
libEOMP: A Portable OpenMP Runtime Library Based on
MCA APIs for Embedded Systems

Cheng Wang*, Sunita Chandrasekaran*, Barbara Chapman*and Jim Holt†
*Dept. of Computer Science, University of Houston, Houston, TX, 77004, USA

†Freescale Semiconductor Inc., Austin, TX, 78735, USA
{cwang35, sunita, chapman}@cs.uh.edu, rwbl70@freescale.com

ABSTRACT
In recent years rapid revolution of Multiprocessor System-
on-Chip (MPSoC) poses new challenges for programming
such architectures in an efficient manner. In order to ex-
plore potential hardware concurrency, software developers
are still expected to handle many of the low-level details of
programming including utilizing DMA, ensuring cache co-
herency, and inserting synchronization primitives explicitly.
Software portability is yet another issue: the state-of-the-art
is that hardware vendors supply vendor-specific software de-
velopment toolchains which makes it harder for applications
to be ported to many different possible architectures with-
out re-structuring the code, while at the same time ensuring
efficiency.

In this paper, we extend the usage of a high-level program-
ming model, OpenMP, to multicore embedded systems. To
address the architectural challenges, we propose a lightweight
unified OpenMP runtime library, libEOMP, by leveraging
the MCA (Multicore Association) APIs as the target of our
OpenMP translation. MCA APIs support device-level com-
munication and resource management for multicore embed-
ded systems. We have implemented and evaluated libEOMP
on an embedded platform supplied by Freescale Semiconduc-
tor. We observed that libEOMP not only performed as well
as optimized vendor-specific OpenMP runtime libraries but
also achieved better portability, programmability and pro-
ductivity.

Categories and Subject Descriptors
D.3 [Programming Languages]: Processors—Run-time
Environments

General Terms
Languages, Performance, Standardization

Keywords
OpenMP, MCA, Runtime, Embedded System

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PMAM’2013 February 23, 2013, Shenzhen [Guangdong, China]
Copyright 2013 ACM 978-1-4503-1908-9/13/02 ...$15.00.

1. INTRODUCTION
Multicore embedded systems are widely used in telecom-

munication systems, robotics, automotive vision systems,
medical applications, life critical systems and more. Today,
they usually consist of homogeneous/heterogeneous cores
operating on different ISAs, operating systems and dedi-
cated memory systems in order to provide high throughput,
low latency and energy-efficient solutions. Although multi-
core embedded systems provide lots of potential, the lack
of multicore software development tools and standards has
created a barrier to their full adoption. Programmers are
required to write low-level code, schedule work units and
manage synchronization between cores if they are to reap
significant benefits from these systems. As the system com-
plexity increases, it is not possible to expect programmers to
handle all the low-level details in order to exploit the plat-
form’s concurrency. Handling these manually is not only
time consuming, but an error-prone and laborious a task to
perform.

Even worse, software portability is almost non-existent.
The state of the art is that hardware vendors supply vendor-
specific development toolchains that are tied to the details
of the device they were originally designed for; this may pre-
clude use of the software on any future device even from the
same family. Some of the existing approaches that address
this issue include defining language extensions or using par-
allel programming libraries, but there were no well-accepted
joint standards that have been adopted in the embedded
systems domain.

To address this issue, a group of vendors and software
companies formed the Multicore Association (MCA) [3]. The
main aim of this association is to reduce the complexity in-
volved in writing software for multicore chips. It has put
together a cohesive set of APIs to standardize communi-
cation (MCAPI), resource management (MRAPI), and vir-
tualization spanning cores on different chips. The associa-
tion also has an active working group to provide a tasking
API (MTAPI). We have been active members in the working
group contributing towards the design of MTAPI specifica-
tion. Since MCA APIs are vendor-independent application-
layer specifications, they do not require architectural or OS
support, hence they enable system developers to write porta-
ble program codes that will scale through different architec-
tures. Today several vendors from embedded domain have
supported the MCA APIs [5].

The MCA APIs could be used to provide a uniform ab-
straction of the low-level complexities of an embedded plat-
form to the programmer. However, they offer a low-level

83

library-based protocol that would make programming still
tedious. Programmers still found it challenging to explore
the potential capabilities of the MCA APIs. Moreover they
do not help programmers to explore fine-grained data par-
allelism in embedded applications. In order to improve pro-
grammer’s productivity, we also need a high-level program-
ming model that could express the concurrency in a given
algorithm easily, and leverage the burden of exploring the
low-level details from the programmer to compilers. This
can be accomplished by using OpenMP [8], a high-level pro-
gramming model with a simple interface that is an attractive
choice for programmers and developers. OpenMP consists of
a collection of directives, library routines and environment
variables that may be used in conjunction with C, C++ or
Fortran to express a shared memory parallel computation.

However, mapping the existing OpenMP implementation
techniques to embedded systems is still non-trivial and some
obstacles exist. Typically an OpenMP compiler translates
an OpenMP directive into multithreaded code containing
function calls to a customized runtime library. The runtime
library manages the parallel execution on the multicore sys-
tem, and includes functions for thread creation and manage-
ment, work scheduling, and synchronization. To meet its
responsibilities, the current runtime implementations usu-
ally depend on other system components such as the SMP
GNU/Linux and thread libraries. Embedded system, how-
ever, may lack some of such features.

For instance, although the POSIX threads have been sup-
ported by some cache-coherent SMP-based platforms, it re-
quires a SMP GNU/Linux underneath. In addtion, a large
number of embedded systems still do not provide such an
OS and library support, including the platforms [9] and [22].
In some cases embedded applications are running on bare-
metal processors, where OSes and thread libraries do not
even exist. Such thread libraries are moreover incapable
of capturing all characteristics of embedded systems, such
as heterogenous cores and separate address space. These
severely obstruct developing the OpenMP on embedded sys-
tems.

Consequently, an efficient OpenMP runtime library for
multicore embedded systems is highly required. In this pa-
per, we propose a new portable OpenMP runtime library
for multicore embedded systems, libEOMP, where the ’E’
stands for Embedded. It exploits the capabilities of the
MCA APIs to fill the gap between the existing runtime im-
plementations for general-purpose architecture and the new
challenges for multicore embedded systems, to support an
implementation of the de facto shared memory program-
ming standard OpenMP. Our effort includes selecting ap-
propriate characteristics of the MCA APIs, determining the
translation strategy as well as delivering the overall runtime
design and implementation for high-performance mapping.
Figure 1 gives an overview of our Embedded OpenMP solu-
tion stack. We evaluated libEOMP on a Freescale embed-
ded platform. Results from embedded benchmarks showed
that libEOMP not only performs as well as vendor-specific
approaches but also promises portability, programmability
and productivity.

