmad [11]. The first of these, schedules the tasks to a
system with a given number of processors whereas the second
uses a scheduling scheme that can introduce new processors. As

A Join

A-1

A-2

A-3

A-8

A Fork B Join

B-1

B-2

B-4

B Fork

(b)

B-3

A-4

A-5

A-6

A-7

A-1

A-2

A-3

A-8

A Fork B Join

B-1

B-2

B-4

B-3

A-4

A-5

A-6

A-7

(a)

Figure 1 - (a) Two duplicable tasks A, B. A precedes B. A has 8
replicas and B has 4 replicas. (b) Same duplicable tasks with
precedence constraints among replicas of the two tasks.

116

such, the later does not have a limit on the number of processors
that it can use for scheduling the tasks.

Gillies and Liu [12] discuss the use of “or” precedence
constraint that allows for dispatching tasks only when a partial
subset of their precedence constraints have been met. One can
consider the case of redundancy where tasks are executed more
than once for the sake of correctness. If a task fails then all the
dependent tasks cannot be dispatched. For the sake of brevity we
don’t present additional scheduling schemes that use this type of
constraint, yet, we note that this is a scheduling directive.

2. The Hypercore Architecture

Hypercore, developed by Plurality [1, 2], offers a shared-memory
many-core system where the on-chip cache is fully shared among
the cores, but is partitioned into numerous banks, and a low-
latency, high-bandwidth combinational multistage interconnect
carries the core-cache traffic. Address interleaving is used for load
balancing and collision mitigation. Same-address writes, as well
as same-bank accesses (to different addresses within the bank) are
serialized by the interconnect. The memory banks are equidistant
from all the cores, so this is a UMA system. The absence of
private caches (and a large amount of state in them) and the UMA
architecture permit any core to execute any compute task with
equal efficiency. This greatly simplifies programming and runtime
management. The fast task dispatching permits the beneficial
exploitation of fine grain parallelism. Typical shared-cache size is
several Megabytes.

The programming model is a set of serial tasks along with
precedence relations among them. Any task whose precedents
have been met is runnable. (It is the programmer’s responsibility
to provide all the precedence constraints that are required for
ensuring correctness.)

Hypercore can be viewed as the “dual” of a single-core
processor with out of order execution: the latter is a control flow
machine when viewed from afar, and a dataflow machine when
one zooms in on the instructions currently in the CPU; Hypercore,
in contrast, is a coarse-grain (task granularity) dataflow machine
and a fine-grain control-flow machine (each core is typically an
in-order pipelined machine). A directed task graph is used to
express the desired precedence relationships among tasks.

Plurality has implemented an online hardware scheduler called
the “Synchronizer\Scheduler”. It receives the task graph along
with pointers to the start address of every task, tracks the
completion of every task, and dispatches a runnable task as soon
as a core becomes available. (We will simply refer to this unit as
the dispatcher or the scheduler.)

To enable fast scheduling and dispatching, Plurality created a
distribution network between the dispatcher and the cores. From
the moment the dispatcher dispatches a task until the task reaches
an idle core, it takes �(
��(����)) cycles. The dispatch network
is a tree rooted at the dispatcher with the cores as the leaves. The
dispatcher node’s fanout is implementation dependent. Each
internal node in the dispatch network can forward the dispatch to
one of its childrens in one cycle.

The dispatcher, implemented in hardware, is very fast (in terms
of both latency and throughput). The fast dispatcher enables
beneficial exploitation of fine-grain parallelism. Together with the
UMA, high-bandwidth shared-cache, this yields a very effective,
agile and easy to program architecture.

Each of the nodes in the scheduler's distribution network can
complete its mission in one cycle, sending the dispatch request
onward. Hypercore supports two types of dispatching: 1)
dispatching a single task on each sub-tree in the distribution
network; this limits the number of dispatched tasks per cycle to

the number of sub-trees; 2) dispatching a duplicable task with
multiple copies on each sub-tree; here, the number of dispatched
replicas is limited only by the total number of cores in that sub-
tree.

It is Plurality’s goal to make this system a low power system.
While exact numbers cannot be given as this platform has not
been fully synthesized at the date of submission, the numbers
suggest ~4	����s for 64 OpenSPARC cores at 500��� with
40�� CMOS technology.

Hypercore is extremely attractive from a power-performance,
applicability and ease of programming perspectives. We therefore
chose it as the basic architecture for our work, though much of our
findings and suggestions have broader applicability.

3. Scheduling Directives for Regular Tasks

We next present scheduling directives. For convenience, we
express them in the context of task � that depends in some sense
on a set of “prerequisite” tasks. Also, we use !" to denote the
priority of task #; a larger number represents higher priority.

3.1 Conventional directives (not new)

Start After Complete (SAC). This is simply the precedence
relation, whereby B may be dispatched only after all tasks in A
have been completed. We used $��(�) to denote the set of tasks
on which task B has a SAC dependence.

Priority. Here, if both � and some task in are runnable but
there is only one available core, will be dispatched. If, however,
only � is runnable, it need not wait for to be dispatched.

We next present a new scheduling directive for regular tasks.

3.2 Start After Start (SAS)

The SAS(B,A) directive
Here, task B may not be dispatched until all A tasks have been

dispatched. SAS expresses an intermediate degree of
prioritization, with SAC being more strict and Priority being less
strict. Note that SAS is not “work conserving,” as a core may be
kept idle despite the fact that there is a runnable task.

