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Abstract

Modern scientific simulations divide work between parallel proces-
sors by decomposing a spatial domain of mesh cells, particles, or
other elements. A balanced assignment of the computational load
is critical for parallel performance. If the computation per element
changes over the simulation time, simulations can use dynamic load
balance algorithms to evenly redistribute work to processes. Graph
partitioners are widely used and balance very effectively, but they
do not strong scale well. Typical SPMD simulations wait while a
load balance algorithm runs on all processors, so a poorly scaling
algorithm can itself become a bottleneck.

‘We observe that the load balance algorithm is separate from the
main application computation and has its own scaling properties.
We propose to decouple the load balance algorithm from the appli-
cation, and to offload the load balance computation so that it runs
concurrently with the application on a smaller number of proces-
sors. We demonstrate the costs of decoupling and offloading the
load balancing algorithm from a Barnes-Hut application.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel programming; 1.6.8
[Simulation and Modeling]: Types of Simulation—Parallel; C.4
[Performance of Systems]: Performance attributes, Modeling tech-
niques
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1.

With increasing levels of concurrency in modern supercomput-
ers, more and more processes may wait for the slowest process to
reach a synchronization point. Load balancing, or assigning equal
amounts of work to processes, is increasingly important for high
performance scientific applications. Because simulation workloads
evolve over time, many large-scale parallel applications use load
balance algorithms to redistribute work evenly. Graph partition-
ers [2, 4] are frequently used to assign work evenly and to optimize
communication locality. However, graph partitioners are compu-
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tationally intensive and require sophisticated parallelization. Poor
scaling limits their use at large scale.

We describe an approach to decouple and to offload the load
balance algorithm to resources that the application does not use. In
this MPMD configuration, partitioning executes concurrently with
the application and with higher parallel efficiency than if it were run
on the same processors as the simulation. Work is reassigned lazily
as assignment directions become available, and the application does
not have to wait for the load balance algorithm to complete. Our
lazy load balancing approach allows an application to decouple
load balance computation from the main application processing
and, as a result, to offload it from the critical path on properly sized
processor set for the load balance algorithm.

2. Decoupled Approach

SPMD simulations divide the simulated domain into logical ele-
ments, which are assigned to processors in the parallel machine.
Often, the computational work per element varies over time, and
an effective load balance algorithm attempts to ensure that the to-
tal work assigned to each processor is equal. Figure 1(a) shows the
main components of the traditional approach to load balancing an
application. The main steps are:

1. Evaluate Imbalance: Decide whether to correct load imbalance
at this point in execution;
Run Load Balance Algorithm: Use a load balance method to
compute directions on how to rebalance;
Rebalance the application if needed.

2.

3.

Figure 1(a) demonstrates how these steps are typically per-
formed as a blocking phase of the application’s primary compu-
tation, which is paused while load balance decisions are made. As
discussed, this approach is not well suited to using a graph par-
titioner load balance algorithm, as these algorithms do not scale
to the process counts that the application does. Potentially thou-
sands of application processes may wait for the load balancing
algorithm while it runs at sub-optimal efficiency. While the load
balance algorithm can be parallelized, it will scale differently than
the application, either causing an inefficient execution on all avail-
able processors or fewer active processors in the load balancing
phase while the other (potentially thousands or more) application
processes long sit idle.

The load balance algorithm is distinct from the application cal-
culation so we decouple them by moving and merging the data to be
partitioned onto a (often smaller) set of processes. To avoid paus-
ing the application computation while computing a load balance as-
signment, we can offload the load balance algorithm computation to
a separate balancing partition from those used by the application.
Separation allows our load balance algorithm to run concurrently
with the application, overlapping application computation and load
balance algorithm computation. Assignments are applied by the ap-
plication lazily as they become available.
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Figure 1. Inline vs. Offloaded Load Balancing

Figure 1(b) corresponds to the offloaded load balance algo-
rithm execution. Transparently to the application, our framework
reserves the resources for the load balance algorithm, and sends
data from the application to the load balance processes. Our frame-
work merges application data from the application processes to run
on a smaller number of load balance processes, and runs the load
balance algorithm more efficiently at a smaller scale than the appli-
cation. The application continues running while the load balance
algorithm computes corrections. When the load balance computa-
tion is completed, our framework sends the assignment instructions
to the application, and the application rebalances.

A potential problem with lazy load balancing is that application
state changes over time. Work per element may change, as may
the number of elements. We call this change drift. However, we ob-
serve that the work distribution in most parallel SPMD applications
changes slowly. In many cases, a balanced assignment computed
from a past application state is a good approximation of a balanced
assignment for the current state, so we can compute the assignment
asynchronously and apply it lazily when the result is available.

2.1 Evaluation

For our experimental studies, we balance a Barnes-Hut [1] simula-
tion [3] with 306.5M million interactions on 65,536 processes of an
IBM Blue Gene/Q system, a tightly coupled massively parallel pro-
cessing (MPP) system that contains PowerPC based compute nodes
with 16 cores (64 hardware threads) each. Nodes are connected by
five dimensional torus network and run a simplified compute node
OS, the CNK. We use GCC 4.4.6 and IBM’s MPI implementation.

Application Drift. Barnes-Hut is a gravitational force simulation
where the number of particles remains the same throughout the
simulation, but the interactions computed per particle can change as
particles move because the simulation only computes gravitational
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interactions within a cutoff radius. We developed application drift
metrics and empirically observe that the use of a drifted assignment
results in an imbalance of less than 5%.

Load Balancing Overhead. Figure 2(a) shows strong scaling per-
formance of a parallel graph partitioner running on 32 to 65,536
processors. Peak efficiency is achieved with 2,048 processors, and
from this point on, runtime increases. On 65,536 processes, the al-
gorithm spends all of its time in communication, and the runtime
skyrockets. At scale, we could do better by running the graph par-
titioner on fewer processes and avoiding these excessive costs.

Figure 2(b) shows the costs of decoupling the load balance al-
gorithm as a function of the resources provided to the load balance
algorithm; we show the fastest cases only, with the load balance
algorithm using 2k to 8k processes. These costs include sending
the data to the load balancing processes, merging the data from
several application processes on a single load balancing process,
running the load balance algorithm in parallel on load balancing
processes, unmerging, and sending the load balancing instructions
back to corresponding application processes. The communication
overhead imposed by the decoupling has a strong relationship with
the ratio of application processes to load balancing processes, con-
sistent with costs that one would expect.

Figure 2 demonstrates that decoupling the load balance algo-
rithm from the application allows us to run it more efficiently with-
out introducing significant overhead due to the extra communica-
tion. Decoupling the load balance algorithm and running it on 31—2
of the available resources in this case results in 15x shorter runtime
of the load balance computation.

3. Conclusions

We have presented an approach to load balancing based on decou-
pling the load balance algorithm from the application and offload-
ing the load balance computation to overlap it with application exe-
cution. We implemented a framework that performs the decoupling
and offloading of the load balance algorithm transparently to the
application; analogously to the inline case, the application is re-
quired to provide information for the load balance mechanism. We
show that decoupling the load balance computation can reduce the
load balancing overhead by a factor of 15.
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