
Well-Structured Futures and Cache Locality

Maurice Herlihy

Computer Science Department
Brown University

mph@cs.brown.edu

Zhiyu Liu

Computer Science Department
Brown University

zhiyu liu@brown.edu

Abstract
In fork-join parallelism, a sequential program is split into
a directed acyclic graph of tasks linked by directed depen-
dency edges, and the tasks are executed, possibly in parallel,
in an order consistent with their dependencies. A popular
and effective way to extend fork-join parallelism is to allow
threads to create futures. A thread creates a future to hold the
results of a computation, which may or may not be executed
in parallel. That result is returned when some thread touches
that future, blocking if necessary until the result is ready.

Recent research has shown that while futures can, of
course, enhance parallelism in a structured way, they can
have a deleterious effect on cache locality. In the worst case,
futures can incur Ω(PT∞ + tT∞) deviations, which implies
Ω(CPT∞+CtT∞) additional cache misses, whereC is the
number of cache lines, P is the number of processors, t is the
number of touches, and T∞ is the computation span. Since
cache locality has a large impact on software performance
on modern multicores, this result is troubling.

In this paper, however, we show that if futures are used in
a simple, disciplined way, then the situation is much better:
if each future is touched only once, either by the thread that
created it, or by a later descendant of the thread that created
it, then parallel executions with work stealing can incur
at most O(CPT 2

∞) additional cache misses, a substantial
improvement. This structured use of futures is characteristic
of many (but not all) parallel applications.

Categories and Subject Descriptors C.4 [Performance of
Systems]: Performance attributes; D.3.3 [Language Con-
structs and Features]: Concurrent programming structures

Keywords scheduling; work stealing; futures; parallel pro-
gramming; cache locality; performance bounds

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PPoPP ’14, February 15–19, 2014, Orlando, Florida, USA.
Copyright c© 2014 ACM 978-1-4503-2656-8/14/02. . . $15.00.
http://dx.doi.org/10.1145/2555243.2555257

1. Introduction
Futures [18, 19] are an attractive way to structure many par-
allel programs because they are easy to reason about (espe-
cially if the futures have no side-effects) and they lend them-
selves well to sophisticated dynamic scheduling algorithms,
such as work-stealing [11] and its variations, that ensure high
processor utilization. At the same time, however, modern
multicore architectures employ complex multi-level memory
hierarchies, and technology trends are increasing the relative
performance differences among the various levels of mem-
ory. As a result, processor utilization can no longer be the
sole figure of merit for schedulers. Instead, the cache locality
of the parallel execution will become increasingly critical to
overall performance. As a result, cache locality will increas-
ingly join processor utilization as a criterion for evaluating
dynamic scheduling algorithms.

Several researchers [1, 22] have shown, however, that in-
troducing parallelism through the use of futures can some-
times substantially reduce cache locality. In the worst case,
if we add futures to a sequential program, a parallel ex-
ecution managed by a work-stealing scheduler can incur
Ω(PT∞ + tT∞) deviations, which, as we show, implies
Ω(CPT∞ + CtT∞) more cache misses than the sequential
execution. Here, C is the number of cache lines, P is the
number of processors, t is the number of touches, and T∞
is the computation’s span (or critical path). As technology
trends cause the cost of cache misses to increase, this addi-
tional cost is troubling.

This paper makes the following three contributions. First,
we show that if futures are used in a simple, disciplined
way, then the situation with respect to cache locality is much
better: if each future is touched only once, either by the
thread that created it, or by a later descendant of that thread,
then parallel executions with work stealing can incur at most
O(CPT 2∞) additional cache misses, a substantial improve-
ment over the unstructured case. This result provides a sim-
ple way to identify computations for which introducing fu-
tures will not incur a high cost in cache locality, as well as
providing guidelines for the design of future parallel com-
putations. (Informally, we think these guidelines are natural,
and correspond to structures programmers are likely to use
anyway.) Our second contribution is to observe that when

155

the scheduler has a choice between running the thread that
created a future, and the thread that implements the future,
running the future thread first provides better cache locality.
Finally, we show that certain variations of structured com-
putation also have good cache locality.

The paper is organized as follows. Section 2 describes
the model for future-parallel computations. In Section 3, we
describe parsimonious work-stealing schedulers, and briefly
discuss their cache performance measures. In Section 4, we
define some restricted forms of structured future-parallel
computations. Among them, we highlight structured single-
touch computations, which, we believe, are likely to arise
naturally in many programs. In Section 5.1, we prove that
work-stealing schedulers on structured single-touch compu-
tations incur only O(CPT 2

∞) additional cache misses, if a
processor always chooses the future to execute first when it
creates that future. We also prove this bound is tight within
a factor of C. In section 5.2, we show that if a processor
chooses the current thread over the future thread when it
creates that future, then the cache locality of a structured
single-touch computation can be much worse. In Section 6,
we show that some other kinds of structured future-parallel
computations also achieve relatively good cache locality. Fi-
nally, we present conclusions in Section 7.

2. Model
In fork-join parallelism [5, 6, 8], a sequential program is split
into a directed acyclic graph of tasks linked by directed de-
pendency edges. These tasks are executed in an order con-
sistent with their dependencies, and tasks unrelated by de-
pendencies can be executed in parallel. Fork-join parallelism
is well-suited to dynamic load-balancing techniques such as
work stealing [1–3, 9, 11–13, 15, 18–20].

A popular and effective way to extend fork-join paral-
lelism is to allow threads to create futures [4, 7, 14, 18, 19]. A
future is a data object that represents a promise to deliver the
result of an asynchronous computation when it is ready. That
result becomes available to a thread when the thread touches
that future, blocking if necessary until the result is ready.
Futures are attractive because they provide greater flexibil-
ity than fork-join programs, and they can also be imple-
mented effectively using dynamic load-balancing techniques
such as work stealing. Fork-join parallelism can be viewed
as a special case of future-parallelism, where the spawn op-
eration is an implicit future creation, and the sync opera-
tion is an implicit touch of the untouched futures created by
a thread. Future-parallelism is more flexible than fork-join
parallelism, because the programmer has finer-grained con-
trol over touches (joins).

2.1 Computation DAG

A thread creates a future by marking an expression (usually a
method call) as a future. This statement spawns a new thread
to evaluate that expression in parallel with the thread that

created the future. When a thread needs access to the results
of the computation, it applies a touch operation to the future.
If the result is ready, it is returned by the touch, and oth-
erwise the touching thread blocks until the result becomes
ready. Without loss of generality, we will consider fork-join
parallelism to be a special case of future-parallelism, where
forking a thread creates a future, and joining one thread to
another is a touch operation.

Our notation and terminology follow earlier work [1, 3,
11, 22]. A future-parallel computation is modeled as a di-
rected acyclic graph (DAG). Each node in the DAG repre-
sents a task (one or more instructions), and an edge from
node u to node v represents the dependency constraint that
u must be executed before v. We follow the convention that
each node in the DAG has in-degree and out-degree either 1
or 2, except for a distinguished root node with in-degree 0,
where the computation starts, and a distinguished final node
with out-degree 0, where the computation ends.

