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Abstract
We present GLB, a programming model and an associated
implementation that can handle a wide range of irregular
parallel programming problems running over large-scale dis-
tributed systems. GLB is applicable both to problems that
are easily load-balanced via static scheduling and to prob-
lems that are hard to statically load balance. GLB hides the
intricate synchronizations (e.g., inter-node communication,
initialization and startup, load balancing, termination and re-
sult collection) from the users. GLB internally uses a version
of the lifeline graph based work-stealing algorithm proposed
by Saraswat et al [25]. Users of GLB are simply required to
write several pieces of sequential code that comply with the
GLB interface. GLB then schedules and orchestrates the par-
allel execution of the code correctly and efficiently at scale.

We have applied GLB to two representative benchmarks:
Betweenness Centrality (BC) and Unbalanced Tree Search
(UTS). Among them, BC can be statically load-balanced
whereas UTS cannot. In either case, GLB scales well –
achieving nearly linear speedup on different computer archi-
tectures (Power, Blue Gene/Q, and K) – up to 16K cores.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming—distributed pro-
gramming; D.3.3 [Programming Languages]: Language
Constructs and Features—concurrent programming struc-
tures, control structures

Keywords X10; GLB; work-stealing; scalability; perfor-
mance
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1. Introduction
1.1 Why do we need GLB
Parallel programming is significantly more challenging than
sequential programming. Given the same input, a sequential
program always produces the same result. That is not true for
parallel programs. Programmers need to ensure that given
the same input, a parallel program can produce the same re-
sult under any possible interleaving. In addition, program-
mers also need to design intricate synchronization schemes
to balance the workload among computing resources so that
the deployed program can achieve good performance.

Facing these challenges, many programmers desire a
programming model that can can hide the synchronization
details from them. Many such programming models have
been proposed. Among them, MapReduce [7] is one of the
most widely used. Programmers only need to provide the
sequential mapper and reducer function and the MapRe-
duce framework takes care of input partition, scheduling,
inter-machine communication and fault tolerance. While
effective for many problems, MapReduce is not applica-
ble to highly-unpredictable workload. One heavily loaded
mapper or reducer can severely downgrade the whole sys-
tem’s performance. Previous work [14] attempts to mitigate
the skew problem by dynamically adjusting the workload
among Map or Reduce tasks. However it assumes near-
perfect progress estimation [17]. Such techniques do not
apply to unpredictable workloads, such as UTS, in which to
predict the workload is as difficult as reverse engineering a
cryptographic hash function. In addition, MapReduce cannot
handle tasks that are self-generated. All (Map) tasks must be
known prior to starting a M/R job. Again, this is not true for
benchmarks such as UTS, where new tasks are generated
as old tasks are being executed. Work-stealing [9] is among
the first works that handle such unpredictable workload on
shared-memory machine. However, many such techniques
are not directly applicable to distributed-memory machines,
which are the de-facto programming environment for scale-
out computing.
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We propose GLB, a Global Load Balancing framework,
based on lifeline graph work-stealing algorithm [25]. GLB
can handle highly irregular problems, where workload on
each computing node can be widely different and unpre-
dictable. GLB works on distributed-memory system and can
deliver linear speedup and perfect scaling up to 16K cores. In
addition, GLB provides a number of parameters for users to
tune. Programmers can control the number of random/life-
line victims and task granularity to increase computation
throughput or decrease work-stealing response latency, with-
out knowing the underlying complicated synchronization
scheme.

1.2 Why do we choose X10
X10 is a high-performance, high-productivity programming
language for scale out computing being developed at IBM.
It is a class-based, strongly-typed, garbage-collected, object-
oriented language [23, 24]. To support concurrency and dis-
tribution, X10 uses the Asynchronous Partitioned Global
Address Space programming model (APGAS [22]). This
model introduces two key concepts – places and asyn-
chronous tasks – and a few mechanisms for coordination
(finish, async, at, atomic). With these, APGAS can
express both regular and irregular parallelism, message-
passing-style and active-message-style computations, fork-
join and bulk-synchronous parallelism. In contrast to hybrid
models like MPI+OpenMP, the same constructs underpin
both intra- and inter-place concurrency.

The X10 language is implemented via source-to-source
compilation to either Java (Managed X10) or C++ (Native
X10) and is available on a wide range of operating systems
and hardware platforms ranging from laptops, to commodity
clusters, to supercomputers.

