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Abstract
Array indirection causes several challenges for compilers to uti-
lize single instruction, multiple data (SIMD) instructions. Disjoint
memory references, arbitrarily misaligned memory references, and
dependence cycles in loops are main challenges to handle for SIMD
compilers. Due to those challenges, existing SIMD compilers have
excluded loops with array indirection from their candidate loops for
SIMD vectorization. However, addressing those challenges is in-
evitable, since many important compute-intensive applications ex-
tensively use array indirection to reduce memory and computation
requirements. In this work, we propose a method to generate ef-
ficient SIMD code for loops containing indirected memory refer-
ences. We extract both inter- and intra-iteration parallelism, taking
data reorganization overhead into consideration. We also optimally
place data reorganization code in order to amortize the reorgani-
zation overhead through the performance gain of SIMD vectoriza-
tion. Experiments on four array indirection kernels, which are ex-
tracted from real-world scientific applications, show that our pro-
posed method effectively generates SIMD code for irregular ker-
nels with array indirection. Compared to the existing SIMD vector-
ization methods, our proposed method significantly improves the
performance of irregular kernels by 91%, on average.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Code generation; C.1.2 [Processor Archi-
tectures]: Multiple Data Stream Architectures—Single-instruction-
stream, multiple-data-stream processors (SIMD)

General Terms Performance, Experimentation, Algorithms

Keywords DFG-based vectorization, Irregular kernels, SIMD
processors

1. Introduction
Most modern processor architectures employ single instruction,
multiple data (SIMD) units. Using SIMD instructions, processors
can simultaneously execute the same operation on multiple data
packed into a register. For programmers, SIMD capabilities are one
of most important leverages to exploit the data level parallelism
inherent in their applications with a low power and low complexity
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processor design. As power efficiency becomes a significant issue
in various computing environments, utilizing SIMD capabilities
becomes much more desirable than depending solely on out-of-
order execution units to improve system performance [22].

In order to provide a transparent performance improvement as in
out-of-order execution, optimizing compilers are expected to auto-
matically transform programs written in high-level languages into
corresponding machine code that efficiently utilizes the underlying
SIMD architecture. Various techniques have been proposed to au-
tomatically generate SIMD code [10, 11, 15, 23] and to address
the difficulties in SIMD code generation such as memory align-
ment [6], data permutations [20], interleaved data [17], etc. Those
techniques are now well-established and even incorporated into
several production compilers. Algorithms handling regular struc-
tures such as multimedia processing have quite well benefitted from
those SIMD compilers.

Still, there are several types of important computations for
which existing compilers cannot achieve any evident performance
improvement. A notable type of such computations is code with
array indirections, which usually arise from sparse data manipu-
lation. Sparse data structures are extensively used to reduce the
memory and computation requirements in many application do-
mains including scientific applications such as computational fluid
dynamics and molecular dynamics. Since the compute-intensive
kernels of those applications involve array indirections, it is impor-
tant to make the kernels to efficiently utilize SIMD units. Existing
SIMD compilation techniques, however, cannot handle array indi-
rections very well.

The difficulties in handling array indirections mainly come from
the irregularity of their access patterns. Consider an array reference
x[idx[i]], where the accesses to the array x are dictated by the
contents of the array idx. The actual element of x that each loop
iteration accesses with an index variable i is unknown at compile-
time. As a consequence, compilers are hardly able to infer any
useful properties of the access pattern such as alignment, adjacency,
and dependence among indirected references.

The lack of knowledge on access pattern incurs several chal-
lenges in SIMD compilation, which have not been effectively ad-
dressed by the existing techniques. The access pattern irregularity
from array indirections makes the indirected references be treated
as disjoint (or non-contiguous) from each other in compiler anal-
ysis. As a result, they cannot be aggregated into a single vector
memory reference. This prevents many widely-used compiler tech-
niques from exploiting SIMD capabilities. Since SIMD compil-
ers often use adjacent memory references as initial seeds to ex-
plore SIMD opportunities, code with array indirections are ex-
cluded from their SIMD targets due to disjoint references [11, 26].
In addition, the alignment of each reference inside a loop varies
from one iteration to another. To cover all the possible alignment

55



cases, compilers have to conservatively generate packing and un-
packing code with inefficient instruction sequences. Recent works
take account of data organization optimization to handle disjoint
accesses, but they are limited to fixed stride accesses and static
alignments [6, 17, 20], or require special hardware support [3, 16].
Thus, those works still cannot be adopted to handle irregular access
patterns from array indirection on today’s commodity hardware.

In this work, we propose a compilation method to generate ef-
ficient SIMD code for loops containing indirected memory ref-
erences. In order to effectively address the aforementioned chal-
lenges, this work pursues the following objectives:

• Exploit both intra- and inter-iteration parallelism. Data-
level parallelism often simultaneously resides both within a
body of loop and across loop iterations. This fact encourages
compilers to extract parallelism from various scopes. Although
some existing approaches [11, 26] pursue intra- and inter-
iteration parallelism simultaneously, they are not adequate for
the cases with indirected memory references. Our work pro-
vides a compilation method feasible for disjoint memory refer-
ences from array indirections.

• Generate mixed scalar and SIMD operations. The traditional
way of handling dependence cycles (loop-carried dependences)
is to distribute such parts into separate loops. This often causes
the increased reuse distance of memory accesses and shorter
loop body that may hurt the instruction level parallelism. This
work generates the mixed scalar and SIMD instructions within
the same loop body. It is also useful for inherently sequential
operations such as function calls or those are not supported by
SIMD instruction set architectures.

• Minimize data reorganization overhead. Since most SIMD
units have restrictive memory units, they can only access con-
tinuous and properly aligned data. Thus, the burden to gather,
scatter, and realign data frequently lies on software. The data re-
organization overhead is one of the most significant reason why
existing SIMD compilers are unsuccessful on indirected mem-
ory references. This work proposes heuristics to find the opti-
mal placement of data reorganization code so that their over-
heads can be amortized by the performance gains of following
SIMD instructions.