There are three types of edges:

• continuation edges, which point from one node to the
next in the same thread,

• future edges (sometimes called spawn edges), which
point from node u to the first node of another thread
spawned at u by a future creation,

• touch edges (sometimes called join edges), directed from
a node u in one thread t to a node v in another thread,
indicating that v touches the future computed by t.

A thread is a maximal chain of nodes connected by continu-
ation edges. There is a distinguished main thread that begins
at the root node and ends at the final node, and every other
thread t begins at a node with an incoming future edge from
a node of the thread that spawns t. The last node of t has only
one outgoing edge which is a touch edge directed to another
thread, while other nodes of t may or may not have incom-
ing and outgoing touch edges. A critical path of a DAG is a
longest directed path in the DAG, and the DAG’s computa-
tion span is the length of a critical path.

As illustrated in Figure 1, if a thread t1 spawns a new
thread t2 at node v in t1 (i.e., v has two out-going edges, a
continuation edge and a future edge to the first node of t2),
then we call t1 the parent thread of t2, t2 the future thread
(of t1) at v, and v the fork of t2. A thread t3 is a descendant
thread of t1 if t3 is a future thread of t1 or, by induction, t3’s
parent thread is a descendant thread of t1.

If there is a touch edge directed from node v1 in thread
t1 to node v2 in thread t2 (i.e., t2 touches a future computed
by t1), and a continuation edge directed from node u2 in t2
to v2, then we call node v2 a touch of t1 by t2, v1 the future
parent of v2, u2 the local parent of v2, and t1 the future
thread of v2. (Note that the touch v2 is actually a node in
thread t2.) We call the fork of t1 the corresponding fork of
v2.

156

(a)

(b)

Figure 1. Node and thread terminology

Note that only touch nodes have in-degree 2. To distin-
guish between the two types of nodes with out-degree 2,
forks and future parents of touches, we follow the conven-
tion of previous work that the children of a fork both have
in-degree 1 and cannot be touches. In this way, a fork node
has two children with in-degree 1, while a touch’s future par-
ent has a (touch) child with in-degree 2.

We follow the convention that when a fork appears in a
DAG, the future thread is shown on the left, and the future
parent on the right. (Note that this does not mean the future
thread is chosen to execute first at a fork.) Similarly, the
future parent of a touch is shown on the left, and the local
parent on the right.

We use the following (standard) notation. Given a com-
putation DAG, P is the number of processors executing the
computation, t is the number of touches in the DAG, T∞,
the computation span (or critical path), is the length of the
longest directed path, and C is the number of cache lines in
each processor.

3. Work-Stealing and Cache Locality
In the paper, we focus on parsimonious work stealing algo-
rithms [3], which have been extensively studied [1, 3, 10,
11, 22] and used in systems such as Cilk [9]. In a parsimo-
nious work stealing algorithm, each processor is assigned a
double-ended queue (deque). After a processor executes a
node with out-degree 1, it continues to execute the next node
if the next node is ready to execute. After the processor exe-

cutes a fork, it pushes one child of the fork onto the bottom
of its deque and executes the other. When the processor runs
out of nodes to execute, it pops the first node from the bot-
tom of its deque if the deque is not empty. If, however, its
deque is empty, it steals a node from the top of the deque of
an arbitrary processor.

In our model, a cache is fully associative and consists
of multiple cache lines, each of which holds the data in a
memory block. Each instruction can access only one mem-
ory block. In our analysis we focus only on the widely-used
least-recently used (LRU) cache replacement policy, but our
results should apply to all simple cache replacement poli-
cies [1].

The cache locality of an execution is measured by the
number of cache misses it incurs, which depends on the
structure of the computation. To measure the effect on cache
locality of parallelism, it is common to compare cache
misses encountered in a sequential execution to the cache
misses encountered in various parallel executions, focusing
on the number of additional cache misses introduced by
parallelism.

Scheduling choices at forks affect the cache locality of
executions with work stealing. After executing a fork, a pro-
cessor picks one of the two child nodes to execute and pushes
the other into its deque. For a sequential execution, whether
a choice results in a better cache performance is a character-
istic of the computation itself. For a parallel execution of a
computation satisfying certain properties, however, we will
show that choosing future threads (the left children) at forks
to execute first guarantees a relatively good upper bound on
the number of additional cache misses, compared to a se-
quential execution that also chooses future threads first. In
contrast, choosing the parent threads (the right children) to
execute first can result in a large number of additional cache
misses, compared to a sequential execution that also chooses
parent threads first.

4. Structured Computations
Consider a sequential execution where node v1 is executed
immediately before node v2. A deviation [22], also called a
drifted node [1], occurs in a parallel execution if a processor
P executes v2, but not immediately after v1. For example,
p might execute v1 after v2, it might execute other nodes
between v1 and v2, or v1 and v2 might be executed by
distinct processors.

Spoonhower et al. [22] showed that a parallel execution
of a future-parallel computation with work stealing can incur
Ω(PT∞+tT∞) deviations. This implies a parallel execution
of a future-parallel computation with work stealing can incur
Ω(PT∞ + tT∞) additional cache misses. With minor mod-
ifications in that computation (see Figure 2), a parallel exe-
cution can even incur Ω(CPT∞ + CtT∞) additional cache
misses.

157

Figure 2. The interesting part of the bound is Ω(CtT∞).
Figure 5 in [22] shows a DAG, as a building block of a
worst-case computation, that can incur Ω(T∞) deviations
because of one touch. We can replace it with the DAG in
Figure 2, which can incur Ω(CT∞) additional cache misses
due to one touch v (if the processor at a fork always chooses
the parent thread to execute first), so that the worst-case
computation in [22] can incur Ω(CtT∞) additional cache
misses because of t such touches. This DAG is similar to the
DAG in Figure 6(a) in this paper. The proof of Theorem 10
shows how a parallel execution of this DAG incurs Ω(CT∞)
additional cache misses.

Our contribution in this paper is based on the observa-
tion that such poor cache locality occurs primarily when fu-
tures in the DAG are touched by threads created before the
future threads computing these futures where created. As il-
lustrated in Figure 3(a), a parallel execution of such a com-
putation can arrive at a scenario where a thread touches a fu-
ture before the future thread computing that future has been
spawned. (As a practical matter, an implementation must en-
sure that such a touch does not return a reference to a mem-
ory location that has not yet been allocated.) We will show
that such scenarios are avoided by structured future-parallel
computations that follow certain simple restrictions.

DEFINITION 1. A DAG is a structured future-parallel com-
putation if, (1) for the future thread t of any fork v, the local
parents of the touches of t are descendants of v, and (2) at
least one touch of t is a descendant of the right child of v.