Using X10 to implement GLB simplified both the in-
ternal implementation of the library and its end-user API.
X10’s high-level support for distribution and concurrency al-
lowed a concise and efficient specification of the library and
enabled rapid prototyping and experimentation with design
choices. The X10 language’s intrinsic support for distributed
computing, specifically for data serialization between nodes,
simplifies the end-user programming task. Users can sim-
ply specify sequential, single-place data structures and the
GLB implementation can rely on X10 language support to
efficiently transmit user-defined data types between nodes
without requiring any explicit data serialization code to be
written by the user. As of today, X10 does not provide any
intrinsic support for a cross-node transactional model. How-
ever, GLB does not need such a transactional model as there
is no single global task queue or a master that coordinates
GLB workers (see Section2.2). All communication is strictly
between GLB workers and workers operate solely on their
local data.

2. Design principle
2.1 What type of problems are GLB applicable to
GLB is applicable to problems described as following. There
is an initial bag (multiset) of tasks (may be of size one).
A task usually has a small amount of associated state, but
is permitted to access (immutable) “reference state” that
can be replicated across all places. Consequently, tasks are
relocatable: they can be executed at any place.

Tasks can be executed. Executing a task may only involve
local, self-contained work (no communication). During exe-
cution, a task is permitted to create zero or more tasks, and
produce a result of a given (pre-specified) type Z. The user
is required to specify a reduction operator of type Z. The re-
duction operator must be both commutative and associative.

The GLB framework is responsible for distributing the
generated collection of tasks across all nodes. Once no more
tasks are left to be executed, the single value of type Z
(obtained by reducing the results produced by all tasks) is
returned.

Since the execution of each task depends only on the state
of the task (and on immutable external state), the set of re-
sults produced on execution will be the same from one run
to another, regardless of how the tasks are distributed across
places. Since the user supplied reduction operator is assumed
to be associative and commutative, the result of execution
of the problem is determinate. Thus GLB is a determinate
application library that requires the user to provide a few se-
quential pieces of code and handles concurrency, distribution
and communication automatically.

The GLB framework is applicable to a wide variety of
tasks. For a simple example, consider the problem of com-
puting the n’th Fibonacci number in the naive recursive way.
Here the state of the task can be summarized by just one
number (long), i.e. n. Execution of the task yields either a
result (for n < 2), or two tasks (for n − 1 and n − 2). The
results from all tasks need to be reduced through arithmetic
addition.

All state space search algorithms from AI fall in the
GLB problem domain. Such algorithms are characterized by
a space of states, an initial state, and a generator function
which given a state generates zero or more states. The task
is to enumerate all states (perhaps with a cutoff), apply some
function, and combine the results. An example of such an
application is the famous N -Queens problem.

2.2 Execution overview
Figure 1 shows the overall flow of GLB. For each GLB
program, users need to provide two pieces of sequential code
TaskQueue and TaskBag. In addition, users can also provide
an Initialization method that tells GLB how to initialize the
workload at a root place if the workload cannot be statically
scheduled among all places.

TaskQueue embodies the sequential computation for this
problem and a result reduction function. TaskBag embod-
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Figure 1. GLB overview

ies the task container’s data structure and its split/merge
method.

Given the TaskQueue and TaskBag implementation, GLB
initializes the workload for each Worker. Workers are GLB
internal computing/load-balancing engines and they are
transparent to GLB users. Workers process task items by
calling the process method provided by TaskQueue. Work-
ers balance workload using the lifeline based work-stealing
algorithm. GLB splits TaskBags from victim Worker and
merges them to thief Worker by calling the split/merge
methods provided by TaskBag. Once all workers finish
working, GLB invokes the reducer function, provided by
TaskQueue, to return the final result.

In the following sections, Section 2.3 discusses what is
required from users, Section 2.4 discusses the GLB inter-
nals, Section 2.5 discusses how to apply GLB to the UTS
problem, Section 2.6 discusses how to apply GLB to the BC
problem.

2.3 What do users need to provide
TaskQueue Users need to provide an implementation of
following methods:

1. process(n:Long):Boolean This method describes the
sequential computation of the problem. It iterates over n
items in its TaskBag and computes each one of them. It
processes n items if available and returns true; otherwise
it processes all available (< n) items and returns false.
When GLB sees a Worker’s process(n) returns false, it
will schedule this Worker to steal from others.

