
Grain Graphs: OpenMP Performance Analysis Made Easy

Ananya Muddukrishna
KTH Royal Institute of Technology

ananya@kth.se

Peter A. Jonsson
SICS Swedish ICT AB

pj@sics.se

Artur Podobas
KTH Royal Institute of Technology

podobas@kth.se

Mats Brorsson
KTH Royal Institute of Technology

matsbror@kth.se

Abstract
Average programmers struggle to solve performance problems in
OpenMP programs with tasks and parallel for-loops. Existing per-
formance analysis tools visualize OpenMP task performance from
the runtime system’s perspective where task execution is inter-
leaved with other tasks in an unpredictable order. Problems with
OpenMP parallel for-loops are similarly difficult to resolve since
tools only visualize aggregate thread-level statistics such as load
imbalance without zooming into a per-chunk granularity. The run-
time system/threads oriented visualization provides poor support
for understanding problems with task and chunk execution time,
parallelism, and memory hierarchy utilization, forcing average pro-
grammers to rely on experts or use tedious trial-and-error tuning
methods for performance. We present grain graphs, a new OpenMP
performance analysis method that visualizes grains – computation
performed by a task or a parallel for-loop chunk instance – and
highlights problems such as low parallelism, work inflation and
poor parallelization benefit at the grain level. We demonstrate that
grain graphs can quickly reveal performance problems that are dif-
ficult to detect and characterize in fine detail using existing vi-
sualizations in standard OpenMP programs, simplifying OpenMP
performance analysis. This enables average programmers to make
portable optimizations for poor performing OpenMP programs, re-
ducing pressure on experts and removing the need for tedious trial-
and-error tuning.

Categories and Subject Descriptors D2.5 [Testing and Debug-
ging]: Diagnostics

Keywords OpenMP, Task-based Programs, Performance Analy-
sis, Performance Visualization

1. Introduction
When programmers express parallelism using tasks or parallel for-
loops with suitably fine granularity and good memory hierarchy
utilization, OpenMP stands out as a productive and performance
portable technique to write composable parallel programs. Parallel

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org or Publications
Dept., ACM, Inc., fax +1 (212) 869-0481.

PPoPP ’16 March 12-16, 2016, Barcelona, Spain
Copyright c© 2016 ACM 978-1-4503-4092-2/16/03. . . $15.00
DOI: http://dx.doi.org/10.1145/2851141.2851156

for-loops have been in OpenMP since version 1.0 and tasks were in-
troduced in 2008 as fork-join programming constructs in OpenMP
3.0. Tasks were extended with support for data-flow task program-
ming in OpenMP 4.0 and support for task-generating for-loops has
recently been announced in the latest version 4.5 [31].

Although increased importance is being placed on tasks by
the OpenMP committee, the quality of information provided by
visualizations in OpenMP tools is insufficient for analyzing task-
based problems [37]. Tools visualize program execution from the
low-level perspective of the runtime system and show that tasks
execute interleaved with other tasks in a runtime-optimized order
without immediate connection to the program structure.

There is a similar problem with parallel for-loops where itera-
tions are distributed to different threads in chunks. Tools once again
only visualize aggregate thread-level statistics such as load imbal-
ance without clear distinction between the different chunks.

The lack of convenient visualization forces experts to use a com-
bination of clever manual instrumentation, deep algorithmic knowl-
edge, as well as knowledge about the internals of the compiler and
the runtime system to identify and pin-point performance problems.
Average programmers instead struggle to understand problems in
granularity, parallelism, and memory hierarchy utilization. Most
often, the only practical use of existing visualizations is to infer
load balance on different cores without any immediate connection
to the root cause of the problem. Average programmers therefore
abandon hope of actionable feedback from existing visualizations
and hand over the problem to experts or resort to trial-and-error
tuning methods to overcome performance problems.

Performance analysis would be simplified for experts and non-
experts alike if tools provided visualizations of the execution which
were immediately connected to the program structure.