There are two reasons we require that at least one touch of t
is a descendant of the right child of v. First, it is natural that
a computation spawns a future thread to compute a future
because the computation itself later needs that value. At the
fork v, the parent thread (the right child of v) represents
the “main body” of the computation. Hence, the future will
usually be touched either by the parent thread, or by threads
spawned directly or indirectly by the parent thread.

Second, a computation usually needs a kind of “barrier”
synchronization to deal with resource release at the end of
the computation. Some node in the future thread t, usually

(a) A simplified version of the DAG in Spoonhower et
al. [22] that can incur high cache overhead. Here, v1 and
v2 are touches. Suppose a processor p1 executes the root
node, pushes the right child x of the root node into its
deque, and then falls asleep. Now another processor p2
steals x from p1’s deque and executes the subgraph rooted
at x. Thus, v1 and v2 will be checked (to see if they are
available) even before the corresponding future threads are
spawned at u1 and u2.

(b) In this structured computation, the touches v1 and
v2 will not be checked until their corresponding future
threads have been spawned at u1 and u2, respectively

Figure 3. Unstructured and Structured DAGs

the last node, should have an outgoing edge pointing to the
“main body” of the computation to tell the main body that
the future thread has finished. Without such synchroniza-
tion, t and its descendants will be isolated from the main
body of the computation, and we can imagine a dangerous
scenario where the main body of the computation finishes
and releases its resources while t or its descendant threads
are still running.

In our DAG model, such a synchronization point is by
definition a touch node, though it may not be a real touch.
We follow the convention that the thread that spawns a future
thread releases it, so the synchronization point is a vertex in
the parent thread or one of its descendants. Another possi-
bility is to place the synchronization point at the last node
of the entire computation, which is the typically case in lan-
guages such as Java, where the main thread of a program is
in charge of releasing resources for the entire computation.
These two styles are essentially equivalent, and should have
almost the same bounds on cache overheads. We will briefly
discuss this issue in Section 6.2.

We consider how the following constraint affects cache
locality.

DEFINITION 2. A structured single-touch computation is a
structured computation where each future thread spawned
at a fork v is touched only once, and the touch node is a
descendant of v’s right child.

By the definition of threads, the future parent of the only
touch of a future thread is the last node of that future thread

158

(the last node can also be a parent of a join node, but we don’t
distinguish between a touch node and a join node). We will
show that work-stealing parallel executions of structured
single-touch computations achieve significantly less cache
overheads than unstructured computations.

In principle, a future could be touched multiple times
by different threads, so structured single-touch computations
are more restrictive structured computations in general. Nev-
ertheless, the single-touch constraint is one that is likely to
be observed by many programs. For example, as noted, the
Cilk [9] language supports fork-join parallelism, a strict sub-
set of the future-parallelism model considered here. If we
interpret the Cilk [9] language’s spawn statement as cre-
ating a future, and its sync statement as touching all un-
touched futures previously created by that thread, then Cilk
programs (like all fork-join programs) are structured single-
touch computations.

Structured single-touch computations encompass fork-
join computations, but are strictly more flexible. Figure 4
presents two examples that illustrate the differences. If a
thread creates multiple futures first and touches them later,
fork-join parallelism requires they be touched (evaluated) in
the reverse order. MethodA in Figure 4(a) shows the only
order in which a thread can first create two futures and then
touch them in a fork-join computation. This rules out, for
instance, a program where a thread creates a sequence of fu-
tures, stores them in a priority queue, and evaluates them in
some priority order. In contrast, our structured computations
permit such futures to be evaluated by their creating thread
or its descendants in any order.

Also, unlike fork-join parallelism, our notion of struc-
tured computation permits a thread to pass a future to a sub-
routine or descendant thread which touches that future, as
illustrated in Figure 4(b). Our restrictions are: (1) only one
thread can touch a future, and (2) the descendant thread that
touches the future has to be created after the future. In fact,
MethodC can even pass the future to a descendant of its own.
In a fork-join computation, however, only the thread creat-
ing the future can touch it, which is much more restrictive.
We believe these restrictions are easy to follow and should
be compatible with how many people program in practice.

Belloch and Reid-Miller [7] observe that if a future can be
touched multiple times, then complex and potentially ineffi-
cient operations and data structures are needed to correctly
resume the suspended threads that are waiting for the touch.
By contrast, the run-time support for futures can be signifi-
cantly simplified if each future is touched at most once.

The single-touch constraint can be relaxed as follows.

DEFINITION 3. A structured local-touch computation is one
where each future thread spawned at a fork v is touched
only at nodes in the parent thread of t, and these touches
are descendants of the right child of v.

Informally, the local touch constraint implies that a thread
that needs the value of a future should create the future it-

void MethodA {
Future x = some computation;
Future y = some computation;
a = y.touch();
b = x.touch();

}

(a)

void MethodB {
Future x = some computation;
fork MethodC(x);

}
void MethodC(Future f){

a = f.touch();
}

(b)

Figure 4. Two examples illustrating single-touch computa-
tions are more flexible than fork-join computations

self. Note that in a structured computation with local touch
constraint, a future thread is now allowed to evaluate mul-
tiple futures and these futures can be touched at different
times. Though allowing a future thread to compute multiple
futures is not very common, Blelloch and Reid-Miller [7]
point out that it can be useful for some future-parallel com-
putations like pipeline parallelism [7, 9, 16, 17, 21]. We will
show in Section 6.1 that work-stealing parallel executions of
computations satisfying the local touch constraint also have
relatively low cache overheads. Note that structured compu-
tations with both single touch and local touch constraints are
still a superset of fork-join computations.

5. Structured Single-Touch Computations
5.1 Future Thread First at Each Fork

We now analyze cache performance of work stealing on par-
allel executions of structured single-touch computations. We
will show that work stealing has relatively low cache over-
head if the processor at a fork always chooses the future
thread to execute first, and puts the parent future into its
deque. For brevity, all the arguments and results in this sec-
tion assume that every execution chooses the future thread at
a fork to execute first.

LEMMA 4. In the sequential execution of a structured single-
touch computation, any touch x’s future parent is executed
before x’s local parent, and the right child of x’s corre-
sponding fork v immediately follows x’s future parent.

159

Proof. By induction. Given a DAG, initially let S be an
empty set and T the set of all touches. Note that

S ∩ T = ∅ and S ∪ T = {all touches}. (1)

Consider any touch x in T , such that x has no ancestors in
T . (That is, x has no ancestor nodes that are also touches.)
Let t be the future thread of x and v the corresponding fork.
Note that x’s future parent is the last node of t by definition.
When the single processor executes v, the processor pushes
v’s right child into the deque and continues to execute thread
t. By hypothesis, there are no touches by t, since any touch
by t must be an ancestor of x. There may be some forks in
t. However, whenever the single processor executes a fork in
t, it pushes the right child of that fork, which is a node in t,
into the deque and hence t (i.e., a node in t) is right below v’s
right child in the deque. Therefore, the processor will always
resume thread t before the right child of v. Since there is no
touch by t, all the nodes in t are ready to execute one by
one. Thus, when the future parent of the touch x is executed
eventually, the right child of v is right at the bottom of the
deque. By the single touch constraint, the local parent of x is
a descendant of the right child of v, so the local parent of x
cannot be executed yet. Thus, the processor will pop the right
child of v from the bottom of the deque to execute. Since
this node is not a touch, it is ready to execute. Therefore, x
satisfies the following two properties.