2. split():TaskBag Split its TaskBag and returns the split
half. This method returns null if the TaskBag is too small
to split.

3. merge(TaskBag) Merge the incoming TaskBag to its
own TaskBag. Both split and merge method functions
are wrapper functions that will call TaskBag’s split/merge
functions.

4. getResult() Returns local result.

5. reduce() Result reduction function. Applying this func-
tion to each Worker’s result yields the final result.

TaskBag Users need to provide a custom class extending
TaskBag and appropriately implementing split and merge
methods. They provide the functionalities that TaskQueue’s
split/merge methods need. GLB provides an ArrayList-
based TaskBag implementation by default. In this default
implementation, split method is implemented by removing
half of the elements from the end of the ArrayList and re-
turning this removed half ArrayList; merge method is im-
plemented by adding all the elements from the incoming Ar-
rayList to the local ArrayList.

Once the customized TaskQueue and TaskBag are im-
plemented, it is fairly easy for users to invoke GLB library
by calling GLB’s run method. If the workload cannot be
statically scheduled across places, users need to provide an
initialize method so that GLB will initialize this root
task at place 0.

2.4 GLB internals
GLB implements the lifeline work-stealing algorithm de-
scribed in [25]. We summarize the algorithm here:

1. Each Worker repeatedly calls process(n) method until
it is running out of work. Between each process(n) call,
Worker probes the network and responds to the stealing
requests from other Workers.

2. When running out of work, a Worker conducts two
rounds of work-stealing. It first chooses at most w ran-
dom victims. If none of the random victims has work to
share, then Worker goes to the second round of work-
stealing by stealing from its life-line buddies/victims.
The topology of life-line communication graph is a z-
dimensional hyper-cube. Such a topology satisfies these
properties: it is a fully connected directed graph (so work
can flow from any vertex to any other vertex) and it has a
low diameter (so latency for work distribution is low) and
has a low degree (so the number of buddies potentially
sending work to a dead vertex is low). If a lifeline buddy
cannot satisfy the stealing request due to its lack of work,
it will still remember the request and try to satisfy the
request when it gets work from others.

3. When all Workers run out of work, GLB terminates and
applies the reduce function to each Worker’s result to
yield the final result.

Users can tune the GLB performance by changing these
parameters: w, z, and n. It is more likely to steal work from a
random victim with a larger w. It is more likely to steal work
from a lifeline buddy when z is larger. However, when w and
z get larger, each worker spends more time probing the net-
work and less time in processing tasks. Alternatively, users
can make a Worker spend more time on processing tasks by
increasing n. The larger n is, the more tasks a Worker needs
to finish before it can respond to the stealing requests. How-
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ever, a large n can sometimes hurt the performance if steal-
ing requests need be responded fast. We will see an extreme
case in which even n = 1 is too large a task-granularity in
Section 2.6.

To help users understand and tune GLB program perfor-
mance, GLB also provides logging functionalities to record
(1) how much time each Worker spent on processing and
distributing work (2) how many (random/lifeline) stealing
requests each Worker sent and received. (3) how many (ran-
dom/lifeline) stealings each Worker perpetrated. (4) How
much workload has each Worker received/sent.

To better illustrate how to use GLB, we show a pedagog-
ical use case via the Fibonacci problem in the Appendix.

2.5 UTS
2.5.1 Problem statement
The Unbalanced Tree Search benchmark measures the rate
of traversal of a tree generated on the fly using a splittable
random number generator. For this submission, we used a
fixed geometric law for the random number generator with
branching factor b0 = 4, seed r = 19, and tree depth
d varying from 13 to 20 depending on core counts and
architecture.

The nodes in a geometric tree have a branching fac-
tor that follows a geometric distribution with an ex-
pected value that is specified by the parameter b0 > 1.
The parameter d specifies its maximum depth cut-off,
beyond which the tree is not allowed to grow ... The
expected size of these trees is (b0)d, but since the ge-
ometric distribution has a long tail, some nodes will
have significantly more than b0 children, yielding un-
balanced trees.

The depth cut-off makes it possible to estimate the size
of the trees and shoot for a target execution time. To be
fair, the distance from the root to a particular node is never
used in our benchmark implementation to predict the size
of a subtree. In other words, all nodes are treated equally,
irrespective of the current depth.