A motivating example for this is a situation wherein � is
runnable and is not. Also, certain other tasks have a SAC
dependence on , whereas none depend on �. Suppose that a
single core becomes available, and A becomes runnable shortly
thereafter. Although � does not depend on A, letting B grab the
core may delay the dispatching of if becomes runnable but
there is no core to run it on. In this case, it may be desirable to
require that � be dispatched only after has been dispatched,
hence the term “Start after Start”.

SAS Implementation
SAS(B,A) can be expressed using SAC and Priority as

follows:
• Set $��(�)	←	$��(�)	∪	$��()

Figure 2 - (a) Desired graph. The dashed red arrow represents
the SAS requirement between tasks and �. (b) SAS
implementation, adding A′s precedences to B.

A B

1, ,...
AA n A

d d

A B
p p>

1, ,...
BB n B

d d

A B

1, ,...
AA n A

d d 1, ,...
BB n B

d d
1, ,...

AA n A
d d

(b)(a)

117

• Set !' > !)

The first step ensures that B does not become runnable before

A, and the second step ensures that if both are runnable then A is
dispatched first. Clearly, both elements are necessary. SAS
implementation can thus be based on the existing mechanisms for
SAC and priority. Figure 2 depicts this.

We next consider the case of duplicable tasks.

4. Scheduling Directives for Duplicable Tasks

4.1 Need and Challenges

SAC at the entire-task granularity suffices for guaranteeing
correctness. However, it may be overly restrictive and limit
parallelism, as illustrated by the following example. Unless stated
otherwise, we use a letter to refer to a duplicable task and a
subscript value for each of its replicas.

Example 1. Suppose that �* only depends on data computed
by * and by *+,. Clearly, there is no need to wait with the
dispatching of B, until all replicas of have been completed. It is
therefore desirable to express the SAC constraints between
duplicable tasks more precisely in order to expose more
parallelism.

Even in the absence of data dependence among duplicable
tasks, it may be important to coordinate the dispatching of their
replicas. One possible reason is memory performance, as
illustrated by the following example.

Example 2. Consider and �, duplicable tasks that both
access the same elements of a data array X in the same order. X is
larger than the shared cache. If all of 's replicas are executed
prior to any of �′s replicas, every data element would have to be
brought into the cache twice, as it would drop out of the cache
prior to its use by B. If, instead replicas of and � were executed
concurrently (in lockstep or nearly so), this situation could be
avoided.

Remark. One may wonder why the work should be partitioned
into two tasks in the first place. The answer is that so doing
exposes more parallelism. This is important both when the
number of cores exceeds the number of data elements, but also
serves to reduce the required cache size in support of any given
level of computational parallelism. Another use case is when the
tasks cannot be fused together as discussed in Section 4.2 .

In view of the above, it is clearly desirable to be able to
coordinate the execution of replicas of duplicable tasks with finer
granularity. Also, it may be desirable to “throttle” the dispatching
of replicas of a single duplicable task for reasons such as total
instantaneous memory footprint.

One could conclude from the above that perfect lockstep is the
solution, at least SAS lockstep (i.e., controlling the dispatch
order). However, this is somewhat simplistic. In Hypercore, for
example, the rate at which same-task replicas can be dispatched is
much higher than the dispatch rate of different tasks. It is
therefore desirable to permit bursts of same-task replica
dispatching, but to control burst length.

The challenge is to try and provide sufficient expressive power
for stating the desired inter-replica constraints and pacing while
permitting sufficiently simple implementation in terms of both
speed and the amount of dynamic state information that must be
kept. We next present such extensions of SAC and SAS, as well as
a limit on the number of active replicas. Prior to so doing, we
present the required priority and state information to which we
have elected to restrict our proposed directives. This is a sensible
yet subjective, self-imposed complexity constraint.

Before proposing our scheduling directives, we next consider
and assess several approaches.

4.2 Duplicable Tasks Limitations and Workarounds

In this subsection we present several workaround to the inherently
limited expressive power available when duplicable tasks are
treated as a single entity.

One way of increasing the expressive power for scheduling
constraints among replicas of duplicable tasks is to treat each
replica as an independent task. E.g., SAC(Bj, Ai). This, however,
has major drawbacks: 1) bloated task graph, often becoming
impractical for efficient hardware implementation, 2) the graph is
parameter dependent: a change in the number of replicas (a
parameter change for the application) requires a change to the
graph; 3) Dispatching regular tasks is usually less efficient than
the dispatching of duplicable tasks, because the scheduler [2] can
dispatch several replicas of a duplicable task in a single cycle vs. a
single regular task per cycle. This approach is therefore
impractical.

Another possible approach entails fusing two duplicable tasks
 , � into one new duplicable task .. As the task graph designer
knows the relationships between the tasks, the task graph designer
may be able to redesign the graph accordingly. However, task
fusion suffers from several deficiencies: 1) the duplicable tasks
may not have an equal number of replicas, making the fusion
more complicated as in Fig. 1. 2) Even simple relationships
between the replicas of the two duplicable tasks and � can be
hard to fuse into a new duplicable task .. For example, given that
�* is dependent on * and */0 , which replica of . should

compute 1? Should .1 or .1/0 compute it? Both .1 and .1/0 can

compute * and */0. This causes redundancy in operations. For
the scenario that �* depends on a large number of tasks, this

approach is intolerable. Another solution is to let .1 compute

 1/0. Due do to out-of-order completion, .1/0 now becomes

dependent on .1, and therefore it cannot be dispatched until the

completion of .1. While task fusion may be suitable for some

problems, specifically when �* is dependent only on one * 	, it is
not suitable for many scenarios.