Our measurements on a Cell SPU [8] show that for several sci-
entific kernels with array indirections, our method can generate
more efficient SIMD code than existing techniques. It achieves av-
erage speedup factor of 2.83, while the other existing ones achieve
up to 1.48, for four kernels extracted from several real-world scien-
tific benchmarks.

The rest of this paper is organized as follows. Section 2 dis-
cusses the existing SIMD compilation methods and introduces an
example that motivates this work. Section 3 describes the proposed
SIMD compilation method. Experimental evaluations are presented
in Section 4. Finally, Section 5 concludes this paper.

2. Background
2.1 Existing SIMD Compilation Methods
As SIMD extensions are similar to vector processors, SIMD com-
pilation techniques first originated from traditional vectorization
techniques for vector processors [1]. Those algorithms are based
on the notion of data dependence along with several classical loop
transformations. Strip-mining, scalar expansion, reduction process-
ing, and loop distribution are major loop transformation techniques
used to enhance parallelism [10, 23]. In spite of similarities, there
exist several differences between vector processors and SIMD
extensions [19]. The most prominent differences arise from the

weaker memory units of SIMD extensions. In contrast to those of
vector processors, the memory units of SIMD extensions usually
do not support scatter-gather style operations. They only allow to
access memory locations that are aligned at vector register length
boundaries. Eichenberger et al. proposed a method for vectorizing
loops with misaligned stride-one memory references [6]. Ren et al.
optimized a sequence of multiple data reorganization for statically
misaligned data [20]. Nuzman et al. extended a loop-based vector-
ization technique to handle computations with non-unit stride ac-
cesses to data, where the strides are power of 2 [17]. However, there
has been no loop-based vectorization for arbitrary stride memory
references. This work handles non-affine memory references due
to array indirections.

Another type of SIMD compilation methods is based on the ex-
traction of instruction-level parallelism within a basic block. Leu-
pers presented a code selection algorithm that can generate alter-
native covers for a given data flow graph by using SIMD instruc-
tions [15]. Larsen and Amarasinghe proposed Superword Level
Parallelism (SLP) algorithm that packs isomorphic instructions
within a basic block starting from adjacent memory references [11].
Those methods commonly perform loop unrolling beforehand in
order to extract inter-iteration parallelism as well. For computa-
tions on disjoint data, they still fail to extract inter-iteration par-
allelism. Barik et al. presented a DAG covering algorithm using
dynamic programming for vector instruction selection [2]. Their
cost model considers several possibilities to pack scalar values into
vector registers and is able to handle interleaved data. These basic
block level approaches complement or extend the loop-level ap-
proaches. However, they lose some vectorization opportunities that
require the context of the enclosing loops. Such examples include
reduction recognition, loop peeling for misaligned accesses, loop
versioning for runtime pointer disambiguation, etc.

To overcome this problem, methods to integrate basic block
approaches with loop-based approaches are proposed. Wu et al.
presents a simdization framework based on virtual vectors, which
abstract contiguous data elements with no alignment and length
constraints [26]. In their framework, individual data elements are
aggregated into virtual vectors at multiple phases for basic-block,
short-loop, and loop levels. Rosen et al. extended the loop-based
vectorization originally proposed to handle interleaved accesses so
that it can exploit superword level parallelism under the awareness
of loop contexts [21]. Both of them successfully extracts SIMD
parallelism from various sources, but only for regular accesses
that are contiguous or interleaved with static power-of-2 strides.
On the other hand, our method balances inter- and intra-iteration
parallelism according to the data reorganization costs even in the
presence of arbitrary stride memory references and dynamically
decided alignments.

In real-world computations, loops can have operations that are
inherently unvectorizable due to dependence cycles or the nature
of operations themselves. Traditional loop-based techniques han-
dle such operations by using loop distribution [10, 23]. Since loop
distribution based approaches require several additional loop trans-
formations such as scalar expansion and strip-mining, they often
become unnecessarily complex and sometimes fail to convert loops
into vectorizable forms. The SLP algorithm addresses this problem
in a simplified way; it only combines packable (vectorizable) state-
ments and leaves the rests as they are [11]. In this way, the SLP
algorithm generates a mixed code of vector and scalar instructions,
which, according to their experiments, achieves better performance
than a loop-distributed code. The need of mixed-mode simdization
is also discussed in [26], even though they provide little details
about the implementation. We also pursue the advantage of mixed
scalar-vector code, while focusing on the optimization of data reor-
ganization among scalar, vector, and superword operations.
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1 for (k=nj0; k<nj1; k++) {
2 j = 3*jjnr[k];
3
4 jx = pos[j];
5 jy = pos[j+1];
6 jz = pos[j+2];
7
8 dx = ix-jx;
9 dy = iy-jy;

10 dz = iz-jz;
11 rsq = dx*dx + dy*dy + dz*dz;
12
13 rinv = 1.0/ sqrt(rsq);
14
15 rinvsq = rinv*rinv;
16 rinvsix = rinvsq*rinvsq*rinvsq;
17 vnb6 = c6*rinvsix;
18 vnb12 = c12*rinvsix*rinvsix;
19 fs = (vnb12 -vnb6+vcoul )* rinvsq;
20
21 fac[j] -= dx*fs;
22 fac[j+1] -= dy*fs;
23 fac[j+2] -= dz*fs;
24 }

Figure 1. The most time-consuming loop of 435.gromacs in SPEC
CPU2006. This abbreviated code calculates the interaction between
only one atom pair, while the original code calculates for nine atom
pairs.