We present grain graphs, a new OpenMP performance analysis
method that visualizes grains – computation performed by a task
or a parallel for-loop chunk instance – from a predictable program
perspective while retaining essential runtime system execution as-
pects such as scheduling and memory hierarchy performance pro-
filed at OMPT-like [16] events. Performance crippling conditions
such as low parallelism, work-inflation [30], and poor paralleliza-
tion benefit are derived at the grain level and depicted directly on
the grain graph with precise links that connect problem areas to
source code. By immediately revealing and pin-pointing problems
that are difficult to detect using existing visualizations, our method
enables average programmers to quickly make optimizations for
poor performing OpenMP programs without resorting to trial-and-
error tuning. Experts can start fixing problems right away without



spending valuable time on tracking down and isolating the problem
first.

Grain graphs have helped us discover new problems and peer
deeper into known problems in standard OpenMP programs from
SPEC OMP 2012 [29] (SPEC-OMP), Barcelona OpenMP Task
Suite 1.1.2 [14] (BOTS), and Parsec 3.0 [5] (Parsec). We found
that cutoffs in 376.kdtree from SPEC-OMP and Strassen from
BOTS were disabled due to programmer mistakes. The cutoff in
376.kdtree has a recursive call where the depth is not incremented
and Strassen has a hard-coded cutoff that overrides user input. We
also pinpoint work-inflation at the grain level in 359.botsspar from
SPEC-OMP, demonstrate low parallelism as an incurable condition
in the Sort from BOTS and quickly add cutoffs to improve paral-
lelization benefit in tasks of the troubled FFT program from BOTS.

We describe the overall contribution of the paper – the design
of grain graphs and associated derived metrics to pin-point per-
formance problems in OpenMP programs at the grain level from
a predictable program perspective – in Section 3. Sections 2 and
4 demonstrate that grain graphs can pin-point performance prob-
lems in the C/C++ programs in three common benchmark suites
– SPEC-OMP, Parsec, and BOTS. We improved the scalability of
the programs based on grain graph visualization up to 54.9 times
the original scalability on a 48-core NUMA machine. Our visual-
ization method can guide average programmers to understand and
make optimizations for poor performing standard programs. Lim-
itations of existing visualizations are described in detail in the re-
lated work section (Section 5).

Note: Colors are crucial to appreciate grain graphs. We request
readers to print the paper in color.

2. Need for Grain Graphs
376.kdtree is a fork-join task-based program from SPEC OMP
2012 that searches a k-d tree for neighboring points within a radius.
Tasks are used to sweep the tree for points and to find neighbors for
each point. The program takes a cutoff parameter that prevents cre-
ation of tasks after a threshold recursion depth is reached. The doc-
umentation states that low task counts are crucial for performance.

Figure 1 shows that 376.kdtree performs poorly on GCC and
MIR runtime systems with the SPEC reference input (tree size
400,000, radius 10, and cutoff 2). Visualizations in existing tools

Sort Strassen 359.botsspar FFT 376.kdtree

0

10

20

30

40

50

60

70

80

90

IC
C

G
C

C

M
IR

IC
C

G
C

C

M
IR

IC
C

G
C

C

M
IR

IC
C

G
C

C

M
IR

IC
C

G
C

C

M
IR

48
−

co
re

 s
pe

ed
up

 o
ve

r 
1−

co
re

 e
xe

cu
tio

n 
 o

f o
rig

in
al

 p
ro

gr
am

 u
si

ng
 IC

C

Before After

Figure 1: Performance improves after optimization on all runtime
systems.

show that load is balanced and provide no further information to
understand and improve performance.

Grain graphs place parent and child grains in close proximity
using creation edges, without timing as a placement constraint.

The grain graph for 376.kdtree immediately reveals that the
program creates many tasks by recursing to a large depth during
the sweep phase, as shown in Figure 2. This is surprising since the
cutoff should have limited the number of tasks created.

Inspecting kdnode::sweeptree(), the function that sweeps
the tree, shows that the depth is not incremented for recursive calls
which explains the large number (1488595) of tasks created for the
SPEC reference input. Incrementing the depth for recursive calls
and separating the sweep cutoff from the original cutoff improves
performance. We increase the value of the original cutoff from 2 to
8 and use 10 as the sweep cutoff for GCC and MIR. We use 100 as
the sweep cutoff value for ICC. With the new cutoffs, scalability of
376.kdtree increases on GCC and MIR runtime systems as shown
in Figure 1. The ICC runtime system overcomes the faulty cutoff
in the original program and performs well by using an internal
cutoff [20] to limit the number of the tasks.