Clearly, UTS is a case that static load-balancing does
not work. Assume the sequential implementation of UTS is
available (i.e., the code to grow the UTS tree and count the
nodes), we now discuss how to apply GLB to it.

2.5.2 UTS TaskBag and TaskQueue
UTS TaskBag The internal representation of a UTS tree
node is a triple(descriptor, low, high). Descriptor represents
the hashed value of the node, low represents the smallest
index of un-explored children, high represents the largest
index of its un-explored children. The representation of a
UTS tree is thus an array of UTS tree nodes. A UTS TaskBag
is essentially a UTS tree. To split a UTS TaskBag, we evenly
split each UTS node n(d, l, h) to two nodes n1(d, l, h1) and
n2(d, h2, h), where h1 and h2 are the middle points of (l, h).

If none of the UTS tree node has more than one child node,
then we do not split the tree, as it is cheaper to count the node
locally than move it to a remote place and count it there. To
merge a UTS TaskBag, we simply concatenate the incoming
TaskBag’s UTS node array to the local one.

UTS TaskQueue process(n) method counts at most
n UTS tree nodes. reduce() is a straightforward sum-
reduction method on each place’s UTS tree node count.

Finally, GLB initializes the workload by initializing the
root UTS tree node at Place 0.

2.6 BC
2.6.1 Problem statement
The Betweenness Centrality benchmark is taken from the
SSCA2 (Scalable Synthetic Compact Application 2) v2.2
benchmark [1]; specifically, we implement the “fourth” ker-
nel in this benchmark, the computation of betweenness cen-
trality:

The intent of this kernel is to identify the set of
vertices in the graph with the highest betweenness
centrality score. Betweenness Centrality is a shortest
paths enumeration-based centrality metric, introduced
by Freeman (1977). This is done using a between-
ness centrality algorithm that computes this metric for
every vertex in the graph. Let σst denote the num-
ber of shortest paths between vertices s and t, and
σst(v) the number of those paths passing through v.
Betweenness Centrality of a vertex v is defined as
BC(v) = Σs6=v 6=t∈V σst(v)/σst.

The output of this kernel is a betweenness central-
ity score for each vertex in the graph and the set of
vertices the highest betweenness centrality score.

We implement the Brandes’ algorithm described in the
benchmark, augmenting Dijkstra’s single-source shortest
paths (SSSP) algorithm, for unweighted graphs.

We have implemented the exact variant of the benchmark
(K4approx=SCALE).

The solution we implement makes one very strong as-
sumption: that the graph is “small” enough to fit in the mem-
ory of a single place. Since the graph itself is not modified
during the execution of this benchmark, it thus becomes pos-
sible to implement this benchmark by replicating the graph
across all places. Now effectively the computation can be
performed in an embarrassingly parallel fashion. The set of
N vertices is statically partitioned among P places; each
place is responsible for performing the computation for the
source vertices assigned to it (for all N target vertices) and
computes its local betweennessMap. After this is done an
allReduce collective performs an AND summation across all
local betweennessMaps.

Clearly, statically partitioning the work amongst all places
in this way is possible but not ideal. The amount of work
associated with one source node v vs another w could be
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dramatically different. Consider for instance a degenerate
case: a graph of N vertices, labeled 1 . . . N , with an edge
(i, j) if i < j. Clearly the work associated with vertex 1 is
much more than the work associated with vertex N .

We next discuss how to dynamically load-balance these
tasks across all places using the GLB framework.

2.6.2 BC TaskBag and TaskQueue
TaskBag Each vertex interval is a task item. We use a tu-
ple(low, high) to represent a vertex interval. Each task bag is
an array of such tuples. To split a TaskBag, we divide each
tuple evenly. To merge a BC taskbag, we simply concatenate
the incoming TaskBag’s array to the local one.

TaskQueue process(n)method iterates over the taskbag
and calculates the first n vertices. reduce() method is a sim-
ple betweenness-map (a vector) element-wise add function.

This implementation achieves linear speedup and per-
fect scalability on small-scale machines (i.e., 256 cores
on Power) for smaller graph. However, it does not yield
equally impressive performance on larger machines for
larger graphs. After examining the GLB log, we realized
that on large scale machines, Workers are less responsive
to the stealing requests thus workload cannot be distributed
fast. Therefore, we tried to maximize w and z and minimize
n. (Please refer to Section 2.4 for the rationale of turning
these parameters). The performance only improved slightly.
We then realized that it took a Worker too long before it
responded to the work stealing requests even when its task
granularity is one vertex. So we changed the code that com-
putes each vertex to an interruptable state machine. In this
way, a Worker can respond to stealing requests without com-
pleting one vertex computation. Alternatively, we can help
users to minimize the code change by providing a yield-
ing functionality in the GLB library. Users can insert yield
points in the their code to increase its probing frequency and
responsiveness to stealing requests. We plan to provide such
functionality in GLB in the future work.

