
POSTER: STAR (Space-Time Adaptive and Reductive)
Algorithms for Real-World Space-Time Optimality

Yuan Tang ∗, Ronghui You
School of Computer Science, School of Software, Fudan University

Shanghai Key Lab. of Intelligent Information Processing
State Key Lab. of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences

P. R. China
[yuantang, 15210240027]@fudan.edu.cn

Abstract
It’s important to hit a space-time balance for a real-world
algorithm to achieve high performance on modern shared-
memory multi-core or many-core systems. However, a large
class of dynamic programs with more than O(1) dependency
achieve optimality either in space or time, but not both. In the
literature, the problem is known as the fundamental space-
time tradeoff. By exploiting properly on the runtime system,
we show that our STAR (Space-Time Adaptive and Reduc-
tive) technique can help these dynamic programs to achieve
sublinear parallel time bounds while still maintaining work-
, space-, and cache-optimality in a processor- and cache-
oblivious fashion.

Keywords space-time balance, cache-oblivious algorithm,
dynamic program, shared-memory multicore system

1. Introduction
It’s important to hit a space-time balance for a real-world
algorithm to achieve high performance on modern shared-
memory multi-core or many-core systems. However, a large
class of DP (Dynamic Programming) algorithms with more
than O(1) dependency, including the general MM (matrix
multiplication), Strassen-like fast MM, LWS, GAP, and
Parenthesis [2], achieve optimality either in space or time,
but not both.

Let’s take the general MM on a closed semiring as an
example. The general MM not only is itself a dynamic pro-
gramming algorithm with O(n) dependency since the full
update of each cell of the output matrix requires O(n) reads

∗ This work is supported in part by the Open Funding of State Key Labora-
tory of Computer Architecture, ICT, CAS (No. CARCH201606)

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

PPoPP ’17 February 04-08, 2017, Austin, TX, USA

c© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4493-7/17/02. . . $15.00

DOI: http://dx.doi.org/10.1145/3018743.3019029

and computation from the two input matrices, but also serves
as a basic building block for more complicated DP algo-
rithms such as LWS, GAP, and Parenthesis to achieve sub-
linear parallel time bounds (or time bounds for short) [2]
1. The general MM can be computed in a recursive divide-
and-conquer fashion as follows. At each level of recursion,
the computation of an MM of dimension n (i.e. n-by-n) is
divided into four equally sized quadrants, which require up-
dates from eight sub-MMs of dimension n/2 as shown in the
Equation (1). Depending on the availability of extra space,[
C00 C01
C10 C11

]
=

[
A00 A01
A10 A11

]
⊗
[

B00 B01
B10 B11

]
=

[
A00⊗B00 A00⊗B01
A10⊗B00 A10⊗B01

]
⊕
[

A01⊗B10 A01⊗B11
A11⊗B10 A11⊗B11

]
(1)

the computation of the eight sub-MMs can be scheduled to
run either completely in parallel (Figure 1a) or in two paral-
lel steps (Figure 1b).

We can calculate the time and space bounds of the two
algorithms by recurrences and see that the MM-n3-SPACE al-
gorithm (Figure 1a) has an optimal time bound of O(logn) if
counting only the data dependency and a poor space bound
of O(n3); By contrast, the MM-n2-SPACE algorithm (Fig-
ure 1b) has a an optimal space bound of O(n2), but a sub-
optimal time bound of O(n). In the literature, it is known as
the fundamental space-time tradeoff. A real-world MM al-
gorithm usually employs some tuning technique (e.g. 2.5D
MM algorithm) to go somewhere in the middle ground of the
two extremes. However, one interesting research question is
if it is possible to achieve a sublinear time bound while still

1 This paper uses the notion “time bound” to stand for the running time of
a parallel algorithm on infinite number of processors, or equivalently the
critical path length of the computation DAG, and uses the notion “work” to
stand for the running time of the same algorithm on a single processor, or
equivalently the total number of vertices of the computation DAG.