The rest of the paper is organized as follows. In Section 2,
we discuss the state of the art in programming multicore em-
bedded systems. In Section 3 we briefly discuss the MCA
APIs and how they can be used to implement OpenMP. We
explain in detail the design and implementation strategies of

OpenMP Applications

Operating System (or Virtualization)

MRAPI

OpenMP Runtime Library

Directives Environment
Variables

Runtime Library
Routines

MTAPIMCAPI

Multicore Embedded System

Application
Layer

OpenMP
Programming

Layer

MCA APIs
Layer

System
Layer

Hardware
Layer

Figure 1: Overview of the Embedded OpenMP solu-
tion stack.

our novel approach in Section 4 and 5. Results of our eval-
uation are given in Section 6 and, finally, section 7 presents
the conclusions and future work.

2. RELATED WORK
In this section, we discuss the primary programming tech-

niques for multicore embedded systems, which can be cate-
gorized as either language extensions, parallel programming
libraries or pragma-based approaches.

Language extensions: Assembly and C languages are
the most common ones supported by embedded systems ven-
dors. Assembly languages are difficult to use and they are
machine-dependent. In embedded market, compilers are not
100% ANSI C compliant. There are two reasons. Primar-
ily, some of the C features are difficult to implement on
embedded processors. Secondly, in some cases vendors may
require to extend C language because of the need to support
special features on the chip. However, the major drawback
of these vendor-specific SDKs is the workload of managing
the limited on-chip resources is shifted from hardware to
the programmer. Hence they find it difficult to learn and is
challenging to exploit the underlying platform. Moreover,
the code once written using the extended C language, may
not be reused for other platforms, while at the same time,
guarantee the performance.

Some language extension-based approaches try to abstract
the low-level details of the platform from the programmer.
SoC-C [24] enables programmers to manage distributed mem-
ory and express pipeline parallelism. However SoC-C does
not help explore fine-grained data parallelism which is com-
monly available in embedded applications. Another effort is
Offload [13] which provides extensions to C++, that offloads
the code to Cell BE processor. However, this approach is
unable to be ported to other platforms other than the Cell.
OpenCL [7] is a language-based parallel programming on
heterogeneous systems from multicore CPUs to accelerators,
and Objective-C [6] is the primary language for developing
the iPhone applications. Other embedded systems such as
FPGAs can also be programmed using similar language ex-
tension based approaches such as ImpulseC [23].

However, the issue of these language-extensions is that
these approaches require programmers to explicitly paral-
lelize the codes and handle concurrency, scheduling and syn-
chronization, which is less productive, error-prone and time
consuming. It is hard to achieve high performance since the

84

programmers have to manually tune the applications and
exploit the hardware complexities.

Parallel programming libraries: A parallel program-
ming library which defines a set of APIs is usually comes
with a compiler toolchain. This approach abstracts the
hardware complexities from programmers and provides coar-
se-grained data parallelism to some extent. These APIs in-
clude MPI and POSIX threads. However, these approaches
(e.g. MPI) are either too heavyweight for embedded sys-
tems or insufficient for capturing the special characteristics
of multicore embedded systems (e.g. the ability of program-
mers to specify the attribute of memory, such as on-chip
SRAM or off-chip DDR). Moreover, these libraries usually
rely on specific architecture or OS, which creates portabil-
ity issues. For instance, the IBM Data Communication and
Synchronization (DaCS) [1] library provides a set of data
movement primitives that help programmers take advan-
tage of the Cell processor’s DMA engines, however it is not
portable to other platforms other than the Cell architec-
ture. The MCA APIs, on the other hand, are especially
designed for addressing the portability issues for developing
multicore embedded applications. MCA offers a set of APIs
including MRAPI, MCAPI and MTAPI which capture the
general features of embedded systems such as heterogeneity
and distinct memory address space. Since they are platform-
independent standards, they enable the programmer to write
portable programs that will scale through different architec-
tures.

Pragma-based approaches: These approaches are high-
level, straightforward and easy to use. It allows the compiler
and runtime system to exploit the hardware complexities
thus abstracting these details from the programmer. Hence
the performance of applications is highly dependent on ef-
ficient compiler and runtime implementations. Compared
with language extension and library-based approaches, prag-
ma-based approach requires only minimal modification to be
performed to parallelize a given code. This drastically re-
duces the time taken by the programmers.

There are also many efforts to implement the OpenMP on
some architectures other than general-purpose CPUs, which
includes multicore DSP [17], Cell [22], and GPGPU [19]. Ini-
tial experiences of adapting OpenMP for high performance
embedded systems is discussed in [12], in which OpenMP
was implemented on TI’s multicore MPSoC platform by
performing a source-to-source translation with the OpenUH
compiler [20]. TI’s experience on the TMSC6678 multicore
DSP platform was also reported in [17]. The Omni OpenMP
compiler [25] also adopted a source-to-source approach and
implemented on three embedded SMP architectures in [15].
However, none of these solutions can be ported to platforms
beyond the initial design. libEOMP is a portable solution
that will solve the issue.

In order to meet some of the particular characteristics of
multicore embedded systems, certain OpenMP extensions
were discussed in [16] and [11]. OpenMDSP [16] proposed a
extension of OpenMP designed for multicore DSPs. Three
classes of directives were proposed: data placement, dis-
tributed array and stream access directives. The main goal
of these extensions was to fill the gap between the OpenMP
memory model and the memory hierarchy of multicore DSPs.
Cao et al. [11] proposed an extension for OpenMP tasks on
the Cell BE. However, the major drawback of this extension
is that it has not been standardized. This implies that the

extensions are tied to specific compilers in which they are
implemented. Compared to this approach, libEOMP resides
on the runtime layer thus is transparent to programmers and
does not require to learn any new extensions but just to in-
sert normal OpenMP directives to parallelize the code as
usual. The underlying details will be handled by the com-
piler and runtime implementations.