2.2 Motivating Example
Fig. 1 shows the inner-most loop of the irregular kernel excerpted
and abbreviated from the function inl1130 of 435.gromacs in
SPEC CPU2006 benchmark suite. The loop spends about 75% of
the execution time of 435.gromacs benchmark for the reference
input. The example loop has several obstacles to SIMD compila-
tion: arbitrary stride memory accesses (line 4-6 and 21-23), loop-
carried dependences (line 21-23), and a function call (line 13).
The array pos and fac are indirectly accessed by the value of j,
which is actually derived from a value in the array jjnr. Since
the actual value of the j is unknown at compile-time, compilers
are unable to determine the access patterns of the references on
pos and fac. For those unknown access patterns, compilers regard
them as disjoint and arbitrarily mis-aligned across iterations. To
utilize SIMD instructions, compilers generate inefficient data reor-
ganization code, which considers all possible cases of alignments.
Compilers also have to assume that the statements at line 21-23
cause loop-carried dependence, since they may read and write the
same locations at different iterations. Loop-carried dependence pre-
vents the loop from being parallelized and selected for SIMD can-
didates, unless compilers recognize irregular array-reduction from
those statements. In addition, function calls are often unvectoriz-
able due to side effects or no parallel implementation being avail-
able. Although the call to sqrt at line 13 is usually recognized by
compilers as a SIMD candidate, for illustration purpose we assume
that sqrt has no available vector counterpart in this paper.

Due to the above mentioned obstacles, existing compilers may
fail to make use of SIMD instructions for the example loop in
Fig. 1. Even if they partially vectorize some statements in the loop,
they can achieve a limited performance improvement. First, we
consider loop-based vectorization methods [1], which vectorize a
data-parallel loop as a whole. To apply the loop-based vectoriza-
tion, compilers have to distribute the example loop in Fig. 1 into
several smaller loops and find any data-parallel loops among them.
In this example, the loop is required to be divided into four loops:
two data-parallel loops (each contains line 2-11 and line 15-19,

respectively) and two sequential loops (each contains line 13 and
line 21-23, respectively). This approach can hurt instruction-level
parallelism, since those short loop bodies make it difficult to find
instruction schedules that efficiently exploit instruction-level par-
allelism. Moreover, this approach incurs many additional memory
operations to transfer data among the distributed loops. Loop dis-
tribution often requires associated scalar expansion to store inter-
mediate values generated from the preceding loop and used in the
later loops. For example, the scalar variable rsq has to be expanded
into an array, when the loop in Fig. 1 is divided after the line 11.
The intermediate data are now passed via memory variables rather
than registers. This increases not only the number of instructions,
but also the size of memory footprint proportional to the number of
loop iterations. Additional loop transformations such as strip min-
ing can help to alleviate the increased memory requirements, but it
requires complex analysis such as polyhedral analysis to automati-
cally configure optimal transformation sequences [7]. To make effi-
cient SIMD compilation techniques for irregular kernels, compilers
should be able to partially vectorize some portion of statements in
a given loop, without distributing it.

Second, we consider basic-block-based techniques such as SLP
algorithm [11]. They can effectively address the problems with
loop distribution, but they still fail to find inter-iteration parallelism
when each iteration accesses a disjoint memory location as in the
example loop in Fig. 1. In theory, basic-block-based algorithms can
examine a basic block and search for any instructions that can be
executed in parallel. In practice, the search space can explode ex-
ponentially, as the number of instructions increases. Thus, brute-
force searching tends to fail on large basic blocks. The SLP al-
gorithm alleviates the problem by using adjacent memory refer-
ences as initial seeds of their search process. It first finds references
that are adjacent with each other so that they can be packed into
a single vector reference. Then, it expands the pack set by adding
more parallel instructions that are connected to the existing pack
set through use-def relations. In this approach, they use loop un-
rolling to transform inter-iteration parallelism into intra-iteration
parallelism. This method subsumes loop-based vectorization, when
every reference in a loop is adjacent across iterations. For the ex-
ample loop in Fig. 1, however, the SLP algorithm can only extract
parallelism within line 2-11 and line 21-23. The majority of the
operations (line 15-19), which can be actually executed in paral-
lel across the iterations, still remain in scalar (unvectorized) forms.
The heuristic based on the contiguity of memory references can be
trapped into local optima, when the references are disjoint across
iterations. In order to extract the full parallelism, we need to search
for parallelism more globally but without exploding search space.

3. A SIMD Compilation Method
In this section, we propose a SIMD compilation method to ad-
dress the problems discussed in the previous sections. The proposed
method examines the data-flow graph (DFG) of the loop body to ex-
ploit parallelism. By introducing additional attributes on its nodes
and edges, a DFG can be easily extended to retain useful informa-
tion such as dependences, alignment, contiguity, etc. Using DFG’s
enables us to adopt graph algorithms in our SIMD compilation
method. For example, we can distinguish between parallel parts and
sequential parts by using a strongly-connected components discov-
ery algorithm. In addition, graph search algorithms can be used to
determine how many operations benefit from a given data reorga-
nization operation. This can be useful to effectively estimate if the
data reorganization costs are acceptable.

Fig. 2 shows the steps of our proposed SIMD compilation
method. Our method is implemented in the LLVM compiler infras-
tructure [14]. We rely on the front-end of LLVM (llvm-gcc) to
parse source code, perform pre-optimization, and emit the LLVM
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Preprocessing

• Parsing, pre-optimization, statement lowering

• If-conversion

DFG construction

Identifying vectorizable operations

Optimized insertion of data reorganization codes

SLP Extraction from scalar operations

Code generation

Figure 2. Steps of our SIMD compilation method

intermediate representation (IR), which is three-address static sin-
gle assignment (3A-SSA) form [1]. Then, for each inner-most
loop, the DFG of the loop body is constructed from the LLVM
IR. To make the DFG construction step simple, we transform con-
trol dependence into data dependence with if-conversion [1]. True
data dependence is represented with a directed edge on the DFG,
which is actual data flow to be implemented through a register.
Besides data flow among operations, the DFG includes memory
dependence as a special data flow between memory operations.
Unlike data dependence through registers, memory dependence
is may-information. Compilers conservatively assume dependence
between two memory operations, if there is a possibility for data to
flow between them through a memory location.