The missing depth increment escaped both the programmer and
SPEC quality control for over three years. Our method immediately
reveals structural anomalies that can cripple performance.

3. Grain Graphs
We describe the structure, the metrics and how performance prob-
lems are highlighted on grain graphs in this section.

3.1 Structure
Constructing grain graphs requires dealing with OpenMP peculiar-
ities such as recursive task creation, all-at-once child synchroniza-
tion, and parallel for-loop chunk assignment, all of which devi-
ate from traditional data-flow graphs [39]. We contribute a con-
crete mechanizable structure that faithfully captures execution with
aforementioned peculiarities.

The grain graph is a directed acyclic graph (DAG) that captures
the order of creation and synchronization between grains. A grain
denotes the computation performed by a task or a parallel for-
loop chunk instance. For a deterministic task-based program with a
fixed input, the grain graph is independent from machine size and
scheduling choices during program execution. For for-loop based
programs the shape of the graph is dependent on the number of
threads used during profiling.

The grain graph consists of five types of nodes – fragment, fork,
join, book-keeping nodes, and chunk nodes. (Figures 3c, g). Frag-
ment nodes denote the execution of a task between its creation and
synchronization. They are also essential to depict parent context ex-
ecution after returning from runtime system calls. Fragment nodes
are uniquely identified and are ordered sequentially within the con-
text of the task instance. Green fork nodes denote task creation
and orange join nodes denotes task synchronization. Book-keeping
nodes represent computation performed by threads to divide the it-
eration space and assign iterations to themselves in chunks. Chunk
nodes denote computation performed by the set of iterations as-
signed to chunks. Fragment nodes, book-keeping nodes, and chunk
nodes are weighted with metrics measured during execution.

The grain graph has three types of control-flow edges – creation,
synchronization and continuation. Green creation edges connect
a fork node to the first fragment node of a child. Orange join
edges connect the last fragment of children synchronizing with the
parent. Black continuation edges connect fragments to fork or join
nodes and denote continuation of execution after spawning children
or synchronizing with children. There are connection constraints:
a fork node can connect to a single child fragment; atleast one
fragment connects to a join node; continuation edges can only
connect fragments to fork and join nodes within the same context.
Book-keeping nodes are followed by a chunk node when iterations
remain and continue to a join node to synchronize with other
threads otherwise. Chunk nodes always continue to a book-keeping



●

−1.0 −0.5 0.0 0.5 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

0

0

kdtree.cc:411
kdtree.cc:441
kdtree.cc:539
kdtree.cc:561
kdtree.cc:630(sweepkdtree)
kdtree.cc:643(sweepkdtree)
kdtree.cc:781
kdtree.cc:806
kdtree.cc:856
kdtree.cc:894

task−graph.source_to_color

Figure 2: Grain graph of 376.kdtree for small input (tree size 200, radius 10, cutoff 2) containing 740 grains. Performance is lost due to many
grains created by recursing to a large depth despite providing 2 as cutoff. The cutoff has no effect. The inset is a zoombox that zooms into a
region of interest on the graph for clarity.

node. Edges never cross to ensure child fragments appear local
to the parent and fragments of a task are aligned in sequence –
essential features to convey recursive task creation.

We apply reductions to the graph structure by grouping nodes
to speedup rendering times (Figure 3d-e, h). Grouped nodes retain
weights of individual member nodes and also aggregate them. We
group all book-keeping nodes per thread. Additionally, chunks
are depicted as siblings since they are executable in parallel by
definition.

Performance metrics are encoded as visual properties (size,
color, shape, etc.) of graph elements. Grains are drawn as rectangles

with length linearly scaled to execution time and fill color reflecting
severity of the problem. Both edges and node borders are colored
red if they are on the critical path of the grain graph.

Unique identification of grains is necessary for comparing
graphs. Grains corresponding to tasks are identified using path
enumeration which relies on the static nature of the graph for task-
based programs. However, the path cannot identify grains from
parallel for-loops since the shape depends on the number of threads
and chunk assignment order. We identify chunks through the thread
that started the loop, a sequence counter, and the iteration range.



#pragma omp task

{ /* foo */

...

#pragma omp task

{ /* bar */ }

...

#pragma omp task

{ /* baz */ }

...

