
DSMR: A Shared and Distributed Memory
Algorithm for Single-Source Shortest Path Problem ∗

Saeed Maleki† Donald Nguyen‡ Andrew Lenharth‡

Marı́a Garzarán† David Padua† Keshav Pingali‡

†: Department of Computer Science, University of Illinois at Urbana-Champaign
‡: Department of Computer Science, The University of Texas at Austin

maleki1@illinois.edu, {ddn@cs,lenharth@ices}.utexas.edu, {garzaran,padua}@illinois.edu, pingali@cs.utexas.edu

Abstract
The Single-Source Shortest Path (SSSP) problem is to find the
shortest paths from a source vertex to all other vertices in a graph.
In this paper, we introduce the Dijkstra Strip-Mined Relaxation
(DSMR) algorithm, an efficient parallel SSSP algorithm for shared
and distributed memory systems. Our results show that, DSMR is
faster than parallel ∆-Stepping by a factor of up-to 1.66.

1. Introduction
As the size of the input graphs increases, parallel graph algorithms
are becoming increasingly important, as faster processing strategies
are needed. Scale-free networks [1] such as Twitter’s tweets graph
are among the most important examples of today’s large graphs.

This paper presents DSMR (Dijkstra Strip Mined Relaxation),
a new shared and distributed memory parallel algorithm for the
Single-Source Shortest Path (SSSP) problem that is particularly
efficient on scale-free networks. Given a weighted graph G and
a source vertex s in G, the SSSP problem computes the shortest
distance from s to all vertices of G. SSSP is a classical problem
and has many applications, such as transportation, robotics, and
the computation of Betweenness Centrality. Our results show that
DSMR is up-to between 1.50− 1.66 times faster than ∆-Stepping
implementations.

2. Parallelizing SSSP
2.1 Background
We use the following notations: vertex v0 is the source vertex,
w(vivj) is the weight of edge vivj and d(vi) is the current dis-
tance of vi. The value of d(vi) typically changes as the algorithm
advances in the computation. We use df (vi) to represent the final
value of d(vi). Initially, d(v0) is set to 0 and d(vi) is set to ∞

∗ The work presented in this paper has been supported by the National
Science Foundation grant CNS 1111407. This research used resources of
the Argonne Leadership Computing Facility, which is a DOE office of
Science User Facility supported under Contract DE-AC02-06CH11357.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, contact the Owner/Author. Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax
+1 (212) 869-0481. Copyright 2016 held by Owner/Author. Publication Rights Licensed to ACM.

PPoPP ’16, March 12-16, 2016, Barcelona, Spain
Copyright c© 2016 ACM 978-1-4503-4092-2/16/03. . . $15.00
DOI: http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/2851141.2851183

for the other vertices. Then, a set of relaxation operations is used to
compute successive values of the shortest distances for each vertex.

Relaxation: Relaxation is a basic operation used by SSSP algo-
rithms. There are two types of relaxation operations: 1) Relaxing an
edge vivj which updates d(vj) to min{d(vj), d(vi) + w(vivj)}.
2) Relaxing a vertex vi which relaxes all of its incident edges
(outgoing edges in directed graphs). Relaxation of a vertex vi be-
comes necessary when its distance, d(vi), is updated (updates al-
ways lower the distance). A vertex whose distance has been up-
dated becomes active until the vertex is relaxed. SSSP starts by
relaxing the source vertex, followed by the repetitive relaxation of
the active vertices. However, since there could be multiple active
vertices at a time, there are multiple possible orders of relaxation,
which could be partial orders if parallel relaxations are allowed. We
call the order of relaxation a schedule. We say that the amount of
work of a SSSP algorithm is the total number of edge relaxation it
does. Since the minimum number of relaxations needed to compute
SSSP is equal to the number of edges, E, we say that the overhead
of an algorithm is the number of edge relaxations minus E.

Among the existing SSSP algorithms, Dijkstra, Bellman-Ford,
and Chaotic Relaxation, ∆-Stepping [6] has a reasonable balance
between parallelism and overhead. ∆-Stepping proceeds itera-
tively. In each iteration i where i ∈ {0, 1, 2, . . . }, all active ver-
tices v such that i.∆ ≤ d(v) < (i + 1).∆ are relaxed. Here ∆
is a constant throughout the algorithm. However, as shown later,
∆-Stepping performs poorly when applied to scale-free graphs.

2.2 Dijkstra Strip Mined Relaxation
Dijkstra Strip Mined Relaxation (DSMR) is our new parallel SSSP
algorithm. First, DSMR partitions the set of vertices into P (total
number of processors) subsets U1, U2, . . . , UP . Using these sub-
sets, it creates P subgraphs. The subgraph assigned to processor
k consists of the vertices in Uk plus all vertices adjacent to those
in Uk. The adjacent vertices added to complete each subgraph are
called halo vertices. Processor i computes the shortest distance
from the source to all vertices in Ui minus the halo vertices.

DSMR proceeds in three stages: 1) Each processor relaxes the
active vertices in its subgraph in distance order using only local
information until it has relaxed exactly D edges. 2) After D edges
have been relaxed, all processors reach a collective all-to-all com-
munication that updates the distances of halo vertices across all
processors. 3) Each processor locally finds the active vertices it
owns. These 3 stages continue until there are no more active ver-
tices. Large D values cause late distance updates and work over-
head and small D values cause frequent collective communications
increasing communication cost. To study how DSMR’s overhead
compares with ∆-Stepping’s, we studied the Degree-Distance and
Overhead Distributions.

 0

 50

 100

 150

 200

 250

 0 256 512 768 1024

Distance

CoAuthor Network

(a)

DS Overhead
DSMR Overhead
Degree-Distance

 0

 10

 20

 30

 40

 50

 60

 70

 0 8192 16384 24576

Distance

USRoads Network

(b)

Figure 1: Overhead distribution of ∆-Stepping (DS) algorithm and
DSMR algorithm compared with degree-distance distribution.