To summarize, we see that there are various approaches
to programming multicore systems, but most of them either
involve significant manual intervention to explore parallelism
or provide solutions that are heavily customized for a specific
device. So if the program needs to be ported to another
device, the code needs to be rewritten significantly. As a
result, programmers are not focusing on the parallel solution
of a problem but instead are busy dealing with hardware
details of the platform. It is a challenge to resolve these
difficulties and still be able to meet stringent time-to-market
requirements which are an important factors in the world of
embedded systems. An ideal solution is to provide standard
APIs for multicore applications to industries. These APIs
need to be fast, lightweight, scalable and portable across
multiple target platforms and OSes.

3. BACKGROUND
In this section we provide some background details of

the MCA APIs in particular the resource management API
(MRAPI) we employed in this paper. The MRAPI provides
essential capabilities required to manage shared resources in
embedded systems, including heterogeneous/homogeneous
cores on-chips, hardware accelerators and memory regions.
The key features of MRAPI include [4]:

Domain and Nodes: A MCA domain is a unique sys-
tem global entity that may contain one or more MCA nodes,
which can be a process, thread, processor or hardware ac-
celerator. The definition of domain and nodes is essential
because it has to be portable to any generic multicore em-
bedded systems and abstract the physical entities, for which
that the concept of threads may not exist at all.

Synchronization Primitives: MRAPI synchronization
primitives inherit the essential feature sets as other thread
libraries for programming multicore platforms, including mu-

texes, semaphore and reader/writer locks. But rather
than coupling with architecture-dependent components, the
MRAPI synchronization primitives provide richer function-
alities to fulfill the characteristics for embedded systems.
For example, embedded memory hierarchy is usually much
more complicated, which usually consists of on-chip scratch-
pad memory and off-chip DDR memory. It may also include
the dedicated private memory as well. A mutex attribute is
therefore necessary to set the effective scope that the mutex
can be shared, for which is impossible for POSIX threads.

Memory Primitives: MRAPI supports two different
notions of memory, shared memory and remote memory. Sh-
ared memory provides the ability to create and access phys-
ically coherent shared memory like POSIX shared memory,
but the remote memory primitives provides the feature based
on the observations that modern heterogeneous embedded
systems often contain multiple memory spaces which are
dedicated to each core. These memories usually maintain a
distinct address space that cannot be accessible from other
threads. Thus the remote memory primitives aim to manage
data movement between these memory spaces but be trans-
parent to end users via the approaches without involving

85

the CPU cycles, such as DMA, Serial RapidIO (SRIO), or
software cache.

Metadata Primitives: Aims to obtain the information
regarding hardware and application execution statistics whi-
ch may be used in upper-layer service such as debugging and
profiling.

We see that OpenMP and MRAPI share common map-
ping relationships. The concept of nodes naturally maps to
OpenMP threads and tasks. We adopt the MRAPI synchro-
nization primitives to implement the OpenMP synchroniza-
tion directives, such as barrier and critical. We utilize
the MRAPI shared memory to manage shared resources in
order to fulfill the OpenMP memory model, which provides
a relaxed-consistency, shared-memory model [8]. Several op-
timization techniques especially for embedded systems, how-
ever, are still essential which will be discussed in detail in
Section 4.

4. RUNTIME DESIGN AND KEY OPTIMI-
ZATIONS

In this section, we focus on the runtime system and present
the overall design for the mapping to embedded systems. Al-
though the work division between an OpenMP compiler and
an runtime library is implementation-defined, the essential
function sets of an runtime include creating and scheduling
threads, managing shared memory and implementing syn-
chronization primitives. The scope of this paper is not to
present the optimal strategies for each of the functions, in-
stead, we inherit some of the algorithms from the OpenUH
compiler but rethink how to explore the capabilities of MRA-
PI to map these techniques onto embedded systems. Several
optimization strategies, however, are still needed to be con-
sidered. Our main objective is to make our runtime portable,
i.e., it will not depend on any dedicated hardware or OS. In
addition, we also need to ensure that the additional MCA
layer does not incur any significant performance penalty. In
the following subsections, we will discuss in detail the design
and optimization strategies of each of the OpenMP function-
alities.

4.1 Memory Model
The OpenMP API specifies a relaxed-consistency, shared

memory model [8]. That means all threads access the same,
global shared memory, but can have their own temporary
view of private data, and it is the programmer’s responsi-
bility to protect global shared data. Therefore, one of the
essential jobs of libEOMP runtime is to create and manage
the shared memory. It is straight-forward to fulfill this re-
quirement in general-purpose multicore, shared-memory ar-
chitectures, because the functionality provided by OpenMP
is restricted to the scope of a single OS image and there
exists a physical shared memory that can be addressed by
all threads. However the challenge with embedded system
is that OpenMP threads may not have directly accessible
memory or may run on loosely coupled cores with different
ISAs or operating systems. Therefore, the memory alloca-
tion method such as malloc() is unable to handle the new
challenge. As discussed in Section 3, libEOMP utilizes the
MRAPI shared memory primitives to create a segment of
shared memory, which also defines a list of nodes that can
access that memory. For the variables which are private to
each thread(e.g. private, firstprivate, and threadprivate),

Offset = 0
Size = 100

Flag = empty

Offset = 0
Size = 10
Flag = full

Offset = 0
Size = 10
Flag = full

Offset = 0
Size = 10
Flag = full

Offset = 10
Size = 5

Flag = empty

Offset = 10
Size = 90

Flag = empty

Offset =10
Size = 5

Flag = full

Offset = 15
Size = 85

Flag = empty

Offset = 15
Size = 85

Flag = empty

(a)

(b)

(c)

(d)

Figure 2: An example of our OpenMP runtime
shared memory usage.

we use the MRAPI remote memory to hold these data. The
data transfers between the remote memory as well as the
shared memory are handled by DMA which is implicitly im-
plemented by the MRAPI library.