We next present our proposed approach and specific
scheduling directives. We begin by stating the required state in
formation and presenting the required taxonomy.

4.3 Priority and State Information

Priority
A replica of a duplicable task inherits the priority of its task.
Additionally, it has an intra-task priority (relative to other same-
task replicas), which is normally highest for the lowest-number
replica. We furthermore assume in-order dispatching of same-task
replicas. Specifically, in-order submission to the dispatch
dissemination tree-like interconnect. (The exact order in which
they obtain cores is not critical for correctness.)

State information
For each duplicable task, , we keep the following state
information, which are updated by the online scheduler:

• . � – total number of replicas (static). Supported by
Hypercore.

• . s – number of dispatched/started replicas (both active
and completed). Supported by Hypercore.

• . – number of completed replicas. Supported by
Hypercore.

118

• A.es – the “earliest” (lowest index) replica that has been
started (dispatched) but has yet to be completed. In Section
 5. we show how to implement its computation
efficiently in a manner that is similar to a re-order buffer.

Lemma 1: Consider a duplicable task A. If . ��	≥	 . �, then
all replicas preceding 3 have completed.

Proof: the in-order dispatching of same-task replicas ensures
that these replicas had all been dispatched, and the fact that es is
the index of the earliest replica that has not been completed
ensures that there are no active lower-index replicas. □

The number of active replicas of a given task A is A.s-A.c. The

indication for entire duplicable task completion is A.c=A.n.
In the upcoming subsections, the following functions will be

used on replicas of A to determine its status:
• S(A5) – returns true iff A5 has started,
• C(A5) – returns true iff A5 has completed,
• D(A5) – returns true iff A5 may be dispatched.
In addition to the per-task state, two parameters,
8*3 and

89:, are optionally used to constrain the permissible progress
“gap” between any two duplicable tasks. Different directives will
use variables with different exact meanings, so more precise
definitions will be given in context.

4.4 Start After Complete (SAC) for duplicable tasks

Applying directives to entire tasks is the simplest to implement
but hides legitimate parallelism, as it often creates false
dependences among the replicas of the different tasks. At the other
extreme, expressing the exact inter-replica dependences exposes
all available parallelism but is complicated to express and track.

In this section, we provide extensions of SAC to duplicable
tasks. They represent a trade-off between complexity and
expressive power. They are moreover intended mainly for
situations in which the set of task A replicas on which Bi+1
depends is obtained from the set on which Bi depends by adding
one to the index of every replica in the latter set. Also, we assume
in-order dispatching of same-task replicas, though out-of-order
completion is permitted.

Consider duplicable tasks A, B such that B5 depends (SAC) on

some set of ;A<, A=…A?@AB of A’s replicas, where A?@A is the

replica with the highest id on which B5 depends. (B5/, depends the

set of ;A</,, A=/,…A?@A/,B	and	so	forth). Our SAC directive

simplifies this by requiring that all replicas of A up to and
including Amax be completed as a prerequisite for the dispatching
of Bi. The price is “false” constraints, but correctness is
maintained. Moreover, we will later show a potential performance
advantage, namely the ability to dispatch bursts of same-task
replicas. In Hypercore, this is much more efficient that
dispatching individual replicas or ones belonging to different
tasks.

We next develop the underpinnings of a simple expression and
implementation of this constraint.

Theorem 2: If A.��	≥	��K such that Amax has completed, then
B5 may be dispatched.

Proof: by Lemma 1, ��	≥	��K ensures that A’s replicas with a
smaller index than max have completed, and together with the fact
that Amax has also completed this guarantees that all the
prerequisites for the dispatching of Bi have been met. □

Corollary 3: Correctness can be guaranteed by way of a single
SAC constraint, namely �* ← 89: along with an indicator for
the additional constraint on the value of es (whose value equals
max). Moreover, whenever the precedence constraints are relative
(a fixed function of i) and satisfaction of the constraints for Bi
implies that they have been satisfied for all earlier replicas of �,
the constraints can be updated on the fly for different values of i.
 □
Remark: due to the possibility of out-of-order completion of
same-task replicas, es may increase in arbitrary increments. A
reorder-buffer technique can be used for handling updates to es.
We will return to this in Section 5.

The SAC(B,A, l) directive
Herel, l is the difference between the index of a replica of B

and that of the highest-index replica of A on which it has a SAC
dependence. In other words, this is a “relative” or “sliding
window” equivalent of the situation presented at the beginning of
this subsection. Figure 4 depicts an example.

The directive is stated formally in (4.1) and (4.2). The former
ensures in-order dispatching of A’s replicas; the latter ensures in-
order dispatching of task-B replicas and expresses the actual
constraint. Dependences on negative-index replicas are taken as
having been met.