To identify all the vectorizable operations in the DFG, we tra-
verse the DFG and find any dependence cycles along the data flows.
An operation cannot be vectorized if it is a part of a dependence cy-
cle. Some operations cannot be vectorized at all, as they do not have
corresponding SIMD instructions in the ISA of the target architec-
ture. Once the vectorizable operations are discovered, the next step
is to determine which vectorizable operations will be actually vec-
torized. Considering the data reorganization overheads, we select
operations to be vectorized. At the same time, we place necessary
data reorganization operations so that the overall performance is
maximized. After the selection, several operations may still remain
in scalar forms. We extract intra-iteration parallelism from the re-
maining scalar operations by using an algorithm similar to the SLP
algorithm [11]. The reorganization code between a vector operation
and a superword operation is also optimized with the consideration
of communication patterns. Finally, a code is emitted from the DFG
to have mixed scalar and SIMD instructions. The following subsec-
tions describe each of the core steps in detail.

3.1 Building the Data-flow Graph
A DFG is defined as a directed graph G = (V,E), where V is
a set of operations and E is a set of ordered pair (vi, vj) which
indicates the operation vj uses the result of the operation vi as an
operand. Fig. 3 shows the DFG for the loop body of the example
code in Fig. 1. For DFGs in our work, we extend the definition
of E to capture memory dependence as well. If two operations vi
and vj may access possibly the same memory location and at least
one of them is write operation, we insert edges between vi and vj
to explicitly present the ordering constraint between them. Note
that two operations can mutually precede each other on different
iterations, when their subscript functions intersect. In such cases,
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Figure 3. DFG for the body of the example loop in Fig. 1. Opera-
tions, which are not part of strongly connected components (SCCs),
are vectorizable across iterations. Function sqrt is unvectorizable.
An SCC (combination of three load-fsub-store’s) at the bottom
is vectorizable by exploiting intra-loop parallelism

we insert two edges for both directions. We also insert two edges
with opposite directions, if we cannot determine the precedence
between operations. We separately maintain the edges incurring
loop-carried dependence and the edges incurring loop-independent
dependence, since we do not have to take loop-carried dependence
into account when extracting intra-iteration parallelism.

The set of DFG nodes, V , is constructed by scanning the loop
body. A statement in the loop body is one-to-one mapped to a DFG
node, as every statement in 3A-SSA form has only one operation.
To construct the set of edges, E, we use information of def-use re-
lation and memory dependence. Def-use information is naturally
encoded in SSA form, as there is only one operation that defines
a variable. For memory dependence, we implement a dependence
analysis based on the dependence testing techniques used in PFC,
a parallelizing compiler at Rice university [1]. Since our work tar-
gets inner-most loops, we only require zero index variable (ZIV)
and single index variable (SIV) tests. Pointer alias information for
memory dependence analysis is inferred by Data Structure Analy-
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sis [13] or given by programmers with the restrict qualifier in
C [25].

3.2 Identifying Vectorizable Operations
In this step, inter-iteration (or cross-iteration) parallelism is dis-
covered. For each operation, we determine whether it is vectoriz-
able – i.e., its multiple instances from consecutive iterations can
be grouped into a corresponding vector operation and executed in
parallel.

If operations do not have their vector counterparts, they can-
not be vectorized inherently. For example, AltiVec [5] SIMD in-
struction set does not support double-precision floating point vec-
tor operations. Function calls are also unvectorizable, unless there
are corresponding vector implementations. This step uses a list of
available SIMD instructions and vectorized versions of libraries to
find inherently unvectorizable operations. Memory operations are
special cases in that unit stride memory operations are regarded as
vectorizable ones, whereas non-unit stride operations are regarded
as unvectorizable ones.

In addition, operations in any dependence cycles must be ex-
ecuted in sequence to preserve programs’ behavior. Such opera-
tions can be identified from a DFG by applying Tarjan’s algorithm
for finding strongly connected components (SCCs) of a directed
graph [24]. In Fig. 3, we identify vectorizable nodes, which are
surrounded by two upper polygons (top and middle) labeled as
vectorizable. Since the function sqrt does not have a proper vec-
torized version, it is excluded from vectorizable nodes. The nodes
surrounded by the bottom polygon labeled as SLP vectorizable are
initially determined as unvectorizable ones, as they form an SCC.
Moreover, some of them are memory operations (load and store)
and their access patterns are non-unit stride across iterations. Such
memory operations cannot be included within the set of vectoriz-
able nodes.

Some special kinds of SCCs, however, can be executed in par-
allel. First, induction can be vectorized. Since it increases or de-
creases a variable by a fixed amount on every iteration, it can be
executed in parallel if we initialize the corresponding vector vari-
able with a proper initial value for each parallel thread. Second, re-
duction can also be vectorized, even though it forms a dependence
cycle. Due to its associative nature, the order of computations in re-
duction does not affect its result. The associativity of FP operations
can decided by a compiler option and we enable vectorization of FP
reductions in this work. For those two types of SCCs, we exclude
the operations within them from SCCs by pattern recognition and
allow them to be vectorized. The initialization and accumulation
code for parallel induction and reduction are not added in this step,
but will be added at the later code generation step. In Fig. 3, the
variable k at the top diamond box is an induction variable – i.e., a
loop index variable. Operations for the index variable can be vector-
ized at the loop header, which is not shown in Fig. 3 though. Three
load-fsub-store patterns at the bottom are array reductions, but
we do not exclude them from SCCs. Since array reductions require
array privatization which in general demands a large space over-
head, we only recognize scalar reductions to exclude from SCCs.
Thus, the nodes surrounded by the bottom polygon remain as un-
vectorizable operations. Later, superword-level-parallelism extrac-
tion will vectorize them.

All the nodes identified as vectorizable ones in this step become
candidates for vectorization. The actual vectorization will be deter-
mined at the next step according to the required data reorganization
cost.

3.3 Optimized Insertion of Data Reorganization
In this step, we reduce the data reorganization overhead by optimiz-
ing the insertion of packing and unpacking code for disjoint data.
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packing packing
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vector op.

packing

(a)

vector op.
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unpacking

vector op.

unpacking

(b)

Figure 4. Heuristics for optimized insertion of packing and un-
packing: (a) lazy packing; if a vector node uses multiple packed
operands (left), it may be beneficial to pack its results instead of its
operands (right), (b) effective range of packing (ERP); the packing
at the left enables three vector operations, while the packing at the
right enables only one vector operation.