Furthermore, a linked list is used to manage the alloca-
tion and deallocation of shared memory. Each node of the
linked list represents a distinct allocation segment in the
MRAPI shared memory and contains the offset of the start-
ing address of the MRAPI shared memory, the size of the
allocated memory, and a flag to indicate whether the slot is
empty (not used) or full (used). Figure 2 shows an example
of how the linked list is maintained during the allocation and
deallocation of MRAPI shared memory. In Figure 2(a), the
runtime creates 100 bytes of MRAPI shared memory during
initialization. In Figure 2(b), two new nodes with a full flag
are inserted into the linked list to request two distinct mem-
ory allocations. The node with an empty flag represents the
unrequested shared memory. In Figure 2(c), a reclaim of
memory with offset address 5 sets the node flag to empty.
We also merge neighboring nodes with empty flags as shown
in Figure 2(d).

In practice, once a segment of OpenMP memory is allo-
cated, it will not be reclaimed until the end of the program.
Thus the latter two cases in Figure 2(c) and (d) will rarely
occur. As a result, some other memory management ap-
proaches(e.g. buddy allocator) which are widely used in
operating systems are sub-optimal here, as it will have too
much overhead in managing memory allocation and deallo-
cation, thus creating too many internal/external fragmen-
tation in memory. The linked list, on the other hand, will
not waste memory which is restricted in embedded systems.
We are also considering other alternative memory manage-
ment strategies. However, just as discussed before, the scope
of this paper is to not obtain an optimal approach, but to
validate that many existing techniques can be mapped to
embedded systems via the MCA APIs.

We use offset addresses instead of absolute address be-
cause the prototype MRAPI shared memory is implemented
using the inter-process communication (IPC) shared mem-
ory library. Consequently, it is possible that each node may
attach the shared memory segment to a different area of its
respective address space, which is common for heterogeneous
embedded systems. By returning the offset address instead
of the absolute address of the MRAPI shared memory, we
can maintain addressing consistency between nodes.

86

4.2 Thread Creation and Management
The OpenMP API uses the fork-join model of parallel

execution [8]. An OpenMP program begins with a single
sequential thread of execution, which is termed as master
thread. When the parallel construct is encountered, a
team of worker threads will be created, and the program
block enclosed in the parallel region will be executed concur-
rently among the worker threads. At the end of the parallel
region, all the worker threads will wait for each other until
all the threads have finished execution, after which the mas-
ter thread will continue execution of the code. Therefore,
one of the important roles of the OpenMP runtime library
is to create and manage the underlying threads.

An OpenMP compiler will usually translate an OpenMP
directive into corresponding runtime library function calls.
One major technique is called outlining: an independent
function will be created by the compiler that encapsulates
the task within that directive region, this is adopted by
most of the open source compilers like OpenUH [20] and
Omni [25]. For instance, the parallel will be translated into
the runtime library function call, say ompc fork(), which
will pass the parameters like how many threads are created,
what are the assigned tasks and the pointer that maps the
tasks to the thread.

Several traditional OpenMP runtime implementations for
general-purpose high-performance computing domain usu-
ally utilize POSIX threads or other thread libraries to cre-
ate and manage the OpenMP threads. However, there are
several obstructions that prevent us to adopt this approach
for embedded systems, and we have discussed it before.

We used the MRAPI nodes and its corresponding primi-
tives to create and manage the OpenMP threads. The major
difference between MRAPI nodes and OpenMP threads is
that MCA nodes offer high-level semantics over threads, thus
hiding the real entities underneath from the programmer.
More importantly, in traditional OpenMP implementations,
all threads in a team must be identical. However, it may not
be the truth for embedded systems where threads running
on different cores can be heterogeneous as well. Therefore,
the MRAPI nodes relax this condition that allow each node
to have its own attributes with particular data structures.
MCA nodes may also create multiple OpenMP threads in-
side the nodes to support nested parallelism as well.

4.2.1 Optimizing Thread Creation
Although the idea of thread creation and management is

straightforward, there are still several issues that must be re-
solved to achieve the potential benefits of our approach. One
question is: when to create and destroy the worker threads?
If they are created and destroyed each time the parallel

region is encountered, there is obviously a cause for a poten-
tial overhead. Another potential issue is, if we allow threads
to be created concurrently in each parallel region, without
setting an upper bound to the number of threads that can
be created, there is a possibility that unlimited number of
threads could be created. For instance, although number of
threads in a team is fixed, if the nested parallelism is sup-
ported, there could still be many sub-teams requesting for
unlimited number of threads recursively that will exhaust
the limited system resources available in embedded systems
especially like CPU cycles and memory. A solution is to cre-
ate a thread pool to limit the maximum number of threads
being created concurrently.

In a thread pool, a team of worker threads is created
only once during the libEOMP runtime initialization. These
threads go back to sleep until a parallel region is encoun-
tered and a task is assigned. Once the threads finish their
work, they will return to the pool and wait until a new task
is assigned to them. If the pool has no available threads, the
tasks have to wait to be assigned until a new thread is made
available. As a result, the worker threads are created only
once and are reused during the entire program execution
time, minimizing thread creation overhead.

Although the concept of pool has been existing for some
time, there are several issues must be resolved before we
adopt this technique to embedded systems. Typically, the
number of threads in the pool are pre-defined and it is usu-
ally much larger than the total number of CPUs on the
platform. However, it consumes too many resources (e.g.
memory, CPU cycles) that are not abundant in embedded
systems. One possible solution is to defer creating threads
pool until the programmer specifies the number of threads
in a team. However, that information may be determined
until runtime thus it is too late to create the thread pool.
Furthermore, this approach is also unable to support the
changing of team size at runtime. Therefore, we adopt an-
other alternative approach that primarily obtains the num-
ber of CPUs that are available on the platform, by using the
MRAPI metadata primitives, and only generates the num-
ber of threads that is equal to the number of CPUs. Thread
over-subscription is not allowed. If the size of the worker
team requested by the programmer is less than the number
of threads available in the pool, the idle threads will go back
to sleep which will further save the system energy. Conse-
quently, this approach guarantees that no system resources
will be wasted.

4.2.2 Optimizing Threads Waiting and Awakening
In the above section, we see that once the thread pool has

been created, there are idle threads in the pool waiting to
be scheduled. The utilization of the thread pool must be
managed efficiently since idleness of threads affects the run-
time performance significantly. Thread waiting/awakening
is handled by conditional variables and signaling in tradi-
tional high-performance computing implementations. Con-
ditional variables provided by POSIX threads require that
a thread be waiting explicitly for the conditional variable to
receive it. During this process, the CPU cycles are released
and can be scheduled to other jobs.