() (){ }
1i i

D A S A
−

← ; (4.1)

() () (){ }1
.

j j j l
D B S B C A

− −
← ∧ (4.2)

Creating hardware to compute these rules is simple as ’s

replicas are dispatched like any duplicable task. We denote
MN�!��ℎP as the number of �′� replicas that can be dispatched at
any given time. MN�!��ℎP is computed based on (4.2) :

. . .
B

dispatch Aes B s l= − − (4.3)

The first part of the expression . �� − �. � refers to the
distance between the earliest active in and the last replica to
start in	�. This distance has to be at the very least l for there to be
replicas of � that can be dispatched.

Remark. This directive can use the distribution network
efficiently to dispatch multiple replicas concurrently, as the value
of MN�!��ℎP can be greater than one.

Multiple SAC constraints
It may often be the case that replicas of one task depend on

those of several other tasks. In fact, there may even be

Figure 2 - SAC Type 1 for duplicable tasks. Edges from A to B
are precedence.

1 2 … lmin … lmax lmax+1 lmax+2 lmax+3 …

1 2 … lmin lmin+1 Lmin +

2

… … … …Rep-ID

Rep-ID

Task A

Task B

Figure 3 - SAC Type 2 for duplicable tasks. Edges are
precedence constraints. Note that the precedence constraints are
in both directions

1 2 … lmin … lmax lmax+1 lmax+2 lmax+3 …

1 2 … lmin lmin+1 Lmin+

2

… … … …Rep-ID

Rep-ID

Task A

Task B

119

bidirectional dependence among replicas of two given tasks.
Figure 3 depicts an example.

For any given task, its constraints are simply the union of all
the SAC constraints that express its dependence on other tasks (or
even on its own earlier replicas, for that matter). The number of
dispatchable replicas of such a task is the minimum over the
numbers computed based on the individual constraints.

Deadlock
Deadlock can and should be checked for statically (no need for

dynamic checking) using the established techniques (looking for
loops in the replica-granularity SAC-dependency graph). Special
caution must be taken only whenever the limited expressive
power of our SAC constraints result in the implicit addition of
(false) constraints, which may cause deadlock in situations that
were originally fine.

4.5 Start After Start (SAS) for duplicable tasks

Given two duplicable tasks, A and B, possibly with no data
dependence between their replicas, SAS(B,A) is aimed at
specifying the level of synchronization (“lockstep”) between the
two tasks. Specifically, it specifies the permissible range of the
number of replicas by which A’s dispatching may advance over
B’s dispatching. Using the parameters
8*3 and
89:, the
definition of this directive is as follows.

Definition: R R(�, ,
8*3,
89:)
1. The next replica of B may be dispatched only if . � −

�. � >
8*3,

2. The next replica of A may be dispatched only if . � −
�. � <
89:,

3.
?@A ≥
8*3 ≥ 0. Negative numbers can be thought of as

switching the roles of and �.

We refer to (lmin, lmax) as the range.

As stated at the beginning of this section, the purpose of SAS

is not correctness. Rather, it is aimed at improving resource
utilization and efficiency of operation. In addition to the
aforementioned memory-access advantages, SAS can be used to
increase the likelihood of being able to take advantage of the burst
dispatching capability of Hypercore for same-task replicas. This
will be mentioned later in some more detail.
 Example 3: Perfect lockstep with priority to replicas of A:
range=(0,1) and set 	!'* > !P*/, 	∧ 	!'*/, < !P*/,	. Note that the

priorities alternate between the duplicable tasks and that the
indices used in this example are intended for this example alone.
(In this case the tasks themselves would receive identical
priorities.)

Note that dispatching task B replicas depends on the
dispatching of A′s replicas and vice versa. Without the former, it
would be possible to dispatch all the replicas of B without
dispatching a single replica of A, and	vice	versa.

Perfect lockstep is not recommended, as it often prevents the
dispatching of bursts of same-task replicas, an operation that has
much higher throughput than the dispatching of individual tasks
or replicas.

The SAS constraints are stated formally below. Figure 5
depicts the SAS directive. (4.4) enforces the in-order dispatching
of replicas of A, and prevents A from getting ahead of B by more
than lmax replicas (in terms of dispatching, not completion).
Similarly, (4.5) ensures in-order dispatching of replicas of B, and
prevents B from trailing A by fewer than lmin replicas. In both
cases, a dependence on a negative-index replica is taken as
satisfied.

The constraints on the replicas are formalized as following.

() () (){ }
max

1
.

i i i l
D A S A S B

− −
← ∧

 (4.4)

() () (){ }1 min
.

j j j
D B S B S A

− +
← ∧ (4.5)

In (4.6) and (4.7) we show that dispatching replicas meeting
the constraints of (4.4) and (4.5) can be done efficiently. The
following two expressions compute the number of replicas from
each of the duplicable tasks that can be dispatched:

()
max

. .
A

dispatch l A s B s= − − (4.6)

()
min

. . .
B

dispatch A s B s l= − − (4.7)

Note that when the gap is inside its permissible range, replicas
of either task may be dispatched. Here, by assigning higher
priority to one of the tasks, burst dispatching will be used
whenever possible. Specifically, if the number of available cores
is smaller than the difference between the current gap and the
relevant limit, a single burst of same-task replicas will take place,
which is the most efficient.