PROPERTY 5. Its future parent is executed before its local
parent.

PROPERTY 6. The right child of its corresponding fork im-
mediately follows its future parent.

Now set S = S∪{x} and T = T −{x}. Thus, all touches in
S satisfy Properties 5 and 6. Note that Equation 1 still holds.

Now suppose that at some point all nodes in S satisfy
Properties 5 and 6, and that Equation 1 holds. Again, we
now consider a touch x in T , such that no touches in T are
ancestors of x, i.e., all the touches that are ancestors of x are
in S. Since the computation graph is a DAG, there must be
such an x as long as T is not empty. Let t be the future thread
of x and v the corresponding fork. If there are no touches
by t, then x satisfies Properties 5 and 6, as shown above.
Now assume there are touches by t. Since those touches are
ancestors of x, they are all in S and hence they all satisfy
Property 5. When the processor executes v, it pushes v’s
right child into the deque and starts executing t. Similar to
what we showed above, when the processor gets to a fork
in t, it will always push t into its deque, right below the
right child of v. Thus, the processor will always resume t
before the right child of v. When the processor gets to the
local parent of a touch by t, we know the future parent of
the touch has already been executed since the touch satisfies
Property 5. Thus, the processor can immediately execute that
touch and continue to execute t. Therefore, the processor
will eventually execute the future parent of x while the right

child of t is still the next node to pop in the deque. Again,
since the local parent of x is a descendant of the right child
of v, the local parent of x as well as x cannot be executed yet.
Therefore, the processor will now pop the right child of v to
execute, and hence x satisfies Properties 5 and 6. Now we
set S = S∪{x} and T = T −{x}. Therefore, all touches in
S satisfy Properties 5 and 6, and Equation1) also holds. By
induction, we have S = {all touches} and all touches satisfy
Properties 5 and 6. ��

Acar et al. [1] have shown that the number of addi-
tional cache misses in a work-stealing parallel computation
is bounded by the product of the number of deviations and
the number of cache lines. It is easy to see that only two types
of nodes in a DAG can be deviations: the touches and the
child nodes of forks that are not chosen to execute first. Since
we assume the future thread (left child) at a fork is always
executed first, only the right children of forks can be devia-
tions. Next, we bound the number of deviations incurred by
a work-stealing parallel execution to bound its cache over-
head.

LEMMA 7. Let t be the future thread at a fork v in a struc-
tured single-touch computation. If t’s touch x or v’s right
child u is a deviation, then either u is stolen or there is a
touch by t which is a deviation.

Proof. By Lemma 4, a touch is a deviation if and only if
its local parent is executed before its future parent. Now
suppose a processor p executes v and pushes u into its deque.
Assume that u is not stolen and there are no touches by t that
are deviations. Thus, u will stay in p’s deque until p pops it
out. The proof of this lemma is similar to that of Lemma 4.
After p executes v, it moves to execute thread t. There are
two possibilities that can make p move from t to another
thread: when it executes a fork or the local parent of a touch.
When it executes a fork, it will push t (the right child of the
fork) into its deque, right below u. Since a thief processor
always steals from the top of a deque, and by hypothesis u is
not stolen, t cannot be stolen. Thus, p will always resume t
before u and then u will become the next node in the deque
to pop. When p executes the local parent of a touch by t, the
future parent of that touch must have been executed, since
we assume that touch is not a deviation. Thus, p can continue
to execute that touch immediately and keep moving on in t.
Therefore, p will finally get to the local parent of x and then
pop u out from its deque, since x is a descendant of u and
x cannot be execute yet. Hence, neither x nor u can be a
deviation. ��

THEOREM 8. If, at each fork, the future thread is chosen to
execute first, then a parallel execution with work stealing in-
curs O(PT 2

∞) deviations and O(CPT 2
∞) additional cache

misses in expectation on a structured single-touch computa-
tion, where (as usual)P is the number of processors involved

160

in this computation, T∞ is the computation span, and C is
the number of cache lines.

Proof. Arora et al. have shown that in a parallel execu-
tion with work stealing, there are in expectation O(PT∞)
steals [3]. Now let us count how many deviations these steals
can incur. A steal on the right child u of a fork v can make
u and v’s corresponding touch x1 deviations. Suppose x1 is
a touch by a thread t2, then the right child of the fork of t2
and t2’s touch x2 can be deviations. If x2 is a deviation and
x2 is a touch by another thread t3, then the right child of the
fork of t3 and t3’s touch x3 can be deviation too. Note that
x2 is a descendant of x1 and x3 is a descendant of x2. By
repeating this observation, we can find a chain of touches
x1, x2, x3, ..., xn, called a deviation chain, such that each
xi and the right child of the corresponding fork of xi can
be deviations. Since for each i > 1, xi is a descendant of
x2, x1, x2, x3, . . . , xn is in a directed path in the computa-
tion DAG. Since the length of any path is at most T∞, we
have n ≤ T∞. Since each future thread has only one touch,
there is only one deviation chain for a steal. Since there are
O(PT∞) steals in expectation in a parallel execution [3], we
can find in expectation O(PT∞) deviation chains and in to-
tal O(PT 2

∞) touches and right children of the corresponding
forks involved, i.e., O(PT 2∞) deviations involved.

Next, we prove by contradiction that no other touches or
right children of forks can be deviations. suppose there is
touch y, such that y or the right child of the corresponding
fork of y is a deviation, and that y is not in any deviation
chain. The right child of the corresponding fork of y can
not be stolen, since by hypothesis y is not the first touch in
any of those chains. Thus by Lemma 7, there is a touch y′

by the future thread of y and y′ is a deviation. Note that
y′s cannot be in any deviation chain either. Otherwise y
and the deviation chain y′ is in will form a deviation chain
too, a contradiction. Therefore, by repeating such “tracing
back”, we will end up at a deviation touch that is not in
any deviation chain and has no touches as its ancestors.
Therefore, there are no touches by the future thread of this
touch, and the right child of the corresponding future fork of
it is not stolen, contradicting Lemma 7.

The upper bound on the expected number of additional
cache misses follows from the result of Acar et al. [1] that the
number of additional cache misses in a work-stealing paral-
lel computation is bounded by the product of the number of
deviations and the number of cache lines. ��

The bound on the number of deviations in Theorem 8
is tight, and the bound on the number of additional cache
misses is tight within a factor of C, as shown below in
Theorem 9.