The main disadvantage of this approach is the POSIX
threads conditional variables and signaling are always used
with mutex locks, i.e., the conditional variable is protected
by a single mutex lock and all the worker threads will com-
pete for the mutex lock when they receive the wake-up sig-
nal. This causes a large performance overhead when the
system scales up.

Consequently, we propose a distributed spin waiting mech-
anism. Figure 3 shows the state transition diagram for one
MRAPI node (thread). As shown in the figure, there is a to-
tal of five states in total. When a new node is created as part
of the initialization phase, the node is set to the spin waiting
state, i.e. it is waiting for new tasks to be assigned. Once it
receives a new task the state changes to ready, which means
it can be dispatched by the system scheduler, after which
the state changes to executing. When the execution is com-
plete, the node goes back to spin waiting in which thread is

87

new terminated

ready executing

new node created join signal received

spin_waiting

new task assigned

scheduler dispatch

task finished

Figure 3: The state transition diagram of an MCA
node (or a thread).

polling for a new task, and this cycle is repeated. After all
the tasks have finished their execution, the nodes reach the
terminate state, i.e. the fork-join stage.

The main difference between the distributed spin waiting
and POSIX conditional variables/signaling is in distributed
spin waiting, the spin variables are private to each node. As
a result, each node is only needed for polling its own task
rather than competing for the global mutex lock when a new
task is available in the POSIX approach. Therefore, there is
no lock contention overhead. In addition, in order to avoid
false sharing, we assigned the spin variable into the cache
line size.

4.3 Synchronization Primitives
The OpenMP synchronization primitives usually include

the master, single, critical and barrier constructs. T-
he traditional OpenMP runtime implementation in high-
performance computing domain usually relies largely on PO-
SIX threads synchronization primitives, such as mutexes and
semaphores. However, as discussed before, there are several
obstacles for the current approach to efficiently map to em-
bedded systems. We have already discussed the motivation
to adopt MRAPI synchronization primitives in Section 3, we
will now highlight how we employ the MRAPI primitives to
implement the OpenMP synchronization constructs in this
section.

4.3.1 Support for Barrier Construct
OpenMP relies heavily on barrier operations to synchro-

nize threads in parallel. Implicit barriers are required at the
end of parallel regions; they are also used implicitly at the
end of work-sharing construct. Explicit barriers are used
by OpenMP developers to synchronize the threads in the
team. Like the parallel construct, the barrier construct
is typically translated into runtime library calls during com-
pilation. Thus a good barrier implementation is essential
to achieve good performance and scalability.

Currently there are several algorithms to implement the
barrier construct [21]. One commonly used approach is
called the centralized blocking barrier based on a single shared
thread counter, mutexes and conditional variables, which is
adopted by many current barrier implementations. In the
centralized blocking barrier, each thread updates a shared
counter atomically once it reaches the barrier. All threads
will be blocked on a conditional wait until the value of the
counter is equal to the team size. The last thread will send
a signal to wake up all other threads.

Although this approach works well for high-performance
computing domain, as it will release the CPU cycles to other

Algorithm 1: Centralized barrier algorithm

Data: global barrier flag, global count
initialization;
barrier flag←0;
if active team size>1 then

barrier flag ← global barrier flag;
mrapi mutex lock(...);
global count++;
mrapi mutex unlock(...);
if global count == active team size then

count barrier ← 0;
global barrier flag ← barrier flag∧1;

end
else

while barrier flag==global barrier flag do
;

end

end

end

tasks during the waiting time, there are several challenges for
porting to embedded systems, as discussed in section 4.2.2.
So we adopt an approach called centralized barrier [21], as is
showed in Algorithm 1. Similar with the centralized blocking
barrier, each thread updates a shared counter and waits for
the value to be equal to the number of threads in the team.
But instead of the conditional wait that all threads race
for releasing the mutex lock when they receive the barrier
point signal, in centralized barrier each thread sets a local
spin waiting to continuously polling until the barrier point
is reached. Therefore, the barrier can be quickly released
when all threads reach the synchronization point thus the
performance is better. We will evaluate our approach in
Section 6.

We also noticed that the main drawback of the central-
ized barrier approach is that it may scale poorly. There are
other barrier algorithms that may yield better scalability
(i.e., the tree-like barrier). However, the purpose of using
the centralized approach in our current barrier implemen-
tation is only to validate that we can easily map current
techniques to embedded systems by using the MRAPI syn-
chronization primitives; all low-level details will be handled
by the MRAPI implementation. The barrier strategy can
be further improved with better and optimal strategies.

4.3.2 Support for Critical, Single and Master Con-
struct

The critical construct defines a critical section of code
that only one thread can access at a time. When the crit-

ical construct is encountered, the critical section will be
outlined and two runtime library calls, ompc critical and
ompc end critical respectively, will be inserted at the begin-
ning and at the end of the critical section. The former is
implemented as an MRAPI mutex lock, and the latter as an
MRAPI mutex unlock.

The single construct specifies that the encapsulated code
can only be executed by a single thread. Therefore, only the
thread that encounters the single construct will execute
the code within that region. The basic idea is that each
thread tries to update a global counter, which is protected
by MRAPI mutexes. Thus only the first thread that gains

88

access to the mutex can update the global counter and return
a flag. Only the thread that has the flag equal can execute
that single region.

The master construct defines that only the master thread
will execute the code. Since the node id has been stored in
the MRAPI resource tree, it is fairly easy to find the thread
that is the master thread.

4.4 Support for Work-Sharing Constructs
The OpenMP work-sharing construct defines a key com-

ponent of data-parallelism that is widely needed in today’s
multicore embedded systems. The loop construct distributes
the execution of the associated loop among the members
of the thread team that encounters the loop. The sched-
ule clause determines how the iterations of the loop, called
chunks, are distributed among the threads. Each thread
executes the chunk assigned to it.

In the default schedule type, i.e. static schedule, the
loop iterations or chunks are divided among the threads al-
most equally. The implementation of the static scheduling
in libEOMP maintains a global task queue which is filled
with chunks. Then a scheduler dispatches the chunks in the
queue to each thread in a round-robin fashion. When the
scheduling type is dynamic, the runtime will assign chunks
dynamically to the threads. In this case, although there is
a global task queue, private task queues are maintained by
each thread. Once the private queue is empty, it will re-
quest new tasks from the global queue, which is protected
by an exclusive access provided by MRAPI mutex. We will
explain more in detail about the performance evaluation of
both scheduling strategies in Section 6.