455

MM-n3-SPACE(C, A, B)

1 // C ← A×B
2 if (C is small enough)
3 BASE-KERNEL(C, A, B)
4 return
5 D ← alloc(sizeof(C))
6 // Run all 8 sub-MMs concurrently
7 MM-n3-SPACE(C00,A00,B00) ‖MM-n3-SPACE(C01,A00,B01)

8 ‖MM-n3-SPACE(C10,A10,B00) ‖MM-n3-SPACE(C11,A10,B01)

9 ‖MM-n3-SPACE(D00,A01,B10) ‖MM-n3-SPACE(D01,A01,B11)
10 ‖MM-n3-SPACE(D10,A11,B10) ‖MM-n3-SPACE(D11,A11,B11)
11 ; // sync
12 // Merge matrices C and D into C by addition
13 MADD(C, D)
14 free (D)
15 return

(a) The O(n3) space recursive MM algorithm

MM-n2-SPACE(C, A, B)

1 // C ← A×B
2 if (C is small enough)
3 BASE-KERNEL(C, A, B)
4 return
5 // Run the first 4 sub-MMs concurrently
6 MM-n2-SPACE(C00,A00,B00) ‖MM-n2-SPACE(C01,A00,B01)

7 ‖MM-n2-SPACE(C10,A10,B00) ‖MM-n2-SPACE(C11,A10,B01)
8 ; // sync
9 // Run the next 4 sub-MMs concurrently

10 ‖MM-n2-SPACE(C00,A01,B10) ‖MM-n2-SPACE(C01,A01,B11)

11 ‖MM-n2-SPACE(C10,A11,B10) ‖MM-n2-SPACE(C11,A11,B11)
12 ; // sync
13 return

(b) The O(n2) space recursive MM algorithm
Figure 1: Recursive Divide-And-Conquer MM algorithms. “‖” (Parallel) and “;” (Serial) are symbols for the linguistic
constructs of the ND (Nested Dataflow) parallel programming model [1].

bounding the total space requirement to be asymptotically
optimal.

We care about an algorithm’s space bound not only be-
cause the operating system will disable a computation from
executing if it exceeds the space quota, but also because
it’s a good indicator of cache bound, an even more impor-
tant factor than the computational bound in deciding an al-
gorithm’s real performance on any modern computing sys-
tem with hierarchical caches. By a similar recurrences anal-
ysis, we can see that the MM-n3-SPACE algorithm has a
sub-optimal O(n3/B) cache miss bound 2, in contrast to
the optimal O(n3/(B

√
M)) bound of the MM-n2-SPACE al-

gorithm. These cache bounds match proportionally to their
space bounds. But we have to remind the audience that an
algorithm can repeatedly allocate and free space throughout
its computation to bound the total space to be some optimal
number. This strategy will inevitably incur a lot of cold cache
misses. In other words, a good space bound does not neces-
sary imply a good cache bound. Thus, we have to calculate
both bounds.
Contributions
• We propose the property of “remote-blocking”. If a run-

time system stands by the property, we show that our
STAR (Space-Time Adaptive and Reductive) technique
can bound the total space requirement of a large class
of DP algorithms with more than O(1) dependency to
be asymptotically optimal while still being work-optimal
and having a sub-linear time bound.
• We propose a parallel stack-like memory management

system for large chunks of space in a multi-threaded
setting. By the system, our STAR technique can bound

2 This paper calculates only the serial cache miss bound under the ideal
cache model since the parallel cache complexity is determined in large by
the runtime scheduler.

the cache misses to be asymptotically optimal as well in
a processor- and cache-oblivious fashion.
Though our STAR technique has the processor count “P”
in the algorithm design, we use this parameter only to
bound the total space requirement and cache misses. Our
algorithms do not partition “statically” according to the
parameter, thus still have the full benefits of “scalable
to any number of processors without changing a single
line of the algorithm” , “dynamic multi-threading” and
“dynamic load-balance” as any processor- and cache-
oblivious algorithm.
• By combining the STAR and the cache-oblivious wave-

front technique [3], or the ND (nested dataflow) in
general, we solve one open problem raised in Galil
and Park’s paper [2]. More precisely, we have a better
GAP algorithm with an optimal O(n3) work, a sublinear
O(P1/2n3/4 logn) time bound conditional on that the pro-
cessor count P = o(n1/2/ log2 n), an optimal O(n2) space
and optimal O(n3/(B

√
M)) cache bound.

References
[1] D. Dinh, H. V. Simhadri, and Y. Tang. Extending the nested

parallel model to the nested dataflow model with provably
efficient schedulers. In SPAA’16, Pacific Grove, CA, USA, 11
– 13 2016.

[2] Z. Galil and K. Park. Parallel algorithms for dynamic program-
ming recurrences with more than O(1) dependency. Journal of
Parallel and Distributed Computing, 21:213–222, 1994.

[3] Y. Tang, R. You, H. Kan, J. J. Tithi, P. Ganapathi, and R. A.
Chowdhury. Cache-oblivious wavefront: Improving paral-
lelism of recursive dynamic programming algorithms without
losing cache-efficiency. In PPoPP’15, San Francisco, CA,
USA, Feb.7 – 11 2015.

456