The values generated by scalar operations must be packed into a
vector register in order to be used by a vector operation. Similarly,
the result of a vector operation should be unpacked into several
scalar values if they are later used by scalar operations. As a re-
sult, a packing node should be placed on each edge from a scalar
node to a vector node, and an unpacking node on each edge from a
vector node to a scalar node. The packing and unpacking nodes are
later translated to a sequence of shuffle instructions and rotate in-
structions, respectively. Packing/unpacking n elements in a vector
register generally requires n − 1 binary shuffle/rotate operations.
For example, packing four scalar values can be implemented us-
ing two shuffle instructions and one select instruction in the Cell
processor. Due to such additional data reorganization, vectorizing a
certain operation may increase the number of executed instructions.
We rather keep such operations in scalar forms by selectively vec-
torizing beneficial operations only. Finding the optimal placement
of packing and unpacking is necessary to maximize the overall per-
formance of generated SIMD code.

We use heuristic approaches to find beneficial vectorization
cases. The heuristics in our approach are as follows.

• Lazy packing. If a vector node takes operands from multiple
packing nodes, it may be beneficial to pack its result rather than
its sources. An example case is shown in Fig. 4(a). The number
of added instructions in two packing nodes are larger than the
number of reduced instructions due to one vector operation.
Packing n elements in a vector register requires n − 1 binary
shuffle operations, which results in 2×(n−1) extra instructions
for two packing nodes. Since n − 1 instructions are saved by
one vector operation, the total number of executed instructions
rather increases.

• Effective range of packing. If the result of one packing node is
used multiple times either directly or indirectly, it can be ben-
eficial. We call those vector operations the effective range of
packing. In Fig. 4(b), the packing node at the left figure is used
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1: procedure OPTIMIZEPACKUNPACK(G = (V,E))
2: VV ← {v | v is vectorizable } ◃ vector nodes
3: VS ← V − VV ◃ scalar nodes
4: EDU ← {e | e ∈ E, e is also a def-use relation }
5: repeat
6: Vprv ← VV , VC ← ∅ ◃ VC : candidates to revert
7: P ← {(vi, vj) ∈ EDU | vi ∈ VS ∧ vj ∈ VV }
8: ◃ P : packing nodes represented with edges
9: for ∀v ∈ VV do ◃ lazy packing

10: if |Pv| ≥ 2, Pv = {∀(vi, v) ∈ P} then
11: if REVERTDECISION({v}) ≡ true then
12: VC ← VC ∪ {v}
13: end if
14: end if
15: end for
16: for ∀v, s.t. ∃(v, vi) ∈ P do ◃ effective range
17: VER ← EFFECTIVERANGE(v)
18: if |VER| ≤ k then
19: if REVERTDECISION(VER) ≡ true then
20: VC ← VC ∪ VER

21: end if
22: end if
23: end for
24: for ∀v, s.t. ∃(v, vi) ∈ P do ◃ revert
25: if ∀(v, vi) ∈ P, vi ∈ VC then
26: VV ← VV − {vi}, VS ← VS ∪ {vi}
27: end if
28: end for
29: until VV ≡ Vprv ◃ repeat until VV not changed
30: FINALIZEPACKUNPACK(VV , VS )
31: end procedure

Figure 5. Algorithm for optimized insertion of packing and un-
packing.

by three vector operations. Meanwhile, the packing node at the
right figure is used by only one vector operation. Assume the
packing cost is n − 1. Since the packing cost at the left case
is amortized by savings from three vector operations, we want
to keep the current packing node. However, the packing cost at
the right case is the same as the savings. If we eliminate such
unprofitable packing, we may be able to improve the perfor-
mance. Real benefits should be estimated by actually reverting
the vector operation to the scalar one and rearranging the pack-
ing/unpacking nodes around it. Through the real estimation, we
can finally decide whether we keep the packing node or not.

• Packing first. Unpacking is dependent on packing. If no packed
data flow exists, unpacking is unnecessary. This is why elimina-
tion of packing often leads to elimination of associated unpack-
ing. If data is already packed in memory, loading them with a
vector load operation makes a packed data flow. In such a case,
unpacking is needed if that packed data flow finds its way to
scalar operations regardless of corresponding packing nodes.
In our heuristics, we first optimize the placement of packing
nodes. Unpacking nodes are then added only when necessary.

Using the above heuristics, our optimization algorithm deter-
mines which vectorizable operations will be actually vectorized.
Inserting necessary packing and unpacking is done after the opti-
mization. Fig. 5 shows how the heuristic algorithm works.

In our algorithm, we assume that all the vectorizable nodes
(VV ) are vectorized and necessary packing and unpacking nodes
are added. Then we iteratively revert unprofitable vector nodes to
scalar nodes by considering the overhead of data reorganization and
the benefit of vector execution. Using the aforementioned heuris-

scalar 

op.

packing

unpacking

vector op.

vector op.

vector op.

unpacking

packing

scalar 

op.
vector op.

scalar 

op.

scalar 

op.

unpacking

Figure 6. Revert unprofitable vector operations to scalar ones.
Since the vector operations inside the dashed line require several
data reorganization (left figure), they would rather be unvectorized
(right figure).

tics, we select the vector operations to investigate their benefits.
Using the cost estimation function, REVERTDECISION, we esti-
mate the net saving of the unvectorized version of the operations. If
the cost is estimated to be beneficial, we select those vector nodes
as the candidate nodes (VC ) to revert back to scalar ones. An exam-
ple is shown in Fig. 6 to illustrate how the cost estimation function
works. Two vector operations inside the dashed polygon may be un-
profitable, as they require several packing and unpacking as shown
in the left side of the figure. If they are reverted back to scalar oper-
ations as shown in the right side of the figure, they require unpack-
ing only once. Since the data reorganization overhead is reduced,
the overall performance can be improved despite the fact that the
operations inside the dashed polygon are executed sequentially. In
our work, we use the number of instructions as a metric to esti-
mate the performance. We also assume that packing and unpacking
are done by binary shuffle operations – i.e. the costs of packing
and unpacking are n − 1 instructions, respectively. The cost esti-
mation can be improved, if we take into account more low-level
hardware information such as instruction latency and the number
of available registers. For example, an accurate cost model used
in the vectorization pass of Trimaran compiler back-end improves
the benefits [12]. Most middle-end transformations, however, often
adopt abstracted cost models, as the effect of such hardware con-
straints on performance significantly varies at the machine-specific
back-ends.