THEOREM 9. If, at each fork node, the future thread is cho-
sen to execute first, then a parallel execution with work
stealing can incur Ω(PT 2∞) deviations and Ω(PT 2∞) addi-

(a) (b) (c)

Figure 5. Figure (c) shows a DAG on which work steal-
ing can incur Ω(PT 2

∞) deviations and Ω(PT 2
∞) additional

cache misses. It uses the DAGs in (a) and (b) as building
blocks.

tional cache misses on a structured single-touch computa-
tion, while the sequential execution of this computation in-
curs O(PT 2

∞/C) cache misses.

Proof. Figure 5(c) shows a computation DAG on which
we can get the bounds we want to prove. The DAG in Fig-
ure 5(c) uses the DAGs in Figures 5(a) and 5(b) as build-
ing blocks. Let’s look at Figures 5(a) first. Suppose there are
two processors p1 and p2 executing the DAG in Figure 5(a).
Suppose p2 executes v, pushes u1 into its deque, and then
falls asleep before executing w. Now suppose p1 steals u1.
For each i ≤ k, si or Zi cannot be executed since w has
not been executed yet. Now p1 takes a solo run, executing
u1, x1, Y1, u2, x2, Y2, ..., xk, Yk. After p1 finishes, p2 wakes
up and executes the rest of the computation DAG. Note that
the right (local) parent of si is executed before the left (fu-
ture) parent of the touch is executed. Thus, by Lemma 4,
each si is a deviation. Hence, this parallel execution incurs
k deviations and the computation span of the computation is
Θ(k).

Now let us consider a parallel execution of the compu-
tation in 5(b). For each i ≤ k, the subgraph rooted at vi is
identical to the computation DAG in 5(a) (except that the
last node of the subgraph has an extra edge pointing to a
node of the main thread). Suppose there are three processors
p1, p2, and p3 working on the computation. Assume p2 ex-
ecutes r1 and v1 and then falls asleep when it is about to
execute w. p3 now steals r2 from p2 and then falls asleep
too. Then p1 steals u1 from p2’s deque. Now p1 and p2 exe-
cute the subgraph rooted at v1 in the same way they execute
the DAG in 5(a). After p1 and p2 finish, p3 wakes up, ex-
ecutes r2. Now these three processors start working on the
subgraph rooted at r3 in the same way they executed the
graph rooted at r1. By repeating this, the execution ends up
incurring k2 deviations when all the k subgraphs are done.

161

Since the length of the path r1, r2, r3... on the right-hand
side is Θ(k), the computation span of the DAG is still Θ(k).

Now we construct the final computation DAG, as in Fig-
ure 5(c). The “top” nodes of the DAG are all forks, each
spawning a future thread. Thus, they form a binary tree
and the number of threads increase exponentially. The DAG
stops creating new threads at level Θ(logn) when it has
n threads rooted at S1, S2, ..., Sn, respectively. For each i,
the subgraph rooted at Si is identical to the DAG in 5(b).
Suppose there are 3n processors working on the compu-
tation. It is easy to see n processors can eventually get to
S1, S2, ..., Sn. Suppose they all fall asleep immediately af-
ter executing the first two nodes of Si(corresponding to r1
and v1 in Figure 5(b)) and then each two of the rest 2n free
processors join to work on the subgraph rooted at Si, in the
same way p1, p2 and p3 did in Figure 5(b). Therefore, this
executionwill finally incurnk2 deviations, while the compu-
tation span of the DAG is Θ(k+logn). Therefore, by setting
n = P/3, we get a parallel execution that incurs Ω(PT 2∞)
deviations, when logP = O(k).

To get the bound on the number of additional cache
misses, we just need to modify the graph in 5(a) as fol-
lows. For each 1 ≤ i ≤ k, Yi consists of a chain of C
nodes yi1, yi2, ..., yiC , where C is the number of cache lines.
yi1, yi2, ..., yiC access memory blocks m1,m2, ...,mC , re-
spectively. Similarly, each Zi consists of a chain of C
nodes zi1, zi2, ..., ziC . zi1, zi2, ..., ziC access memory blocks
mC ,mC−1, ...,m1, respectively. all si access memory block
mC . For all 1 ≤ i ≤ k, ui and xi both access memory block
mC+1. It does not matter which memory blocks the other
nodes in the DAG access. For simplicity, assume the other
nodes do not access memory. In the sequential execution,
the single processor has m1,m2, ...,mC in its cache after
executing v, w, u1, x1, Y1, Z1 and it has incurred (C + 1)
cache misses so far. Now it executes u2 and x2, incurring
one cache miss at node u2 by replacing mC with mC+1 in
its cache, since mC is the least recently used block. When it
executes Y2 and Z2, it only incurs one cache miss by replac-
ing mC+1 with mC at the last node of Y2, y2C . Likewise,
it is easy to see that the sequential execution will only incur
cache misses at nodes ui and at the last nodes of Yi for all i.
Hence, the sequential execution incurs only O(k+C) cache
misses. When k = Ω(C), the sequential execution incurs
only O(k) cache misses.

Now consider the parallel execution by two processors
p1 and p2 we described before. p2 will incur only C cache
misses, since Zi and si only access m different blocks
m1,m2, ...,mC and hence p2 doesn’t need to swap any
memory blocks out of its cache. However, p1 will incur
lots of cache misses. After executing each Yi, p1 will ex-
ecute ui+1. Thus at ui+1, one cache miss is incurred and
m1 is replaced with mC+1, since m1 is the least recently
used block. Then, when p1 executes the first node y(i+1)1

in Yi, , m1 is not in its cache. Since m2 now becomes the

least recently used memory block in p1’s cache, m2 is re-
placed by m1. Thus, m2 will not be in the cache when it is
in need at y(i+1)2. Therefore, it is obvious that p1 will incur
a cache miss at each node in Yi and hence incur Ck cache
misses in total in the entire execution. Note that the compu-
tation span of this modified DAG is Θ(Ck), since each Zi

now has C nodes. Therefore, the sequential execution and
the parallel execution actually incur Θ(T∞/C) and Θ(T∞),
respectively, when logP = O(k). Therefore, if we use this
modified DAG as the building blocks in 5(c), we will get the
bound on the number of additional cache misses stated in
the theorem. ��

5.2 Parent Thread First at Each Fork

In this section, we show that if the parent thread is always
executed first at a fork, a work-stealing parallel execution of
a structured single-touch computation can incur Ω(tT∞) de-
viations and Ω(CtT∞) additional cache misses, where t is
the number of touches in the computation, while the corre-
sponding sequential execution incurs only a small number of
cache misses. This bound matches the upper bound for gen-
eral, unstructured future-parallel computations [22]2. This
result, combined with the result in Section 5.1, shows that
choosing the future threads at forks to execute first achieves
better cache locality for work-stealing schedulers on struc-
tured single-touch computations.

THEOREM 10. If, at each fork, the parent thread is cho-
sen to execute first, then a parallel execution with work
stealing can incur Ω(tT∞) deviations and Ω(CtT∞) addi-
tional cache misses on a structured single-touch computa-
tion, while the sequential execution of this computation in-
curs only O(C + t) cache misses.