3. Performance evaluation
3.1 Methodology
3.1.1 Unified code base
We compare our GLB code to the legacy X10 implementa-
tion used to evalutate X10 performance at Peta-scale [27]. To
ensure a fair comparison, we use the same piece of sequen-
tial computation code for the legacy code and GLB code.

3.1.2 Platforms
We evaluated the performance on 3 different architectures:
Power 775, Blue Gene/Q, and K. We now briefly discuss
each architecture and the compiler options we used.

Power-775 We gathered performance results on a small
Power 775 systems with two drawers. A Power 775 octant
(or host or compute node) is composed of a quad-chip mod-
ule containing four eight-core 3.84 Ghz Power7 processors,

one optical connect controller chip (codenamed Torrent),
and 128 GB of memory (in our current configuration). A sin-
gle octant has a peak performance of 982 GFLOPS; a peak
memory bandwidth of 512 GB/s; and a peak bi-directional
interconnect bandwidth of 192 GB/s. operating system im-
age. Eight octants are grouped together into a drawer.

Each octant runs RedHat Enterprise Linux 6.2 and uses
IBM’s PE MPI for network communication (over PAMI).

We compiled the benchmark programs using Native X10
version 2.4.0 with -NO CHECKS, -O options, and compiled
the resulting C++ files with xlC 12.1 with the -qinline
-qhot -O3 -q64 -qarch=auto -qtune=auto compiler op-
tions.

We allocated 32 places per octant when we use multiple
octants. We used regular 64 KB pages for all the programs.

Blue Gene/Q Our Blue Gene/Q numbers were gathered on
Vesta, a small Blue Gene/Q system located at Argonne Na-
tional Laboratory. Each compute node of the Blue Gene/Q
is a 64-bit PowerPC A2 processor with 16 1.6 Ghz com-
pute cores and 16 GB of DRAM. The compute notes are
grouped into drawers (32 compute nodes per drawer), which
are grouped into midplanes (16 compute drawers, 512 com-
pute nodes). Within the midplane, nodes are electrically con-
nected in a 5-D torus (4x4x4x4x2). Beyond the midplane, an
optical interconnect is used.

All benchmarks were compiled using Native X10 version
2.4.0 with -NO CHECKS, -O options. The generated C++
code was then compiled for Blue Gene/Q using xlC v11.1
with the -O3 -qinline -qhot -qtune=qp -qsimd=auto
-qarch=qp command line arguments.

To maximize the number of X10 Places, all experiments
with 16 Places or more were run using the c16 mode,
which creates one MPI process (i.e., one X10 Place) per
Blue Gene/Q compute core. Thus each X10 Place has 1 A2
core and 1 GB of DRAM available to it.

K The K computer is a supercomputer at RIKEN Ad-
vanced Institute for Computational Science. It consists of
82944 compute nodes, and each node has one scalar CPU
(SPARC64

TM
VIIIfx, 8 cores, 128 GFLOPS) and 16 GB

memory. These compute nodes are connected by Tofu in-
terconnect, which is 6D mesh/torus network having 10 links
(5 GB/s x 2 bandwidth per link) on each node.

Each node runs Linux-based OS, and developers can use
MPI-2.1 for network communication.

We compiled the benchmark programs using Native X10
version 2.4.0 with -NO CHECKS, -O, and -FLATTEN EXPRESSIONS
options, and compiled the resulting C++ files with Fujitsu
C/C++ Compiler version K-1.2.0-14 with -Xg and -Kfast
options.