The first for-loop (lazy packing) examines all the vectorizable
nodes that use operands from multiple packing nodes. If the cost
estimation decides to revert the vector operation, the corresponding
node is added to the set of candidate nodes. The second for-loop
(effective range) finds the effective range of each packing node
and count the number of vector operations within the effective
range. This can be easily calculated by using breadth-first search
starting from a given packing node until it encounters unpacking
nodes. If the number of vector operations with the effective range
is less than or equal to k, which is two in our work, the algorithm
examines the set of vector nodes within the effective range to
decide whether reverting them to scalar operations is beneficial.
The third for-loop (revert) decides which candidate nodes actually
be reverted to scalar ones. It should be noted that a packing node
can be completely eliminated only if its every user turns into scalar
operation. On the other hand, an unpacking node can be eliminated
promptly when its source node turns into a scalar operation. This is
why we mark unprofitable vector operations as candidates, instead
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of reverting them immediately. The if-condition inside the for-loop
checks if all the users of a packing are candidates for reverting.
Only when the condition is true, it actually reverts all the candidate
vector operations to scalar ones.

We repeat the reverting process until no new operations are
reverted. Since our heuristics find and estimate candidates locally,
the results still could be only locally optimal. Repeating the whole
reverting process, however, can lead to a better optimization result.
Since the reverting process converts only vector nodes into scalar
nodes, not vice versa, the process is monotonic. In addition, the
number of vector operations is finite. As a result, the repetition is
guaranteed to be terminated. Once the vector operations are finally
decided, necessary packing and unpacking nodes are actually added
to the DFG (FinalizePackUnpack). After the DFG is finalized,
the loop is unrolled as many times as vector length by replicating
all nodes except vector nodes. The vector length is determined by
the smallest data type used in vector operations. For example, if 8-
bit values are the smallest data used in vector operations, then the
vector-length is 16 for a 128-bit datapath.

3.4 Extracting Superword-level Parallelism from the
Remaining Scalar Operations

After extracting inter-iteration parallelism by finalizing vector op-
erations, we attempt to exploit intra-iteration parallelism from the
remaining scalar operations. This is also called superword-level
parallelism (SLP) [11]. The term superword denotes wide-length
data packed for intra-iteration parallelism, whereas vector for inter-
iteration parallelism.

Among the remaining scalar operations, some operations can
be combined and executed in parallel. Ignoring loop-carried depen-
dence, we can find multiple independent operations with identical
functionalities from DFGs. The data reorganization overheads are
still considered to find beneficial intra-iteration parallelism. To exe-
cute such operations in parallel, we pack them into superword oper-
ations by adopting the SLP algorithm [11]. Unlike the original SLP
algorithm, we do not take the memory alignment into account dur-
ing superword packing. Finding the maximally extended combina-
tion of superword operations, we pack any pair of adjacent memory
references into the initial superword pack set. After collecting all
superword pack sets, we divide the superword operations at align-
ment boundaries. For the cases of indirected references, their align-
ment information will be unavailable. In such cases, we can rely
on data reorganization before actual superword operations begin.
In superword parallelism exploration, we still estimate the benefits
with the consideration of data reorganization overheads. If super-
word operations are not profitable, we revert them back to scalar
operations.

For superword operations, data reorganization code should be
placed to interoperate with vector operations and scalar operations.
When superword operations take their operands from vector op-
erations, unpacking the outputs of vector operations and repack-
ing data for superword operations are required. Instead, we trans-
pose the outputs of vector operations as shown in Fig. 7(a). In
general, transpose of data can be used when superword opera-
tions take operands from vector operations and vice versa. If we
unpack vectors and repack them for superwords, many individual
scalar variables are needed. For the example shown in Fig. 7(a),
we may need 12 scalar variables to hold all the unpacked results
– x0, ..., x3, y0, ..., y3, z0, ..., z3. This type of reorganization may
also incur memory accesses due to the lack of registers. Meanwhile,
the transpose of data can be done with binary shuffle operations
among SIMD registers, which results in much faster reorganization
than unpacking and repacking with a dozen of scalar variables.

For SIMD units that have no special support for unaligned mem-
ory accesses, data reorganization must be performed in code. How-
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Figure 7. Data reorganization for superwords: (a) transpose of
data between vectors and superwords, (b) in-place update of an
unaligned superword for load-compute-store

ever, for a particular operation sequence that updates misaligned
superword, we can optimize its reorganization code. We particu-
larly recognize load-compute-store patterns to simplify the reor-
ganization for misaligned data, as shown in Fig. 7(b). Existing
works [6, 18] analyze alignment requirements for memory refer-
ences and reduce the number of generated shift operations. Ar-
ray indirections, however, hinder the effective alignment analysis,
as the alignment offsets are unknown at compile time. For such
cases, compilers generate reorganization code with the zero-shift
policy [6]. This means each misaligned vector data is shifted to the
zero offset in a SIMD register, immediately after the load opera-
tion. Then, it is shifted back to fit into the alignment of the store
address just before the store operation. This case is depicted in the
left side of Fig. 7(b). If misaligned vector data is loaded, computed
and stored back to the same memory address, we know that the
alignment offsets of both load and store are the same. Even though
the exact alignment offset is still unknown at compile time, we can
exploit the fact that the alignment offsets are the same by applying
dominant-shift policy [6] as depicted in the right side of Fig. 7(b).