Proof. The final DAG we want to construct is in Figure 7.
It uses the DAGs in Figure 6 as building blocks. We first
describe how a single deviation at a touch u3 can incur
Ω(T∞) deviations and Ω(CT∞) additional cache misses in
Figure 6(a). In order to get the bound we want to prove,
here we follow the convention in [1, 22] to distinguish be-
tween touches and join nodes in the DAG. More specifi-
cally, yi is a join node, not a touch, for each 1 ≤ i ≤ n.
For each 1 ≤ i ≤ n, node xi accesses memory block
m1 and yi accesses memory block mC+1. Zi consists of a
chain of C nodes zi1, zi2, ..., ziC , accessing memory blocks
m1,m2, ...,mC respectively. All the other nodes do not ac-
cess memory. Assume in the sequential execution a single
processor p1 executes the entire DAG in Figure 6(a). Sup-
pose initially the left (future) parent of u3 has already been
executed. p1 starts executing the DAG at u1. Since p1 al-
ways stays on the parent thread at a fork, it first pushes s into

2 The bound on the expected number of deviations in [22] is actually
O(PT∞ + tT∞). However, as pointed out in [22], a simple fork-join
computation can get Ω(PT∞) deviations. Hence we focus on the more
interesting part Ω(tT∞).

162

(a) (b)

Figure 6. DAGs used by Figure 7 as building blocks.

its deque, continues to execute u2, u3, u4, and then executes
x1, x2, ..., xn while pushing z11, z21, ..., zn1 into its deque.
Since v cannot be executed due to s, p1 pops zn1 out of its
deque and executes the nodes in Zn. Then p1 executes all the
nodes in Zn−1, Zn−2, ..., Z1, in this order. So far p1 has only
incurred C cache misses, since all the nodes it has executed
only access memory blocks m1, ...,mC and hence it did not
need to swap any memory blocks out of its cache. Now p1
executes s, v and then yn, yn−1, ..., y1, incurring only one
more cache miss by replacing m1 with mC+1 at yn. Hence,
this execution incurs O(C) cache misses in total. Note that
the left parent of yi is executed before the right parent yi for
all i.

Now assume in another execution by p1, the left parent
of u3 is in p1’s deque when p1 starts executing u1. Thus,
u3 is a deviation with respect to the previous execution.
Since u3 is not ready to execute after p1 executes u2, p1
pops s out of its deque to execute. Since v is not ready, p1
now pops the left parent of u3 to execute and then executes
u3, u4, x1, x2, ..., xn, v. Now p1 pops zn1 out and executes
all the nodes Zn. Note that yn is now ready to execute
and the memory blocks in p1’s cache at the moment are
m1,m2, ...,mC . Now p1 executes yn, replacing the least
recently used block m1 with mC+1. p1 then pops z(n−1)1

out and executes all the nodes z(n−1)1, z(n−1)2, ..., z(n−1)C
in Zn−1 one by one. When p1 executes z(n−1)1, it replaces
m2 with m1, and when it executes z(n−1)2, it replaces m3

with m2, and so on. The same thing happens to all Zi and
yi. Thus, p1 will incur a cache miss at every node afterwards,
ending up with Ω(Cn) cache misses in total. Note that the
computation span of this DAG is T∞ = Θ(C + n). Thus,
this execution with a deviation at u3 incurs Ω(CT∞) cache
misses when n = Ω(C). Moreover, all yi are deviations and
hence this execution incurs Ω(T∞) deviations.

Now let us see how a single steal at the beginning of
a thread results in Ω(T∞) deviations and Ω(CT∞) cache
misses at the end of the thread. Figure 6(b) presents such a
computation. First we consider the sequential execution by a
processor p1. It is easy to check p1 executes nodes in the or-
der r, u1, w1, s2, s1, v1, u2, w2, v2, u3, w3, s4, s3, v3, u4,
The key observation is that wi is executed before si is ex-
ecuted for any odd numbered i while wi is executed after
si is executed for any even numbered i. This statement can
be proved by induction. Obviously, this holds for i = 1 and
i = 2, as we showed before. Now suppose this fact holds
for all 1, 2, ..., i, for some even numbered i. Now suppose
p1 executes ui−1. Then p1 pushes si into its deque and exe-
cutes wi−1. Since we know wi−1 should be executed before
si−1, si−1 has not been executed yet. Moreover, si−1 must
already be in the deque before si was pushed into the deque,
since si−1’s parent ui−2 has been executed and si−1 is ready
to execute. Now p1 pops si to execute. Since vi is not ready
to execute, p1 pops si−1 and then executes si−1, vi−1, ui,
and pushes si+1 into the deque. Now p1 continues to execute
wi, vi, ui+1 and pushes si+1 into its deque. Then pi executes
wi+1 and pops si+2, since vi+1 is not ready due to si+1. Now
we can see wi+1 and si+2 have been executed, but si+1 and
wi+2 not yet. Therefore, wi+1 is executed before si+1 and
wi+2 is executed after si+2. That is, the statement holds for
i+ 1 and i+ 2, and hence the proof.

The subgraph rooted at uk is identical to the graph in Fig-
ure 6(a), with vk corresponding to u3 in Figure 6(a). There-
fore, if k is an even number, vk’s left parent has been ex-
ecuted when wk is executed and hence the sequential exe-
cution will incur only O(C) cache misses on the subgraph
rooted at uk.

Now consider a parallel execution of the DAG in 6(b) by
two processors p1 and p2. p1 executes r and pushes s1 into
its deque. p2 immediately steals s1 and executes it. Then p2
falls asleep, leaving p1 executing the rest of the DAG alone.
It is easy to check p1 will execute the nodes in the DAG in
the order u1, w1, v1, u2, w2, s3, s2, v2, u3, w3, v3, u4, s4, ...
It can be proved by induction that wi is executed after si is
executed for any odd numbered i whilewi is executed before
si is executed for any even numbered i, which is opposite to
the order in the sequential execution. The induction proof is
similar to that of the previous observation in the sequential
execution, so we omit the proof here. If k is an even number,

163

wk will be executed before the left parent of vk and hence
this execution will incur Ω(T∞) deviations and Ω(CT∞)
cache misses when n = Ω(C) and n = Ω(k).