Remark. It is possible to design the scheduler such that, when
replicas of multiple tasks are dispatchable, it would favor tasks
based on the number of dispatchable replicas, the number of
available cores, and the distance to the relevant limit on the gap.
Details are beyond the scope of this paper.

Example 4: In this example we show a use case for SAS that
allows for utilizing the scheduler’s efficient burst scheduling. For
simplicity, we assume a system with two cores. There are two
duplicable tasks, A and B, such that all their replicas execute in

Figure 5 - SAS for duplicable tasks. The SAS (dashed red) edges
are in both directions.

1 … llow … lupp lupp+1 lupp

+2

lupp+3 … lupp +

llow

RepRepRepRep----IDIDIDID

1 2 … llow lLlow+

1

llow+2 L2 x low …

Task A

Task B

RepRepRepRep----IDIDIDID

Figure 6 – Synthetic plots that illustrates the effects of gap size
on cache performance.

 miss time

 hit time

 miss time

0

0.2

0.4

0.6

0.8

1

A
v

e
ra

g
e

 m
e

m
o

ry
 a

cc
e

ss
 t

im
e

C
a

c
h

e
 m

is
s

ra
te

Gap size

Cache miss rate Average memory access time

small gap big gapsmall gap big gap

120

unit time. Assume that | | = |�| ≫ 2. We set
8*3 = 2 and

89: = 4. At time � = 0,	we dispatch , and 0. At time � = 1,
we check if replicas of � can be dispatched: MN�!��ℎP =
(2 − 0) − (2) = 0 and MN�!��ℎ' = 4 − (2 − 0) = 2. Therefore,
at time � = 1 we dispatch ^ and _. At time � = 2:
MN�!��ℎP = (4 − 0) − (2) = 2 and MN�!��ℎ' = 4 −
(4 − 0) = 2. Therefore, at time � = 2 we dispatch �, and �0. At
time � = 3: MN�!��ℎP = (4 − 2) − (2) = 0 and MN�!��ℎ' =
4 − (4 − 2) = 2. Therefore, at time � = 3 we dispatch a and b.
This will repeat itself until all the replicas have been dispatched.

The above example is somewhat artificial, as the probability of
cycle-accurate lock-step is very low. However, the situation
wherein it suddenly becomes possible to dispatch several tasks is
quite plausible. It arises, for example, when implementing a
barrier. Until the barrier condition is met, cores may become idle
as no post-barrier tasks may be dispatched. Once the final
remaining barrier condition is satisfied, those cores become usable
simultaneously. Using our terms, if both task A replicas and task �
replicas have a SAC dependence on task C, a high-priority task
that has a SAC dependence between Ci and Ci-1 and is thus
executed sequentially, the completion of a replica of C would
possibly render multiple replicas of A and B dispatchable
simultaneously to a set of idle cores.

In summary, SAS is a useful construct for pacing the relative
progress of different duplicable tasks, in support of fair resource
allocation, reduced memory footprint, and more effective
dispatching.

4.6 More on SAS and Memory Performance

The obvious benefit of using SAS to coordinate the progress of
two duplicable tasks whose replicas operate on the same data is
the reduction of the instantaneous memory footprint and a
reduction in the miss rate of the shared cache. Indeed, letting the
progress gap between the active duplicable tasks grow eventually
results in a situation whereby data brought into cache by task A is
removed from the cache before task B uses it. The result is that
both tasks, rather than only A, incur a cache miss.

A simplistic implication of the above observation is that the
best memory performance is attained when tasks operating on the
same data are paced in perfect lockstep. However, this is not the
case.

One reason for not forcing perfect lockstep, mentioned earlier,
is dispatching efficiency. However, in certain cases there is also a
memory related reason.

The problem is that if task B wishes to access a cache line that
was just requested by task A, and the latter incurred a cache miss
(possibly a compulsory one), B would not incur a miss; however,
it would still have to wait for the data to arrive. Therefore, the
memory access time experience by B would be very similar to the
miss time. If, instead, B were delayed some, the data would be in
the cache.

This phenomenon is illustrated schematically in Figure 6. The
abscissa is the gap size, and the two ordinates are cache miss rate
and average memory access time. We see that whereas the miss
rate is monotonically non-decreasing with gap size, average
memory access time has a sweet range. The figure is for
illustration purposes, not representing actual results, and is
intentionally not calibrated.

The following is suggested as a rule of thumb for selecting

8*3 for the case that the memory needed by each replica is
considerably smaller than the shared memory and the replicas of
both duplicable tasks have the same execution times:

min

2 .l Cores= ⋅� (4.8)

In view of the above, there are several good reasons for
imposing both an upper limit and a lower limit on the progress
gap between two tasks that operate on the same data.

4.7 A Basic Simulation Study

In this section, we present a simple performance evaluation. As
Plurality has yet to ship the Hypercore system and we had limited
access to the actual hardware implementation, we created a
simulator to test SAS and the additional directives. We used a
queue-based simulator that dispatched duplicable tasks to a
shared-memory many-core system similar to the Hypercore.
Using Plurality’s cycle accurate simulator, we were able to obtain
cycle counts for memory accesses in the cache, and for the
execution of both floating point and integer operations. Plurality’s
cycle accurate simulator did not take into account the DRAM
memory. For DRAM access time, we used actual DRAM times of
current technologies. These numbers were passed on to our
simulator. Our simulator used the following parameters: 64 cores
with a 2�� shared cache. We used 32 byte cache lines and a
direct-mapped cache. The latency for fetching data out of the
DRAM was 20 cycles and fetching from the cache was 2 cycles.
Should the 20 cycles latency be an under estimation, this would
result in the performance being even more sensitive to cache
misses.