4.5 Support for Runtime Library Routines and
Environment Variables

OpenMP also defines a group of ever-growing runtime li-
brary routines and environment variables that are easy to
use. We have only implemented the most commonly used
ones. For e.g. omp get num threads to get the number of
threads in a team and omp get thread num to obtain the
thread id. The environment variable OMP_NUM_THREADS that
sets the maximum number of threads to be used in parallel.

5. IMPLEMENTATION
In this section, we will discuss the libEOMP implementa-

tion on a Freescale embedded platform, the corresponding
source-to-source translation of a given code and its code gen-
eration process.

5.1 Architecture Overview
We implemented libEOMP on a Freescale P1022 Refer-

ence Design Kit (RDK) [2], which is a state-of-the-art dual-
core Power ArchitectureTM multicore platform from Freesca-
le. It supports 36-bit physical addressing and double preci-
sion floating point. The memory hierarchy consists of three
levels: 32KB I/D L1, with 256KB shared L2, and 512 MB
64-bit off-chip DDR memory.

5.2 Compilation Overview
Figure 4 shows the overview of the compilation process.

For a given application, e.g. app.c with OpenMP directives,
we used the OpenUH compiler [20] to perform a source-to-
source translation of app.c into an intermediate file called

app.c

OpenUH Compiler

app.w2c.c

OpenMP
source
code

Frontend
source-to-

source
translation

Bare C code
with OpenMP

runtime
library calls

Object
code

Power Architecture
GCC Compiler

OpenMP Runtime
Library MCA Libraries

Power Architecture
GCC Compiler

Power Architecture
GCC Compiler

libopenmp.lib libmca.lib

Power Architecture
GCC Linker

app.out

Executable
image running
on the board

app.w2c.o

Figure 4: Overview of the cross-compilation process.

app.w2c.c. This app.w2c.c file is a bare C code with run-
time library function calls, which will be fed into the backend
native compiler, Power Architecture gcc compiler, a com-
piler toolchain for the Freescale e500v2 processor. The out-
put is the object code app.w2c.o. During the linking phase,
the linker will link all the object codes together with the run-
time libraries libopenmp and libmca which were previously
compiled by the native compiler.

5.3 Source-to-Source Translation
We use OpenUH compiler [20] as the frontend to perform

the source-to-source translation. OpenUH is a branch of the
open-source Open64 compiler suite for C, C++ and Fortran
95/2003, OpenMP 3.1, Co-array Fortran and UPC. OpenUH
has an IR-to-source translator (whirl2c and whirl2f) that
can translate the intermediate representations (IR) to back-
end compilable source code. The transformation of OpenMP,
which involves lowering OpenMP pragmas into correspond-
ing bare code with runtime library calls, is mainly performed
in two steps: OMP Prelower and LOWER MP [20]. The
former performs the preprocessing while the latter performs
the major translations. After the whirl2c procedure, gener-
ated files will be fed into any suitable target compiler and
linked with the runtime libraries to generate executable im-
ages.

6. PERFORMANCE EVALUATION
The main purpose of evaluating libEOMP is to demon-

strate that the additional MCA layer does not incur any
significant performance overhead but helps in portability.
Our baseline is to compare the performance of the libEOMP
with a vendor-specific runtime library which is optimized
for the target platform. Porting an OpenMP code to more
than one platform using libEOMP is possible provided the
platform is supported with MCA APIs.

We have considered two benchmarks, ranging from mi-
cro benchmarks to real embedded applications, EPCC micro
benchmarks [10] and MiBench [14]. We have utilized a pro-
totype implementation of MRAPI version 2.0.3, provided by
Freescale Semiconductor. To compare libEOMP with that
of the currently available optimized library, we have also
compiled the benchmarks and linked with a native vendor-
specific runtime library libGOMP from Power Architecture
GCC compiler toolchain for the Freescale e500v2 proces-

89

sor. We calculate the total execution time and the speedup
achieved in both cases i.e. for libEOMP and libGOMP.

6.1 Evaluation on EPCC Micro Benchmarks
The EPCC Micro Benchmark suite is a set of programs

that measure the overhead of each of the OpenMP directives
and evaluates different OpenMP runtime library implemen-
tations. It includes two benchmarks: syncbench to evaluate
the overhead for each of the OpenMP directives, while sched-
bench measures the loop scheduling overhead using different
chunk sizes.

6.1.1 Syncbench
We evaluated the syncbench benchmark with libEOMP

and the results are tabulated in Table 1. For each of the
OpenMP directives, we run the experiment 10 times, with
10,000 iterations and calculate the average time taken. The
table shows that the overall performance of libEOMP is
quite competitive with that of the vendor-specific OpenMP
runtime library libGOMP. The time difference is less than 1
microsecond, barely noticeable by programmers. The differ-
ence may be due to the function calls added by the additional
MCA APIs layer in libEOMP. Moreover, the MRAPI library
that we have used is only a prototype implementation and
it does not guarantee the best performance.

The table 1 also shows that directives such as the paral-

lel and the single constructs in libEOMP even outperform
those in libGOMP. This is due to the sophisticated thread
creation and optimized thread management techniques as
discussed in section 4.2 that we have used to implement the
parallel construct.

We also see that the presence of the implicit barrier hidden
in most of the OpenMP directives dominates the major part
of the performance. For example, the overhead of the paral-
lel construct is dominated by two barrier constructs, one
at the beginning of the parallel region and one at the end of
the parallel region. At the beginning of the parallel region,
the barrier construct ensures that all the worker threads
are ready for execution. At the end of the parallel region, as
per the OpenMP specification, there is a need for a barrier

construct that ensures that all the worker threads have fin-
ished execution. So we could see that the implementation
of the barrier construct is quite crucial for performance.