We allocated 8 places per node when we use multiple
compute nodes. The memory page sizes were set as 32 MB
for all the programs.
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Figure 2. UTS/UTS-G Performance Comparison (on
Power 775)

Figure 3. UTS/UTS-G Performance Comparison (on
Blue Gene/Q)

3.2 Experimental results
3.2.1 UTS
In this section, we demonstrate the UTS-GLB performance
by showing three figures, one per each architecture. On each
architecture, we compare the legacy code to the GLB im-
plementation. One thing to note is that the legacy code is a
highly tuned parallel implementation of UTS and it won the
HPCC2012 performance award [27]. On each figure, the x-
axis represents the number of places; the primary y-axis (the
left y-axis) represents the number of UTS nodes counted per
second; the secondary y-axis (the right y-axis) represents the
efficiency, which is calculated by how many nodes counted
per second per place. A straight line whose slope is 1 along
the primary y-axis indicates a linear speedup and a horizon-
tal line on the secondary y-axis indicates the implementation
scales perfectly. In the following discussion, we refer to UTS
legacy code by UTS and refer to UTS GLB code by UTS-G.

Figure 2 shows the performance comparison for UTS and
UTS-G on Power 775 up to 256 cores. UTS and UTS-G both
achieve linear speedup and their efficiencies stay at 1, which
means they both achieve perfect scaling.

Figure 3 shows the performance comparison for UTS and
UTS-G on Blue Gene/Q up to 16384 cores. UTS and UTS-G
both achieve linear speedup and perfect scaling.

Figure 4 shows the performance comparison for UTS
and UTS-G on Blue Gene/Q up to 8192 cores. UTS and

Figure 4. UTS/UTS-G Performance Comparison (on K)

UTS-G perform well up to 4096 cores (i.e., almost linear
speedup and efficiency stays above 0.9). When running on
more than 4096 cores, both UTS and UTS-G drop their
efficienies to 0.6. We are still investigating why there is a
sudden performance drop on K.

Summary UTS-G achieves near linear speedup and
perfect scaling on both Power 775 (up to 256 cores) and
Blue Gene/Q (up to 16384 cores). On all three architectures,
UTS-G achieves similar (or better) performance compared
to UTS, a highly tuned award-winning implementation.

3.2.2 BC
In this section, we compare the BC-GLB performance to the
BC legacy code. Two things to note are: (1) the legacy BC
code uses a very different synchronization scheme from the
legacy UTS code. In comparison, the GLB implementation
of UTS and BC share exactly the same synchronization
scheme (i.e., the underlying GLB library). This demonstrates
GLB is applicable to widely different types of problems. (2)
The legacy BC implementation randomizes which vertices
to compute on each place, which effectively reduces the
imbalance among places. As the number of places increases,
such imbalance decreases. When running on more than 1024
places, BC’s performance is only roughly 15% worse than
then optimal performance (i.e., the longest execution time
per place is only 15% more than the average finishing time
across all places). Therefore, it is difficult to improve the
performance because the room to improve is limited.

We demonstrate the UTS-GLB performance by showing
six figures, two per each architecture. On each architecture,
we first compare performance, then we compare the work-
load distribution among places. On each performance com-
parison figure, the x-axis represents the number of places;
the primary y-axis (i.e., the left y-axis) represents the num-
ber of edges traversed per second; the secondary y-axis (i.e.,
the right y-axis) represents its efficiency, which is calcu-
lated by number of edges traversed per second per place.
A straight line whose slope is 1 along the primary y-axis in-
dicates a linear speedup and a horizontal line along the sec-
ondary y-axis indicates the implementation scales perfectly.
To understand how effective GLB is at balancing the work-
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Figure 5. BC/BC-G Performance (on Power 775)
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Figure 6. BC/BC-G Workload Distribution (on Power 775)

Figure 7. BC/BC-G Performance (on Blue Gene/Q)

load compared to the legacy code, we also plot the workload
distribution graphs. On each workload distribution graph, we
bar-plot the sorted calculation time on each place and bundle
them together. The more even workload distribution graph
appears, the more balanced workload is. A rectangular visu-
alization indicates the perfect load-balancing. We also show
the mean and standard deviation of the workload distribution
on each figure. In the following discussion, we refer to BC
legacy code as BC and refer to BC-GLB code as BC-G.

Figure 5 shows the BC performance comparison on
Power 775. We can see that GLB implementation achieves
near linear speedup and near perfect scaling. Figure 6 shows
that BC-G is very effective at removing the imbalance
among workloads, it decreases the workload standard devi-
ation from 0.807 to 0.108. In fact, BC-G finishes in 27.69s,
which is less than the mean of BC computing time. This in-
dicates that BC-G achieves the near perfect load-balancing
on Power 755.