The application that we tested was the computation of K	and c
derivatives of a 2000 × 2000 matrix of single byte elements,
which is typical of gray-scale image processing. The size of the
array is 4MB, so the array cannot fit into the shared on-chip cache.
The first duplicable task computed the K derivative, and the
second duplicable task computed the c derivative for the same
matrix. The duplicable tasks were implemented at a fine
granularity – element level. Thus, each duplicable task had
n = 4 ∙ 10b replicas, which is the number of elements in the array.

In Figure 7 and Figure 8, we present two plots of the number
of cache misses and the runtimes for an application, respectively.
The solid curve corresponds to the two duplicable tasks not
running concurrently. The dashed curve corresponds to executing
the tasks concurrently, governed by the SAS directive. The
abscissa is the SAS-imposed gap size. The ordinate in Figure 7 is
the total number of caches misses, and in Figure 8 it is the number
of cycles required to complete the application.

It can readily be observed that the use of SAS with a
sufficiently small gap offers a noticeable improvement relative to
the serialization of the two tasks. This is due to the reduction in
cache miss rate. When the gap is large, there is no performance
improvement, because data brought into the cache by A is evicted
before B has a chance to use it, so B also incurs misses.

4.8 Additional directives

We have presented and discussed two scheduling directives for
duplicable tasks: SAS and SAC. We next briefly present several
additional structured scheduling directives that we believe to be
useful for task graph designers:

• Limit Number of Active Replicas (LNAR) is used in order
to limit the number of concurrent replicas of a duplicable
task to g. This is useful whenever the number of replicas
exceeds the total number of cores, and it is desirable that
not all the cores execute replicas because of I/O limitations
or memory footprint issues.

121

The first g can be dispatched without any constraint. For
all N > g the following constraints are added.

 () () (){ }
1

. .
i i

S A S A A s A c K
−

← ∧ − < (4.9)

The number of replicas that can be dispatched at a given
time is:

 (). .
A

dispatch K A s A c= − − (4.10)

• Assign Cores Fairly (ACF) is used in order to split the
cores evenly between two duplicable tasks and �. This
directive is useful when the number of replicas exceeds the
total number of cores and it is desirable that not all the
cores execute same-task replicas. This directive refers only
to the number of started replicas and not to the order of
their completion. The constraints on are:

 ()
()

() ()

1

. . . .

i

i

S A
S A

A s A c B s B c

−
∧

←
− ≤ −

 (4.11)

The first constraint on A is the usual in-order dispatching
of same-task replicas. The second constraint ensures that A
has fewer active tasks than B does, Due to symmetry, the
constraints on B are the same.
To compute the number of replicas that can be dispatched:

() ()
/

.
A B

dispatch A s A c B s B c= − − − (4.12)

In expression (4.12) �he numbers of active of replicas of
both tasks are compared. If MN�!��ℎ'/P < 0 then there
are more active replicas of 	� in the system and may
dispatch accordingly the difference. If MN�!��ℎ'/P > 0
then there are more active replicas of 	 in the system and
� may dispatch accordingly the difference. If
MN�!��ℎ'/P = 0 then there is an equal number of active
replicas and the idle cores should be divided equally
between the duplicable tasks.

• Limit Number of Replicas after Earliest Started (LNR) is
used in order to limit the span (range of ids) of active
replicas of a given duplicable task. This can be seen as a
limited size sliding window of dispatched replicas. Until
the first replica in the window, �� is completed, the

window cannot be moved forward. This directive is
similar to LNAR with the difference being that LNR limits
the number of dispatched replicas w.r.t. to the �� replica
dispatched. Furthermore, this directive enforces
correctness unlike LNAR.
The first g replicas can always be dispatched. For all
N > g the following constraints are added.

 () () (){ }
1

,
i i i K

S A S A C A
− −

← (4.13)

The number of task-A replicas that can be dispatched at a
given time is:

 (). .
A

dispatch K A s Aea= − − (4.14)

• Start After Merged Completion (SAMC) is used to state
that the prerequisites between the duplicable tasks are such
that each �* is dependent on the completion of �
consecutive task-A replicas. Different task-B replicas are
dependent on disjoint subsets of task-A replicas. Given
two duplicable tasks, and �, the dependency between
the replicas can be defined as

�1 ← i∙1 , i∙1/,, … , i∙(1/,)+,. This directive would be

useful in implementing a task graph for merge-sorting
[13].
Task- replicas are unconstrained except for in-order
dispatching. The constraints on task-� replicas are as
follows:

 ()
() ()

() ()()

1

1 1 1
...

j M j

j

M j M j

S B C A
S B

C A C A

− ⋅

⋅ + ⋅ + −

∧ ∧
←

∧

 (4.15)

The number of B’s that can be dispatched is

.