6.1.2 Schedbench
Schedbench measures the loop scheduling overhead of Ope-

nMP directives. Figure 5 shows the results with different
chunk sizes. Figure 5(a) shows the results of overhead due
to static scheduling. Overall, from the figure we can see that
libEOMP runtime performs as fast as libGOMP. As a worst
case scenario with chunk size 1, the time taken by libEOMP
is 61.09 µsec while the time taken by libGOMP is 58.77 µsec;
the time difference is only 2.32 µsec. The best case scenario
is when no chunk size is specified in the static clause and
the iteration space is divided into chunks that are approxi-
mately equal in size, and at most one chunk is distributed to
each thread. In this case, libEOMP takes 54.90 µsec while
libGOMP takes 53.48µsec; the time difference is only 1.42
µsec. This clearly shows that adding the MCA layer did not
incur too much overhead.

Figure 5(a) also shows that the execution time of different
chunk sizes follows an identical pattern. This is because each
thread will receive roughly an equal number of chunks no

Table 1: Average execution time(µs) for EPCC
syncbench.

DIRECTIVE libEOMP libGOMP

PARALLEL 8.62 9.10
FOR 8.46 7.14

PARALLEL FOR 9.44 9.20
BARRIER 7.61 7.13
SINGLE 2.15 6.82

CRITICAL 8.66 6.56
REDUCTION 10.44 9.22

matter the size of the data is. The smaller the chunk size,
the poorer the performance, because the scheduler assigns
chunks in a round-robin fashion to each thread. It is often
likely that some threads may be starving for chunks while
the scheduler is busy serving other threads. The runtime
appears to perform the best with the default chunk size (i.e.
when no chunk size is specified) because in this case each
thread will get the largest chunk size and the scheduler will
only need to assign chunks to a thread once. In this way the
loop scheduling overhead is minimized.

Figure 5(b) shows the overheads due to dynamic schedul-
ing method. The figure shows that libEOMP performs worse
than libGOMP when the chunk size is small but is quite com-
petitive with libGOMP when the chunk size is large. The
difference between libGOMP and libEOMP is 1.49 µsec. As
discussed in section 4.4, each thread maintains a private task
queue. Once the private task queue is empty the thread will
request for new tasks from the global task queue, which re-
quires exclusive access, i.e. no other threads can access the
global task queue at this point. If the chunk size is too small,
it is likely that the threads will consume the chunks quickly
and make a request to the global queue for more chunks. So
if more and more threads begin to request chunks from the
global queue concurrently, then there are other issues that
must be dealt with: e.g. acquiring and releasing locks by
different threads to access chunks from the global queue can
be a very expensive process.

The dynamic scheduling mechanism can be improved to
exhibit better performance. One of the approaches to im-
prove performance is to use distributed task queues instead
of a single global queue which may reduce thread manage-
ment traffic. Workstealing [18] mechanism can be used, such
that a thread that runs out of tasks can steal tasks from the
queues of other threads (future work).

6.2 Evaluation of MiBench
In this section, we evaluated libEOMP using some of the

MiBench benchmarks which is a suitable benchmark suite
for embedded systems. It is divided into multiple classes
in order to represent different embedded domains. Three
benchmarks, FFT, Dijkstra, and DGEMM (Double-precision
Floating-point Matrix Multiply), are used.

We first parallelized these benchmarks by using OpenMP
since the original version of the code in MiBench is se-
quential. In the FFT algorithm, logN stages are needed
for a given wave of length N and the tasks within each
stage are equally distributed to each of the threads. In the
DGEMM and Dijkstra algorithms, the data size is evenly
divided among threads.

Figure 6 shows the comparative results of execution time

90

 10

 20

 30

 40

 50

 60

 70

1 2 4 8 16 32 64 128 256 512 default

E
xe

cu
tio

n
T

im
e

(u
se

c)

Chunk Size

libEOMP
libGOMP

(a) Static scheduling overhead.

 10

 100

 1000

1 2 4 8 16 32 64 128 256 512

E
xe

cu
tio

n
T

im
e

(u
se

c)

Chunk Size

libEOMP
libGOMP

(b) Dynamic scheduling overhead.

Figure 5: Loop scheduling overheads of EPCC schedbench using different chunk sizes

 0

 5

 10

 15

 20

 25

1 2 4 8 16 32

E
xe

cu
tio

n
T

im
e

(s
ec

)

Data size (512x512xN)

libEOMP with 1 thread
libGOMP with 1 thread

libEOMP with 2 threads
libGOMP with 2 threads

(a) FFT

 0

 2

 4

 6

 8

 10

 12

 14

1 2 3 4 5 6

E
xe

cu
tio

n
T

im
e

(s
ec

)

Data size (128xN)

libEOMP with 1 thread
libGOMP with 1 thread

libEOMP with 2 threads
libGOMP with 2 threads

(b) DGEMM

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

1 2 3 4 5 6

E
xe

cu
tio

n
T

im
e

(s
ec

)

Data size (1024xN)

libEOMP with 1 thread
libGOMP with 1 thread

libEOMP with 2 threads
libGOMP with 2 threads

(c) Dijkstra

Figure 6: Execution time of FFT, DGEMM and Dijkstra with varying data size using 1 and 2 threads.

using different data sizes and numbers of threads. From the
figure we see that libEOMP achieves almost the same per-
formance as that of libGOMP. For the Dijkstra, libEOMP
outperforms libGOMP due to the efficient implementations
of the parallel and single constructs as discussed in Sec-
tion 4. Figure 6 also shows that libEOMP performs well
when the data size is increased dramatically (the data size
in FFT is increased to 8 Mbyte) showing good scalability.

To summarize, although achieving the best performance
is not the main scope of this paper, our objective is to show
that libEOMP can perform as well as the native vendor-
specific OpenMP runtime library, libGOMP. libEOMP is
based on the MCA APIs, which do not rely on any specific
architecture or OS, hence the library can be ported easily to
multiple platforms which is not the case with libGOMP.

7. CONCLUSION AND FUTURE WORK
Programming model on multicore embedded systems is

important yet challenging. In this paper, we have described
the design and implementation details of a novel OpenMP
runtime library, libEOMP. libEOMP utilizes an industry
standard formulated by MCA underneath with high-level
programming model, OpenMP atop. Using libEOMP the
programmer gets enough control to write efficient code, es-
pecially when the hardware details are abstracted from the
programmer. Evaluation results of libEOMP using several
benchmarks have demonstrated that libEOMP performs not
only as competitive as optimized vendor-specific approach
but also offers portability and productivity.