3.5 Code Generation
In this last step, our SIMD compiler emits linear code from the
transformed DFG. The code for parallelizing reduction and induc-
tion, packing live-in scalar values, and unpacking live-out vector
variables should be additionally generated. Our code emission is
rather straight-forward, since a node in DFGs is one-to-one mapped
to a specific operation in 3A-SSA form as described in Section 3.1.
In our work, we actually emit linear code in C language with SIMD
intrinsics. Since the back-end of our compiler currently generates
less reliable machine code for our target processor, we use a na-
tive compiler for the target processor to generate efficient binary
executables. The operations in DFGs are emitted in C code by us-
ing as-soon-as-possible (ASAP) schedule. Since native compilers
will handle instruction scheduling, a simple scheduling policy dur-
ing the C code emission is enough to eventually generate efficient
binary code.

Since our SIMD vectorization method retains dependence cy-
cles within a loop body, operations in dependence cycles are repli-
cated by unrolling as many times as vector length within the vec-
torized loop. Since the operations in dependence cycles have loop-
carried dependence, the replicated operations tend to form long
data flows among them. Thus, they are likely to fall on a critical
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Kernel Extracted From (Function/Application/Suite) Exec. Time General Category

CF ComputeForces() Moldyn CHAOS 90.9% Molecular dynamics
INL inl1130() 435.gromacs SPEC CPU2006 81.5% Chemistry/molecular dynamics

CPEF calc pair energy fullelect() 444.namd SPEC CPU2006 12.9% Structural biology
FORMS FORMS() 416.gamess SPEC CPU2006 23.5% Quantum chemical computations

Table 1. The Benchmark Kernels
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Figure 8. Software pipelining using explicit register copying.
When a loop has dependence cycles, the largest cycle among them
divides the loop body into three parts: operations before the cy-
cle (Pi), ones in the cycle (CPi), and ones after the cycle (P ′

i ).
Each part forms a stage of pipelining. Data from the prior stage
are forwarded to the next stage by explicit copy instructions at the
beginning of each iteration.

path of the schedule for the SIMD vectorized loop. To hide the la-
tencies of those instructions on the critical path, we adopt software
pipelining by splitting the loop body into three stages as shown
in Fig. 8. We select the largest dependence cycle in the loop and
divide the loop body into three parts: operations before the cycle
(Pi), ones in the cycle (CPi), and ones after the cycle (P ′

i ). Three
stage software pipelining is applied with the three divided parts and
data generated from the prior iteration are explicitly copied to the
current iteration at the beginning of each iteration.

Software pipelining increases the chance that multiple instruc-
tions’ latencies are overlapped among another. By overlapping la-
tencies, the generated code has a better chance to enhance instruc-
tion level parallelism of the loop, which is particularly important
for processors with in-order execution units. One concern in our
software pipelining is that explicit register copies for forwarding
data among iterations can increase the number of executed instruc-
tions and register pressure as well. Another concern is that stages
may not fully overlap with each other due to memory clobbers even
with software pipelining. Ultimately, these two effects can deter
software pipelined loop from gaining performance boot.

4. Experimental Results
4.1 Experimental Setup
To evaluate the performance gains of the proposed method, we
compile four irregular kernels from scientific applications and mea-
sure their execution times on a Synergistic Processor Unit (SPU) of
the Cell processor [8]. An SPU has a SIMD processing unit and a
256KB local store. The SIMD unit has a VLIW-like two-way in-
order execution pipeline with 128-bit vector data path. SPUs can
execute load and store instructions only upon its local store and
therefore its memory latencies are constant. We implemented the
proposed method on top of the LLVM compiler infrastructure [14].
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Figure 9. Speedup factors achieved by the proposed method for
varying optimization configurations.

Since the LLVM compiler back-end supports the SPU only exper-
imentally, we made the transformation to emit C codes. The gen-
erated C codes are then compiled by GCC version 4.1.1 with opti-
mization level 3. Experiments in this section were conducted on a
Sony PlayStation3 that has a Cell processor running at 3.2GHz and
256MB XDR RAM. We use the performance counter of the SPU
to measure execution cycles.

Table 1 lists the benchmark kernels used in this experiments.
Since this work addresses challenges due to array indirection, we
only collected the inner-most loops containing array indirections,
by examining the most time-consuming functions of the floating
point applications from SPEC CPU2006 and CHAOS benchmark
suites [4, 9]. Each kernel has several indirect references for both
read and write accesses. The nature of the indirect references in the
kernels are similar to the example in Fig. 1. We named the kernels
after their enclosing functions. The third column of Table 1 shows
the fraction of each function’s execution time. Except for FORMS,
each function consists only of a single loop nest that contains the
extracted kernel. In case of FORMS, the function has nine loop
nests in similar form. We selected the fifth one since it has the
average number of instructions.

In these experiments, we converted the kernels to run with sin-
gle precision floating point numbers because only single precision
floating point instructions are fully-pipelined in the SPUs. We also
reduced the input data of each benchmark so that it can fit in the
local storage of the SPUs. The real contents of input data have ac-
tually no effect on the performance of the kernels since the SPUs
are cache-less and have in-order execution units.

4.2 Performance Results
Fig. 9 shows the speedup factors achieved by the proposed SIMD
compilation method accumulatively applying the optimization
techniques presented in Section 3. The speedups shown in Fig. 9
are measured by cumulatively applying each optimization.
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Total Single Issued Dual Issued Stall Perf.
Inst. Instructions Instructions Cy. Est.

CF (-) 313 151 (48.24%) 162 (51.76%) 80 312
(SWP) 325 71 (21.85%) 254 (78.15%) 7 205

INL (-) 907 383 (42.23%) 524 (57.77%) 15 660
(SWP) 989 315 (31.85%) 674 (68.15%) 6 658

CPEF (-) 552 116 (21.01%) 436 (78.99%) 8 342
(SWP) 570 88 (15.44%) 482 (84.56%) 1 330

FORMS (-) 444 56 (12.61%) 388 (87.39%) 37 287
(SWP) 454 28 ( 6.17%) 426 (93.83%) 2 243

(-) SW pipelining is not applied. (SWP) SW pipelining is applied.