. .
B

A ea
dispatch B S

M
= − (4.16)

Figure 7 – Total number of caches misses vs. the SAS imposed
gap size for two duplicable tasks with a similar (not exact)
access pattern (dashed). The case of no SAS (solid), for which
there is no notion of a gap, is brought as a baseline for
comparison (solid line).

 Figure 8 - Execution time vs. SAS gap size for two duplicable
tasks with a similar (not exact) access pattern (dashed), The case
of no SAS constraints (solid) is the baseline..

122

Computing this expression is more demanding than
computing the other expressions due to the division
operator.

5. Thread Re-Order Buffer

In representing (and enforcing) a SAC constraint between
replicas of different duplicable tasks, there are two extremes: 1) a
SAC constraint between the entire tasks (all replicas of A must
complete before any replica of B is dispatched), and 2) specify the
exact inter-replica dependences and enforce them. The former was
claimed to potentially reduce performance by hiding too much of
the permissible parallelism, and the latter is complex to implement
as much state must be maintained and updated. Instead, we
proposed a compromise: If a given replica of task B depends on a
set of replicas of task A, treat it as if it depends on the completion
of all replicas of A with indices less than or equal to that of the
highest-index replica of A on which it actually depends. We then
presented the state variable (for each task) es, which is the index
of the lowest-index replica that has been dispatched but not yet
completed. We also showed how es can be used in conjunction
with in-order dispatching of same-task replicas in order to
determine whether any given task-B replica may be dispatched.
Finally, we pointed out that, due to out-of-order completion of
same-task replicas, the value of es may change in arbitrary
(positive) increments. In this section, we present a scheme for
updating the value of es. We refer to the value of es of a given
task A as A.es.

5.1 Replica Re-Order Buffer for Updating es

Consider a change of A.es from A.esold to A.esnew. This can
only be brought about by the completion event of A’s replica
number A.esold, with replica number A.esnew having been
dispatched prior to this event and with all replicas in the range
(A.esold+1, A.esnew-1) having completed prior to it as well. It is
readily evident that the update mechanism of es is essentially the
same as that for controlling the commit phase in processors with
out-of-order execution and in-order commit. Specifically, we can
employ a reorder buffer (ROB) [14, 15] per active duplicable
task.

 For the implementation of �� field to be considered efficient
and practical, it must meet the �(log0(|����|)) dispatch time of
the current scheduler and be low power, small in physical size and
scalable.

While the function of our task ROB is the same as one of the
functions of an instruction ROB, there are some important

differences. For example, we don’t need to actually do anything
with completed replicas, other than move a pointer. Therefore, the
maximum number of replicas (jointly for all active tasks) equals
the number of cores (or, if the cores can handle a few task
concurrently, like multi-threading, a small multiple thereof).

We now present a low-power logarithmic time method for
computing the �� replica, initially considering a single active task.
As depicted in Fig. 9, we create a tree whose leaves are the cores.
Each core provides the index of the replica on which it is working,
and a null value if it is idle. Intermediate nodes compute the
minimum over the numbers (on each) that they receive from their
sons and pass it on to their father. The root thus holds the
minimum index value of an active replica, which is exactly es.
This can be constructed as simple combination logic, or can be
pipelined. Fig. 9 depicts the simplest case, namely a binary tree
without pipelining.

The extension to multiple concurrently active tasks is as
follows. Now, each core provides both the task ID and the replica
index. In one possible embodiment, depicted in Fig. 10, the tree is
replicated several times (equal to the maximum supported number
of concurrently active different tasks, and the replica ID’s are
directed to the relevant tree based on their task ID. Alternatively, a
single, time-multiplexed tree can be used. In each clock cycle, the
cores (or some logic between them and the first layer of internal
tree nodes) receives a task id, and only lets the replica ID through
if it belongs to the appropriate task.

Since the number of concurrently active duplicable task is
usually small, and since we are dealing with task granularity, the
slight additional delay of the time-multiplexed approach is likely
to be tolerable. Finally, one can combine the two schemes so as to
support a certain number of concurrent tasks with no penalty
while not limiting the number of concurrent tasks that can be
supported. In Table 1, the specifications of our “virtual”
implementation of the hardware is given for a 64-core system.
The implementation is low power, low latency and requires little
chip space. Further implementation details are left to
implementers.

5.2 ROB-Scheduler Interaction

Figure 10 depicts a schematic diagram of how the new thread
re-order buffer interacts with the scheduler and the cores. Given
the value of �� for each task, along with other information
available to the Hypercore scheduler (e.g., the next replica to be
dispatched for each task as well as the various constraints), the
extension of the scheduling logic to make use of �� and the
constraints as described earlier is a simple engineering task using
simple logic. Details are therefore omitted.

We note in passing that the new thread re-order buffer has a
similar structure to the scheduler’s distribution network, but
operates in the reverse direction. In practice, it may be beneficial
to co-design the two networks.

TABLE 1

RE-ORDER BUFFER SPECIFICATIONS

Parameter name Value

Number of cores 64

Process used 65 ��

Total dynamic power 7.0 ��

Physical size 0.025 ��0

System frequency 400���

Number of cycle 3

Figure 9 - Schematic diagram of the new hardware. For
simplicity the non-pipelined version is presented. Each core
maintains the duplicable task ID and the replica ID of the task
that it is executing.