The final DAG we want to construct is in Figure 7. This is
actually a generalization of the DAG in Figure 6(b). Instead
of having one fork ui before each touch vi, it has two forks
ui and xi, for each i. After each touch vi, the thread at
yi splits into two identical branches, touching the futures
spawned at ui and xi, respectively. In this figure, we only
depict the right branch and omit the identical left branch. As
we can see, the right branch later has a touch vi+1 touching
the future si+1 spawned at the fork xi. If we only look at the
thread on the right-hand side, it is essentially the same as the
DAG in Figure6(b). The sequential execution of this DAG
by p1 is similar to that in Figure6(b). The only difference
is that p1 at each yi will execute the right branch and then
the left branch recursively. Similarly, it can be proved by
induction that wi is executed before si is executed for any
odd numbered i while wi is executed after si is executed for
any even numbered i. Obviously this also holds for each left
branch. Now consider a parallel execution by two processors
p1 and p2. p1 first executes r. p2 immediately steals s1 and
executes it and then sleeps forever. Now p1 makes a solo
run to execute the rest of the DAG. Again, we can prove
by induction that wi is executed after si is executed for any
odd numbered i while wi is executed before si is executed
for any even numbered i, which is opposite to the order in
the sequential execution. The proofs of the two observations
above are a little more complicated than those for the DAG
in Figure6(b), but the ideas are essentially the same. Due to
space limits, we again omit the two induction proofs.

By splitting each thread into two after each yi, the number
of branches in the DAG increases exponentially. Suppose
there are t touches in the DAG. Thus, there are eventually
Θ(t) branches and the height of this structure is Θ(log t). At
the end of each branch is a subgraph identical to the DAG
in Figure 6(a). Therefore, the parallel execution with only
one steal can end up incurringΘ(tn) deviations andΘ(Ctn)
cache misses. The sequential execution incurs onlyΘ(C+t)
cache misses, since the sequential execution will incur only
2 cache misses by swappingmC+1 in and out at each branch,
after it incurs C cache misses to load m1,m2, ...,mC at the
first branch. hence, when n = Ω(log t) and n = Ω(C), we
get the bound stated in the theorem. ��

6. Other Kinds of Structured Computations
It is natural to ask whether other kinds of structured compu-
tations can also achieve relatively good cache locality. We
now consider two alternative kinds of restrictions.

6.1 Structured Local-Touch Computations

In this section, we prove that work-stealing parallel execu-
tions of structured local-touch computations also have rela-

Figure 7. A DAG on which work stealing can incurΩ(tT∞)
deviations and Ω(CtT∞) if it chooses parents threads to ex-
ecute first at forks. This example uses the DAGs in Figure 6
as building blocks.

tively good cache locality, if the future thread is chosen to
execute first at each fork. This result, combined with The-
orems 8 and 10, implies that work-stealing schedulers for
structured computations are likely better off choosing future
threads to execute first at forks.

LEMMA 11. In the sequential execution of a structured
local-touch computation where the future thread at a fork
is always chosen to execute first, any touch x’s future parent
is executed before x’s local parent, and the right child of any
fork v immediately follows the last node of the future thread
spawned at v, i.e., the future parent of the last touch of the
future thread.

The proof is omitted because it is almost identical to the
proof of Lemma 4.

THEOREM 12. If the future thread at a fork is always chosen
to execute first, then a parallel execution with work steal-
ing incurs O(PT 2

∞) deviations and O(CPT 2
∞) additional

cache misses in expectation on a structured local-touch com-
putation.

Proof. Let v be a fork that spawns a future thread t. Now
we consider a parallel execution. Let p be a processor that
executes v and pushes the right child of v into its deque.
Suppose the right child of v is not stolen. Now consider the

164

subgraph G′ consisting of t and its descendant threads. Note
that G′ itself is a structured computation DAG with local
touch constraint. Now p starts executing G′.

According to local touch constraint, the only nodes out-
side G′ that connect to the nodes in G′ are v and the touches
of t, and c is the only node outside G′ that the nodes in G′

depend on. Now v has been executed and the touches of t
are not ready to execute due to the right child of v. Hence, p
is able to make a sequential execution onG′ without waiting
for any node outside to be done or jumping to a node outside,
as long as no one steals a node in G′ from p’s deque. Since
we assume the right child of v will not be stolen and any
nodes in G′ can only be pushed into p’s deque below v, no
nodes in G′ can be stolen. Hence, G′ will be executed by a
sequential execution by p. Therefore, there are no deviations
in G′. After p executed the last node in G′, which is the last
node in t, p pops the right child of v to execute. Hence, the
right child of v cannot be a deviation either, if it is not stolen.
That is, those nodes can be deviations only if the right child
of v is stolen. Since there are in expectation O(PT∞) steals
in an parallel execution and each future thread has at most
T∞ touches, the expected number of deviations is bounded
by O(PT 2

∞) and the expected number of additional touches
is bounded by O(CPT 2∞). ��

6.2 Structured Computations with Super Final Nodes

As discussed in Section 4, in languages such as Java, the
program’s main thread typically releases all resources at the
end of an execution. To model this structure, we add an edge
from the last node of each thread to the final node of the
computation DAG. Thus, the final node becomes the only
node with in-degree greater than 2. Since the final node
is always the last to execute, simply adding those edges
pointing to the final node into a DAG will not change the
execution order of the nodes in the DAG. It is easy to see that
having such a super node will not change the upper bound on
the cache overheads of the work-stealing parallel executions
of a structured computation.

For structured computations with super final nodes, it also
makes sense to relax slightly the single-touch constraint.

DEFINITION 13. A structured single-touch computationwith
a super final node is one where each future thread t at a fork
v has at least one and at most two touches, a descendant of
v’s right child and the super final node.

In such a computation, a future thread can have the super
final node as its only touch. This structure corresponds to a
program where one thread forks another thread to accom-
plish a side-effect instead of computing a value. The parent
thread never touches the resulting future, but the computa-
tion as a whole cannot terminate until the forked thread com-
pletes its work.

Now we prove that the parallel executions of structured
single-touch computations with super final nodes also have
relatively low cache overheads.

LEMMA 14. In the sequential execution of a structured
single-touch computation with a super final node, where the
future thread at a fork is always chosen to execute first, any
touch x’s future parent is executed before x’s local parent,
and the right child of any fork v immediately follows the last
node of the future thread spawned at v, i.e., the future parent
of the last touch of the future thread.

LEMMA 15. Let t be the future thread at a fork v in a
structured single-touch computation with a super final node.
If a touch of t or v’s right child u is a deviation, then either
u is stolen or there is a touch by t which is a deviation.

The proofs of these two lemmas are omitted because they
are almost identical to the proofs of Lemma 4 and Lemma 7,
respectively.

THEOREM 16. If, at each fork, the future thread is chosen to
execute first, then a parallel execution with work stealing in-
curs O(PT 2

∞) deviations and O(CPT 2
∞) additional cache

misses in expectation on a structured single-touch computa-
tion with a super final node.