Table 2. Static timing analysis of the kernels on SWP

• No-opt: No optimization techniques is applied. All the identi-
fied vectorizable operations in Section 3.2 are entirely vector-
ized and superword-level parallelism is exploited from the re-
maining scalar operations.

• Heuristics: The data reorganization optimization in Section 3.3
is applied. The identified vectorizable operations are selectively
vectorized based on the benefit estimation heuristics.

• Pattern: The patterns in Section 3.4 are recognized and applied
for superword level parallelism. This is cumulatively applied to
the code from Heuristics.

• SWP: The software pipelining technique in Section 3.5 is also
cumulatively applied to the code from Pattern.

The two techniques for optimizing data reorganization costs,
Heuristics and Pattern, improve the average performance by about
10% and 20%, respectively. The result of Pattern shows that the
data reorganization costs arisen between vector instructions and su-
perword instructions can be effectively reduced by simple pattern-
based optimizations. Since there is no extracted superword-level
parallelism in FORMS, Pattern shows no performance improve-
ment. The performance improvement of FORMS mainly comes
from the effective range of packing heuristic, as the kernel accu-
mulates the multiplication results between several pairs loaded by
indirected references.

Table 2 shows the static timing analysis of the kernels before
and after applying software pipelining. We count the number of
instructions, single and double issued ones separately, and stall
cycles in the loop body of each kernel. The results are obtained
by using the timing analysis tool spu-timing in the CellSDK 3.0.
The performance estimation shown in the column 6 (Perf. Est.) is
calculated by summing the number of single issued instructions, a
half of the number of dual issued instructions, and the number of
stall cycles. As shown in Table 2, the software pipelining technique
effectively increases the fraction of dual issued instructions and
reduces the number of stall cycles for all cases. However, it also
increases the number of total instructions since it introduces the
additional copy instructions for passing intermediate values across
the stages. In CF, which originally had the highest fraction of
single issued instructions and the biggest number of stall cycles,
software pipelining improves its performance by 34%. On the other
hand, software pipelining hardly improves or even degrades the
performance of CPEF and INL in Fig. 9, as it requires too many
additional copy instructions (for INL) and the original code was
already tightly scheduled (for CPEF). In FORMS, the performance
improvement mainly comes from the reduced stall cycles.
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Figure 10. Comparison of speedup for the loop-based vectoriza-
tion, the SLP algorithm, IBM XL C/C++, and our proposed method
(IrrSIMD).

4.3 Comparison with Traditional SIMD Compilation
Methods

We compare the performance benefit of the proposed method with
two widely-used SIMD compilation methods, the loop-based vec-
torization and the superword-level parallelism, and a commercial
compiler IBM XL C/C++ V10.1 whose auto-vectorization is based
on [6, 26]. To perform comparison studies, we manually trans-
formed the kernels based on the algorithms described in the work
of Sreraman et al. [23] and Larsen et al. [11]. When applying the
SLP algorithm, we impose a slight modification to handle array in-
direction within iterations. The SLP algorithm requires alignment
information for each memory reference, but this is unavailable for
indirected references. To remedy the SLP, for any pair of adjacent
references whose alignment information is unavailable, we deliber-
ately pack them expecting to find better performance gain. If such
pair is proved to be unprofitable, we revert them back to scalar op-
erations and find another extended combinations. This modified al-
gorithm is the same as our heuristics presented in Section 3.4. For
IBM XL C/C++, we compiled the benchmark codes with various
optimization level (O2-O5) and reported the best results. The auto-
vectorization option of IBM XL C/C++ is enabled at O3 and higher.

Fig. 10 shows the speedup of the loop-based vectorization using
loop distribution (Loop-manual), the SLP algorithm (SLP-manual),
the IBM XL C/C++ compiler (IBM XL C/C++), and our proposed
method (IRRSIMD). Our method achieves the speedup factor of
2.83 on average, while the loop-based vectorization and the SLP
algorithm achieve 1.43 and 1.47 on average, respectively. Since the
loop-based vectorization and the SLP algorithm can only extract
either intra- or inter-iteration parallelism for the benchmarks, they
obtained lower performance than ours which was able to extract
both intra- and inter-iteration parallelism. IBM XL C/C++ achieved
the average speedup of 1.48. However, the transformation reports
from -qreport option showed that no innermost loops are SIMD
vectorized. The performance gain of XL C/C++ is mainly based
on better extraction of instruction-level parallelism, such as code
hoisting and modulo scheduling, rather than SIMD parallelism.

5. Conclusion and Future Work
Array indirection causes several important challenges for SIMD
compilation including disjoint memory references, unknown align-
ment, dependence cycles, etc. Due to those challenges, automatic
vectorization has been hardly able to achieve a certain performance
improvement in the presence of array indirection. There have been
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only hardware approaches to address the challenges arisen from ar-
ray indirection [3, 16].

In our work, we proposed a SIMD compilation method to vec-
torize loops that have indirected array references. The proposed
method directly manipulates a data flow graph of a loop body to
explicitly expose data reorganization and capture as much data-
level parallelism contained in the loop as possible. Our method
extracts both inter- and inter-iteration parallelism while balancing
them with the consideration of data reorganization cost. It gener-
ates mixed scalar and SIMD instructions without loop distribution;
the unvectorizable operations and unprofitable parallel operations
also remain in the original loop body along with the SIMD op-
erations. It optimizes the data transfer between vector and scalar
operations as well as between vector and superword operations by
recognizing communication patterns. Our experiments conducted
on a Cell SPU show that our proposed method improves perfor-
mance of several kernels drawn from a class of real-world scientific
applications with the average speedup of 2.83, which almost dou-
bles the speedup achieved by the previous automatic vectorization
techniques.

The proposed scheme can further be improved by integrating
the techniques for alignment optimization [6] and data permutation
optimization [20]. Since those techniques use expression tree or
use-def chain, they can be seamlessly integrated to a DFG-based
approach. It may also be useful to include the reorganization pattern
used to vectorize power-of-2 stride memory references [17]. It
would provide more solid evaluation of the proposed scheme to
measure the performance on various architectures including highly-
optimized superscalar processors.
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