0 5000 10000 15000
0

10

20

30

40

50

60

70

 
Place (0 ..16383), max:66.0132

mean:57.0164 sd:4.0273

E
x
e
c
u
ti
o
n
 t

im
e
 p

e
r 

p
la

c
e
 (

s
)

BC

0 5000 10000 15000
0

10

20

30

40

50

60

70

 
Place (0 ..16383), max:57.0472

mean:54.2028 sd:1.1412

E
x
e
c
u
ti
o
n
 t

im
e
 p

e
r 

p
la

c
e
 (

s
)

BC−G

Figure 8. BC/BC-G Workload Distribution (on
Blue Gene/Q)

Figure 9. BC/BC-G Performance (on K)
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Figure 10. BC/BC-G Workload Distribution (on K)

Figure 7 shows the BC performance comparison on
Blue Gene/Q. We can see that GLB implementation achieves
near linear speedup and near perfect scaling. Figure 8 shows
the workload distribution of BC on Blue Gene/Q. BC-G
workload distribution is much more even than that of BC,
GLB reduces the workload standard deviation from 4.027
to 1.141. In fact, BC-G finishes calculation in 57.0586 sec-
onds, which is almost equal to the mean of BC computing
time accross all places (57.015s). This indicates that BC-G
achieves the near perfect load-balancing on Blue Gene/Q.

Figure 9 shows the BC performance comparison on K.
BC-G also achieves near linear speedup and near perfect
scaling (efficiency>0.95 up to 8192 places). Figure 10
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shows the workload distribution of BC on Blue Gene/Q.
As we can see, BC-G workload distribution is much more
even than that of BC on K. BC-G finishes calculation in
58.198729 seconds on 8192 places, which is within 1.5% of
the mean of BC computing time across all places (57.016s).
This indicates that BC-G also achieves the near perfect load-
balancing on K.

Summary BC-G constantly outperforms the BC imple-
mentation. On all three architectures, BC-G achieves the
near-optimal speedup, scalability and load-balancing.

4. Future work
We plan to do the following future work: (1) Investigate the
performance anomaly of UTS-G on K and BC-G on Power
755. (2) Provide yield points in the GLB library so that users
can minimize the changes to the existing sequential code
and improve the GLB program’s responsiveness to work
stealing requests. (3) Experiment with more benchmarks.
(4) Provide a mechanism to auto-tune GLB parameters (e.g.,
task granularity, size of random victims/lifeline buddies).

5. Related work
There is extensive prior work on dynamic load balancing
for shared-memory systems. The Cilk [9] system was the
first to provide efficient load balancing for a wide vari-
ety of irregular applications. Load balancing in Cilk appli-
cations is achieved by a scheduler that follows the depth-
first work, breadth-first steal principle [4]. Cilk’s schedul-
ing strategy, in which each worker maintains its own set
of tasks and steals from other workers when it has noth-
ing to do, is often referred to as work-stealing. Following
Cilk, many runtimes for shared memory task parallelism uti-
lize work-stealing schedulers. Of these, OpenMP 3.0 [19],
Intel’s Threading Building Blocks (TBB) [21], Java Fork-
Join [15], Microsoft’s Parallel Patterns Library (PPL), and
Task Parallel Library (TPL) are the most popular. utilized
work-stealing schedulers including X10’s breadth-first [6]
and compiler-supported [28] and Guo et al.’s [11] hybrid
model for work stealing.

The techniques for dynamic load balancing in shared-
memory environments are not directly applicable to distributed-
memory machines because of a variety of issues such as net-
work latency and bandwidth, and termination detection. Var-
ious bodies of work have addressed the problem of dynamic
load balancing on distributed-memory machines. Grama et
al. [10, 13] discuss various load balancing strategies for dis-
tributed parallel searches that are independent of the specific
search technique. Blumofe et al. [5] adapt the Cilk work-
stealing model to distributed shared memory by limiting the
scope of the programs to be purely functional. ATLAS [2]
and Satin [29] both use hierarchical work-steal to acheive
global load balancing. Charm++ [12, 26] monitors the ex-
ecution of its distributed programs for load imbalance and
migrates computation objects to low-load places to correct

the load imbalance. Global load balancing for message pass-
ing environments has been researched for specific problems
by Batoukov and Sorevik [3].