2.3 Degree-Distance and Overhead Distributions
Degree-Distance Distribution: Degree-Distance distribution y(x),
is measured after computing the final shortest distances. y(x) is the
total number of edges that are connected to vertices with shortest
distance x. Formally, y(x) =

∑
v:df (v)=x degree(v). The Degree-

Distance plot (red plot) in Figure 1 shows the degree-distance
distribution from a random source vertex for Co-Author and US
Roads networks, a scale-free network and a non-scale-free network,
respectively.

The Coauthor Network’s plot has a narrow Gaussian shape
with a long tail while the US Roads network’s plot has a wide
Gaussian shape with short head and tail. For the Co-Author, the
∆-Stepping algorithm relaxes significantly more edges in earlier
iterations than in later iterations since in each iteration, it relaxes
vertices in a ∆ range of distances (fixed length successive non-
overlapping intervals on the horizontal axis). This imbalance causes
significant work or communication overhead as described next.
However, DSMR has constant amount of work in each iteration. For
US Roads plot in Figure 1(b), the amount of work for ∆-Stepping
is roughly uniform across iterations, making ∆-Stepping suitable
for this graph.

Overhead Distribution: The work overhead of a SSSP algo-
rithm associated with a vertex v is caused by relaxing it before
it reaches its final distance df (v). We associate the source of this
overhead with the first vertex u that should have been relaxed be-
fore v to avoid the overhead. For each such u, degree(v), the
amount of work overhead, is accumulated into the overhead dis-
tribution, z(x), where x = df (u). The blue and green plots in
Figure 1 show the overhead distribution of ∆-Stepping (DS) and
DSMR for the two networks, respectively. The values of D and ∆
are chosen such that the number of collective communications are
almost the same for both algorithms. As it can be seen, the over-
head distribution of DSMR is roughly uniform for both algorithm
while this is not the case for ∆-Stepping. This is the main reason
why DSMR performs better than ∆-Stepping.

3. Results
We used two machines for our evaluation: a shared memory ma-
chine with 40 cores (4 10-core Inten Xeon E7-4860) and Mira, a
distributed-memory cluster at Argonne National lab with 16-core
nodes (PowerPC A2). The four graphs for this study are Co-Author
network [7], US roads network [4], R-MAT [3] and Orkut [9].

Figure 2 compares DSMR, our implementation of ∆-Stepping
(DS), the ∆-Stepping from the Elixir collection [8] implemented
in the Galois system [5], and the version of ∆-Stepping described
in [2] (IPDPS-DS). Plots (a) and (b) show the results for the Co-
Author and US Roads networks on the shared memory machine
and plots (c) and (d) show the results for Orkut and R-MAT graphs
on Mira. Plots (a), (b) and (c) show strong scaling results while

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1 2 4 8 16 32

M
T
E
P
S

cores

Co-Author - Shared Memory

(a)

Elixir
DSMR

DS

 0

 5

 10

 15

 20

 25

 30

 1 2 4 8 16 32

M
T
E
P
S

cores

US Roads - Shared Memory

(b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 4 8 16 32 64 128 256

G
T
E
P
S

Nodes

Orkut - Mira

(c)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 2 4 8 16 32 64 128 256

G
T
E
P
S

Nodes

RMAT - Weak Scaling on Mira

(d)

IPDPS-DS

Figure 2: Comparison of DSMR and different versions of ∆-
Stepping on the shared and distributed memory systems

plot (d) shows weak scaling results. For each algorithm, the best
parameters (∆ in ∆-Stepping and D in DSMR) were searched
from a random source vertex. We found these parameters to be
stable when changing the source vertex and, therefore, we executed
all algorithms with them for 100 other random source vertices.
The performance results are presented in TEPS (Traversed Edges
Per Second) which is |E(G)|/T , where T is the running time in
seconds. The X axis represents different number of cores in plot
(a) and (b) and different number of nodes (16 core/node) in plots
(c) and (d). The Y axis shows the average TEPS (either in Mega or
Giga) of the 100 random source vertices.

As can be seen from all plots in Figure 2, DSMR is faster than
the ∆-Stepping implementations except for the US Roads network
where DSMR is 0.75× slower than Elixir. For the other cases,
DSMR is between 1.50× to 1.66× faster than all the other ∆-
Stepping implementations. Also, note that DSMR speed up over
∆-Stepping improves as the number of cores is increased.

References
[1] A.-L. Barabasi and R. Albert. Emergence of scaling in random net-

works. Science’99.
[2] V. Chakaravarthy, F. Checconi, F. Petrini, and Y. Sabharwal. Scalable

single source shortest path algorithms for massively parallel systems.
In IPDPS’14.

[3] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-mat: A recursive model
for graph mining. In SDM’04.

[4] C. Demetrescu, A. V. Goldberg, and D. S. Johnson. Implementation
challenge for shortest paths. In Encyclopedia of Algorithms’08.

[5] Galois System. http://iss.ices.utexas.edu/?p=projects/galois.
[6] U. Meyer and P. Sanders. Delta-stepping: A parallelizable shortest path

algorithm. J. Algorithms’03.
[7] G. Palla, I. J. Farkas, P. Pollner, I. Dernyi, and T. Vicsek. Fundamental

statistical features and self-similar properties of tagged networks. New
Journal of Physics.

[8] D. Prountzos, R. Manevich, and K. Pingali. Elixir: A system for
synthesizing concurrent graph programs. OOPSLA ’12.

[9] J. Yang and J. Leskovec. Defining and evaluating network communities
based on ground-truth. In MDS ’12.