1 2 3 4 5 6 7 8

(A,4) (B,1) (A,7) (A,9) (A,6) (A,10) (B,3) (B,4)

Task ID

Core number

(Task ID, Replica ID)

Min Min Min Min

Min Min

Min

123

6. Conclusions

This work addressed a computing framework whereby
scheduling policies are decided offline, and are enforced during
run time. Specifically, we investigated the case of duplicable
tasks, i.e., tasks that have many instances (data parallelism).

This paper did not offer scheduling policies; instead, it offered
directives that serve policy makers (human and tools alike) to
express their policies.

Some of the proposed directives serve to express correctness
constraints, while others facilitate performance enhancement (e.g.,
effective use of the memory system) by controlling the relative
progress of different duplicable tasks.

The proposed directives represent what we view as a sensible
trade-off between expressive power (and resulting benefits) and
implementation complexity. To this end, we sketched a power
efficient implementation of the main directives.

In our work, we used Plurality’s shared-memory many-core
system as a reference system for the incorporation of new
scheduling directives. The new scheduling directives are not only
intended for Plurality’s system but can be used for other systems
as well. These directives might be useful for NVIDIA's GPU
platform with CUDA [16]. More specifically, these scheduling
directives would be useful for parallel prefix sum [17] using
CUDA. These directives might also be useful for software
packages such as the Intel Concurrent Collections (CNC)
platform [18].

We presented a small simulation study of a particular
application, wherein the performance gain due to the decreasing in
cache misses (a 50% reduction in miss rate) is around 15%. We
encourage others to find applications of interest that can use these
directives.

Our focus was on two directives: Start After Complete (SAC)
and Start-After-Start (SAS). However, we presented several
additional directives and discussed them briefly.

Finally, we briefly discussed implementation. We showed a
ROB-like hardware scheme for updating the “earliest started” (es)
value of a task, and showed that this and the various constraints
can be integrated into an actual system, Plurality’s Hypercore
system, while maintaining the low power and space envelope
using simple logic design. Lastly, we showed that the hardware
used for computing the �� field is conceptually similar to a ROB.

References

[1] Analysis: ‘Hypercore’ Touts 256 CPUs Per Chip. EE Times

www.eetimes.com/design/signal-processing-dsp/4017491/Analysis--

Hypercore-touts-256-CPUs-per-chip.2007).

[2] HyperCore Software Developer’s Handbook ed: Plurality, Online:

www.plurality.com2009).

[3] Wen, X. and Vishkin, U. Fpga-based prototype of a pram-on-chip

processor. In Proceedings of the Proceedings of the 5th conference on

Computing frontiers (Ischia, Italy, 2008). ACM

 [4] Wen, X. HARDWARE DESIGN, PROTOTYPING AND STUDIES OF

THE EXPLICIT MULTI-THREADING (XMT) PARADIGM. University of

Maryland, 2008.

[5] Graham, R. Bounds for certain multiprocessing anomalies. Bell System

Technical Journal, XLV, No 9 1966).

[6] Ullman, J. D. Polynomial complete scheduling problems. In

Proceedings of the Proceedings of the fourth ACM symposium on

Operating system principles (1973).

[7] Graham, R., E. Lawler, E. Lenstra, A. Rinnooy Kan Optimization and

Approximation in Deterministic Sequencing and Scheduling: A Survey.

Annals of Discrete Mathematics, 51979), 287-326.

[8] Brucker, P. Scheduling algorithms. Springer, 2007.

[9] Sinnen, O. Task scheduling for parallel systems. Wiley-Interscience,

Hoboken, N.J., 2007.

[10] Sih, G. C. and Lee, E. A. A Compile-Time Scheduling Heuristic for

Interconnection-Constrained Heterogeneous Processor Architectures. Ieee

Transactions on Parallel and Distributed Systems, 4, 2 (Feb 1993), 175-

187.

[11] Kwok, Y. K. and Ahmad, I. Dynamic critical-path scheduling: An

effective technique for allocating task graphs to multiprocessors. Ieee

Transactions on Parallel and Distributed Systems, 7, 5 (May 1996), 506-

521.

[12] Gillies, D. W. and Liu, J. W. S. Scheduling Tasks with and/or

Precedence Constraints. Siam Journal on Computing, 24, 4 (Aug 1995),

797-810.

[13] Cormen, T. H., Leiserson, C. E. and Rivest, R. L. Introduction to

algorithms. MIT Press ;McGraw-Hill, Cambridge, Mass., 1990.

[14] Tomasulo, R. M. An Efficient Algorithm for Exploiting Multiple

Arithmetic Units. IBM Journal of Research and Development, 1967, 25-

33.

[15] Hennessy, J. L., Patterson, D. A. and Arpaci-Dusseau, A. C.

Computer architecture : a quantitative approach. Morgan Kaufmann,

Amsterdam ; Boston, 2007.

[16] NVIDIA CUDA™ Programming Guide Version 3.0.

[17] Nickolls, J., Buck, I., Garland, M. and Skadron, K. Scalable parallel

programming with CUDA. In Proceedings of the ACM SIGGRAPH 2008

classes (Los Angeles, California, 2008).

[18] Intel® Concurrent Collections, 2012.

Figure 10 - Block diagram of a the system using a multiple
Thread Re-Order Buffers.

Cores

Synchronize/Scheduler

Dispatch

network

Thread

ROB

ID
dup es

124