Currently we only implemented the libEOMP on a ho-
mogeneous platform. We have not been able to consider

evaluating our novel approach on a heterogeneous platform
since a prototype implementation of MRAPI covering fea-
tures of heterogeneous system does not yet exist. As part
of the future work, once the prototype implementation of
MRAPI for heterogeneous platform is made available, we
plan to make the best use of the same and be able to target
a variety of underlying devices. We will also be consider-
ing the newest version of OpenMP that will be providing
support for heterogeneous systems. The current version of
OpenMP 3.1 does not address the concept of heterogeneity
or accelerators.

We would like to mention that the prototype of libEOMP
discussed in this paper will be further improved to provide
an optimal solution for the applications under considera-
tion for embedded systems. Currently the prototype has
been constructed to demonstrate that OpenMP could be
used with MCA APIs to execute applications on embedded
systems without the need to be aware of the low-level details
of the system.

8. ACKNOWLEDGMENTS
The authors of this paper would like to express our sin-

cere gratitude to the anonymous reviewers for their insight-
ful comments. This research has been supported by grants
from Freescale Semiconductor Inc. and Texas Instruments
Inc. in association with Semiconductor Research Corpora-
tion(SRC).

9. REFERENCES
[1] Data Communication and Synchronization Library for

Cell Broadband Engine Programmer’s Guide and API

91

reference, Version 3.0.

[2] Freescale Semiconductor Inc.
http://www.freescale.com/.

[3] Multicore Association.
http://www.multicore-association.org.

[4] Multicore Resource API (MRAPI) Specification V1.0.
http://www.multicore-association.org.

[5] Polycore MCAPI Offers ThreadX RTOS Support.

[6] The Objective-C programming languages.
http://developer.apple.com.

[7] The OpenCL Specification, Version 1.0.
http://www.khronos.org.

[8] The OpenMP API Specification for Parallel
Programming. http://openmp.org/wp/.

[9] TMDXEVM6678L EVM Technical Reference Manual
Version 1.0, Literature Number: SPRUH58.

[10] J. Bull. Measuring Synchronisation and Scheduling
Overheads in OpenMP. In Proceedings of the First
European Workshop on OpenMP, pages 99–105, 1999.

[11] Q. Cao, C. Hu, H. He, X. Huang, and S. Li. Support
for OpenMP Tasks on Cell Architecture. In Proc. of
the 10th international conference on Algorithms and
Architectures for Parallel Processing - Volume Part II,
ICA3PP’10, pages 308–317. Springer-Verlag, 2010.

[12] B. Chapman, L. Huang, E. Biscondi, E. Stotzer,
A. Shrivastava, and A. Gatherer. Implementing
OpenMP on a High Performance Embedded Multicore
MPSoC. In Parallel & Distributed Processing, 2009.
IPDPS 2009. IEEE International Symposium on,
pages 1–8, 2009.

[13] P. Cooper, U. Dolinsky, A. F. Donaldson, A. Richards,
C. Riley, and G. Russell. Offload: Automating Code
Migration to Heterogeneous Multicore Systems. In
Proc. of the 5th international conference on High
Performance Embedded Architectures and Compilers,
HiPEAC’10, pages 337–352. Springer-Verlag, 2010.

[14] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M.
Austin, T. Mudge, and R. B. Brown. MiBench: A
Free, Commercially Representative Embedded
Benchmark Suite. In Proc. of WWC-4, 2001., pages
3–14. IEEE Computer Society, 2001.

[15] T. Hanawa, M. Sato, J. Lee, T. Imada, H. Kimura,
and T. Boku. Evaluation of Multicore Processors for
Embedded Systems by Parallel Benchmark Program
Using OpenMP. Evolving OpenMP in an Age of
Extreme Parallelism, pages 15–27, 2009.

[16] J. He, W. Chen, G. Chen, W. Zheng, Z. Tang, and
H. Ye. OpenMDSP: Extending OpenMP to Program
Multi-Core DSP. In Parallel Architectures and
Compilation Techniques (PACT), 2011 International
Conference on, pages 288–297. IEEE, 2011.

[17] F. D. Igual, M. Ali, A. Friedmann, E. Stotzer,
T. Wentz, and R. A. van de Geijn. Unleashing the
High-Performance and Low-Power of Multi-core DSPs
for General-Purpose HPC. In Proceedings of SC ’ 12,
SC ’12, pages 26:1–26:11, Los Alamitos, CA, USA,
2012. IEEE Computer Society Press.

[18] J. LaGrone, A. Aribuki, C. Addison, and B. M.
Chapman. A Runtime Implementation of OpenMP
Tasks. In IWOMP, pages 165–178, 2011.

[19] S. Lee and R. Eigenmann. OpenMPC: Extended

OpenMP Programming and Tuning for GPUs. In
Proc. of the 2010 ACM/IEEE International
Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’10, pages 1–11.
IEEE Computer Society, 2010.

[20] C. Liao, O. Hernandez, B. M. Chapman, W. Chen,
and W. Zheng. OpenUH: an Optimizing, Portable
OpenMP Compiler. Concurrency and Computation:
Practice and Experience, 19(18):2317–2332, 2007.

[21] R. Nanjegowda, O. Hernandez, B. Chapman, and
H. H. Jin. Scalability Evaluation of Barrier Algorithms
for OpenMP. In Proc. of the 5th International
Workshop on OpenMP: Evolving OpenMP in an Age
of Extreme Parallelism, IWOMP ’09, pages 42–52.
Springer-Verlag, 2009.

[22] K. O’Brien, K. O’Brien, Z. Sura, T. Chen, and
T. Zhang. Supporting OpenMP on Cell. Int. J.
Parallel Program., 36(3):289–311, June 2008.

[23] D. Pellerin and S. Thibault. Practical FPGA
Programming in C. Prentice Hall Press, 2005.

[24] A. Reid, K. Flautner, E. Grimley-Evans, and Y. Lin.
SoC-C: Efficient Programming Abstractions for
Heterogeneous Multicore Systems on Chip. In Proc. of
the 2008 international conference on Compilers,
architectures and synthesis for embedded systems,
pages 95–104. ACM, 2008.

[25] M. Sato, M. S. Shigehisa, K. Kusano, and Y. Tanaka.
Design of OpenMP Compiler for an SMP Cluster. In
In EWOMP ’99, pages 32–39, 1999.

92