Proof. The proof is similar to that of Theorem 8. The only
difference is that if a touch by a thread t is a deviation, now
the two touches of t can both be deviations, which could be
a trouble for constructing the deviation chains. Fortunately,
one of these two touches is the super final node, which is
always the last node to execute and hence will not make the
touches of other threads become deviations. Therefore, we
can still get a unique deviation chain starting from a steal
and hence the proof of Theorem 8 still applies here. ��

7. Conclusions
We have focused primarily on structured single-touch com-
putations, in which futures are used in a restricted way.
We saw that for such computations, a parallel execution
by a work-stealing scheduler that runs future threads first
can incur at most O(CPT 2∞) cache misses more than the
corresponding sequential execution, a substantially better
cache locality than the Ω(CPT∞ + CtT∞) worst-case ad-
ditional cache misses possible with unstructured use of fu-
tures. Although we cannot prove this claim formally, we
think that these restrictions correspond to program struc-
tures that would occur naturally anyway in many (but not
all) parallel programs that use futures. For example, Cilk [9]
programs are structured single-touch computations, and that
Belloch and Reid-Miller [7] observe that the single-touch re-
quirement substantially simplifies implementations.

We also considered some alternative restrictions on fu-
ture use, such as structured local-touch computations, and
structured computations with super final nodes, that also in-
cur a relatively low cache-locality penalty. In terms of future

165

work, we think it would be promising to investigate how far
these restrictions can be weakened or modified while still
avoiding a high cache-locality penalty. We would also like
to understand how these observations can be exploited by
future compilers and run-time systems.

References
[1] Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe.

The data locality of work stealing. In Proceedings of the
twelfth annual ACM symposium on Parallel algorithms and
architectures, SPAA ’00, pages 1–12, New York, NY, USA,
2000. ACM.

[2] Kunal Agrawal, Yuxiong He, and Charles E. Leiserson. Adap-
tive work stealing with parallelism feedback. In Proceedings
of the 12th ACM SIGPLAN symposium on Principles and prac-
tice of parallel programming, PPoPP ’07, pages 112–120, New
York, NY, USA, 2007. ACM.

[3] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton.
Thread scheduling for multiprogrammed multiprocessors. In
Proceedings of the tenth annual ACM symposium on Parallel
algorithms and architectures, SPAA ’98, pages 119–129, New
York, NY, USA, 1998. ACM.

[4] Arvind, Rishiyur S. Nikhil, and Keshav K. Pingali. I-structures:
data structures for parallel computing. ACM Trans. Program.
Lang. Syst., 11(4):598–632, October 1989.

[5] Guy E. Blelloch. Programming parallel algorithms. Commun.
ACM, 39(3):85–97, March 1996.

[6] Guy E. Blelloch, Phillip B. Gibbons, and Yossi Matias.
Provably efficient scheduling for languages with fine-grained
parallelism. In Proceedings of the seventh annual ACM
symposium on Parallel algorithms and architectures, SPAA
’95, pages 1–12, New York, NY, USA, 1995. ACM.

[7] Guy E. Blelloch and Margaret Reid-Miller. Pipelining with
futures. In Proceedings of the ninth annual ACM symposium on
Parallel algorithms and architectures, SPAA ’97, pages 249–
259, New York, NY, USA, 1997. ACM.

[8] Robert D. Blumofe, Matteo Frigo, Christopher F. Joerg,
Charles E. Leiserson, and Keith H. Randall. An analysis
of dag-consistent distributed shared-memory algorithms. In
Proceedings of the eighth annual ACM symposium on Parallel
algorithms and architectures, SPAA ’96, pages 297–308, New
York, NY, USA, 1996. ACM.

[9] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kusz-
maul, Charles E. Leiserson, Keith H. Randall, and Yuli Zhou.
Cilk: an efficient multithreaded runtime system. In Proceedings
of the fifth ACM SIGPLAN symposium on Principles and prac-
tice of parallel programming, PPOPP ’95, pages 207–216, New
York, NY, USA, 1995. ACM.

[10] Robert D. Blumofe and Charles E. Leiserson. Space-efficient
scheduling of multithreaded computations. SIAM J. Comput.,
27(1):202–229, February 1998.

[11] Robert D. Blumofe and Charles E. Leiserson. Scheduling
multithreaded computations by work stealing. J. ACM,
46(5):720–748, September 1999.

[12] F. Warren Burton and M. Ronan Sleep. Executing functional
programs on a virtual tree of processors. In Proceedings of the

1981 conference on Functional programming languages and
computer architecture, FPCA ’81, pages 187–194, New York,
NY, USA, 1981. ACM.

[13] David Chase and Yossi Lev. Dynamic circular work-
stealing deque. In Proceedings of the seventeenth annual
ACM symposium on Parallelism in algorithms and architectures,
SPAA ’05, pages 21–28, New York, NY, USA, 2005. ACM.

[14] Matthew Fluet, Mike Rainey, John Reppy, and Adam Shaw.
Implicitly-threaded parallelism in manticore. In Proceedings of
the 13th ACM SIGPLAN international conference on Functional
programming, ICFP ’08, pages 119–130, New York, NY, USA,
2008. ACM.

[15] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall.
The implementation of the cilk-5 multithreaded language.
In Proceedings of the ACM SIGPLAN 1998 conference on
Programming language design and implementation, PLDI ’98,
pages 212–223, New York, NY, USA, 1998. ACM.

[16] John Giacomoni, Tipp Moseley, and Manish Vachharajani.
Fastforward for efficient pipeline parallelism: a cache-optimized
concurrent lock-free queue. In Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and practice of parallel
programming, PPoPP ’08, pages 43–52, New York, NY, USA,
2008. ACM.

[17] Michael I. Gordon, William Thies, and Saman Amarasinghe.
Exploiting coarse-grained task, data, and pipeline parallelism
in stream programs. In Proceedings of the 12th international
conference on Architectural support for programming languages
and operating systems, ASPLOS XII, pages 151–162, New
York, NY, USA, 2006. ACM.

[18] Robert H. Halstead, Jr. Implementation of multilisp: Lisp on a
multiprocessor. In Proceedings of the 1984 ACM Symposium on
LISP and functional programming, LFP ’84, pages 9–17, New
York, NY, USA, 1984. ACM.

[19] Robert H. Halstead, Jr. Multilisp: a language for concurrent
symbolic computation. ACM Trans. Program. Lang. Syst.,
7(4):501–538, October 1985.

[20] D. A. Kranz, R. H. Halstead, Jr., and E. Mohr. Mul-t: a
high-performance parallel lisp. In Proceedings of the ACM
SIGPLAN 1989 Conference on Programming language design
and implementation, PLDI ’89, pages 81–90, New York, NY,
USA, 1989. ACM.

[21] I-Ting Angelina Lee, Charles E. Leiserson, Tao B. Schardl,
Jim Sukha, and Zhunping Zhang. On-the-fly pipeline paral-
lelism. In Proceedings of the 25th ACM symposium on Paral-
lelism in algorithms and architectures, SPAA ’13, pages 140–
151, New York, NY, USA, 2013. ACM.

[22] Daniel Spoonhower, Guy E. Blelloch, Phillip B. Gibbons,
and Robert Harper. Beyond nested parallelism: tight bounds on
work-stealing overheads for parallel futures. In Proceedings of
the twenty-first annual symposium on Parallelism in algorithms
and architectures, SPAA ’09, pages 91–100, New York, NY,
USA, 2009. ACM.

166