UTS, an excellent example of an irregular application,
was first described by Prins et al. [20]. It has since been
widely used as a benchmark for dynamic load balancing.
Olivier and Prins [18] provided the first scalable implemen-
tation of UTS on clusters that provided up to 80% effi-
ciency on 1024 nodes. To this end, they employed a cus-
tom application-level load balancer along with optimiza-
tions such as one-sided communications and novel termina-
tion detection techniques. Dinan et al. [8] provide a frame-
work for global load balancing, which was used to achieve
speedups on UTS on 8196 processors. Global load balancing
and termination detection facilities were provided to express
irregular applications. By reserving one core per compute
node on the cluster exclusively for lock and unlock oper-
ations, this framework allowed threads to steal work asyn-
chronously without disrupting the victim threads. However,
the cost paid was a static allocation (one core out of every
eight) for communication. This results in lower throughput
because the thread is not available for user-level computa-
tions. Saraswat et al. [25] introduced lifeline-based global
load balancing and showed 87% efficiency on 2048 nodes.
Later work by the X10 team demonstrated 98% parallel ef-
ficiency with 55,680 Power7 cores [27]. An implementation
of the life-line algorithm in Co-Array Fortran achieved 58%
efficiency at 8192 nodes [16]. A more recent UTS code us-
ing CAF 2.0 finish construct achieves a 74% parallel effi-
ciency on 32,768 Jaguar cores [30].
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1 public class FibG(n:Long) {

2 class FibTQ implements TaskQueue{

3 val bag = new ArrayListTaskBag[Long ]();

4 var result:Long =0;

5 public def getTaskBag ()=bag;

6 public def getResult ()= result;

7 public def init(n:Long) {

8 bag.bag(). add(n);

9 }

10 public def process(var n:Long): Boolean {

11 val b = bag.bag();

12 for (var i:Long =0; bag.size() > 0 && i < n; i++) {

13 val x = b.removeLast (); // constant time

14 if (x < 2) result += x;

15 else {

16 b.add(x-1); // constant time

17 b.add(x-2);

18 }

19 }

20 return b.size ()>0;

21 }

22 public def merge(var _tb:glb.TaskBag ):void {

23 this.bag.merge(_tb as ArrayListTaskBag[Long ]);

24 }

25 public def split ():glb.TaskBag {

26 return this.bag.split ();

27 }

28 public def reduce (): void {

29 result= Team.WORLD.allreduce(result ,Team.ADD);

30 }

31 }

32 public def run(): Long {

33 val init = ()=>{ return new FibTQ (); };

34 val glb = new GLB[FibTQ ](init , GLBParameters.Default , true);

35 val start = ()=>{ (glb.taskQueue ()). init(n); };

36 glb.run(start);

37 PlaceGroup.WORLD.broadcastFlat (()=>{

38 (glb.taskQueue ()). reduce ();

39 });

40 return glb.taskQueue (). result;

41 }

42 public static def main(args:Rail[String ]) {

43 val N = args.size < 1 ? 10 : Long.parseLong(args (0));

44 val result = new FibG(N).run();

45 Console.OUT.println ("fib -glb(" + N + ")" + result );

46
47 }

48 }

Figure 11. GLB-Fibonacci example

Appendices
We demonstrate how to use GLB via a Fibonacci example.
We show the complete code in Figure 11. Specifically, We
apply GLB to Fibonacci(n) in the following way:

1. TaskBag We use the default GLB Arraylist-based Taskbag,
as shown at line 3. A task is an integer i whose Fibonacci
number should be computed. One can split/merge the
TaskBag by calling the merge and split methods in the
default TaskBag, as shown in Line22 – Line 27.

2. TaskQueue Each TaskQueue keeps a result of Long type,
as shown at line 4. To process each task item i, we
first judge if it is less than 2, if so, add i to result;
if not, remove i from the TaskBag and add i − 1 and
i− 2 to the TaskBag. When its TaskBag becomes empty,
TaskQueue’s result is the Fibonacci number of n. The
process method is shown in line 10 – line 21. The
reduce function is a simple add function, as shown in line
28 – line 30.

3. Invoke GLB Since it is difficult to statically schedule
tasks among places for the Fibonacci problem, users
can invoke GLB by calling the run method with an
initialize method to use at the root place, as shown
in line 35 and line 36. Were it easy to statically load bal-
ance, users could call the run method without providing
the initialization method.

Note that only these three pieces of code are required
from the users and users are oblivious to any synchronization
mechanism in X10.
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