#pragma omp taskwait

...

}

#pragma omp parallel for \

schedule(static, 4) num_threads(2)

for(i=1; i<=20; i++)

{

...

}

(a)

(b)

(c) (d)

(e) (f)

(g) (h)

Figure 3: Grain graph structure. (a) Task-based OpenMP program.
Task foo creates tasks bar and baz, performs computation in-
between and synchronizes with the children tasks. (b) OpenMP
program with parallel for-loop. Iteration space is divided into 5
chunks of size 4 and distributed evenly on two threads. (c) Grain
graph captures task creation and synchronization during program
execution. Performance of individual task instances are visually
encoded so execution time is encoded as the length of fragments.
Fragments of foo are sequentially aligned and child fragments are
drawn local to the parent context to preserve the program per-
spective. (d-e) Reductions group nodes to reduce the size of the
graph for quick rendering. Fragment reduction combines task frag-
ments (d) and fork reduction combines fork nodes before every
join node (e). Grouped nodes retain and aggregate performance
weights of individual member nodes. After reductions, nodes are
laid out symmetrically for space-efficiency. (f) Problematic grains
are highlighted with a color that reflects severity and remaining
elements are dimmed. (g) Execution of for-loop on two threads.
Turquoise nodes represent book-keeping for delivering chunks to
threads. Green rectangles show chunk execution labeled with the it-
eration range. The orange circle represents joining when all chunks
are done. (h) Reductions group book-keeping nodes per-thread.

The starting thread is constant in programs without nested paral-
lelism.

3.2 Metrics
We automatically derive metrics from the graph structure to detect
problems. We annotate the graph with standard metrics that include
the critical path of the graph and various memory system behavior,
such as cache miss ratios and memory hierarchy utilization – a ratio
of processor cycles spent performing computation to stalled cycles
waiting for data. The derived metrics are:

Parallel benefit: is a grain’s execution time divided by the paral-
lelization costs borne by the grain’s parent. The metric aids in-
lining and cutoff decisions by quantifying whether paralleliza-
tion is beneficial so grains with low parallel benefit should be
executed serially to reduce overhead. Parallelization cost of a
grain is the sum of its creation time and average time spent by
the grain’s parent in synchronizing with all siblings. Paralleliza-

tion cost for chunks uses book-keeping cost instead of child
creation time.

Load balance: is the ratio between the length of the longest grain
and the median length of all chains of consecutive grains in the
unreduced graph. Load balance in Figure 3g is the ratio of the
length of longest grain 9-12 to the median length of the two
chains. Load balance much greater than one indicates presence
of atleast one grain whose work time approaches the makespan
of the parallel section. When approximately equal to one, the
metric indicates that the load on the cores is balanced. The load
balance metric helps understand when chunk size is too large
and the parallel benefit metric when chunk size is too small.

Work deviation: is the change in execution time between single
core and multicore grain execution. Work deviation is benefi-
cial when it is less than one and problematic when it is greater
than one. Work deviation below one typically happens when the
working set fits in the private cache under multi-core execution.
Olivier et al. [30] coined the name work inflation to refer to in-
creased computation time when going from single-threaded to
multi-threaded execution for the whole program. We compute
work deviation per grain and refer to problematic work devia-
tion as work inflation.

Instantaneous parallelism: is parallelism exposed by the pro-
gram at different times during execution. Low instantaneous
parallelism means cores idle because no work is available. An
abundance of instantaneous parallelism with good parallel ben-
efit is desirable for performance. The metric is calculated by
counting the number of grains whose execution overlaps with
intervals of program execution time. Interval size is a balance
between accuracy and post-processing time. We provide the
minimum grain length, the smallest difference between when a
grain starts and another grain ends, and the median grain length
as default choices. The metric comes in two flavors: optimistic
includes all grains with any overlap of the interval, and con-
servative only includes grains with full overlap. Instantaneous
parallelism of a grain is the smallest instantaneous parallelism
among all its overlapping time intervals.

Scatter: is the median pair-wise distance in the system topology
between cores executing sibling grains. Distances are obtained
from the NUMA distance table or by subtracting core identifiers
in some topologies. High scatter between grains that share data
can lead to poor memory hierarchy utilization.

3.3 Highlighting Problems
Derived metric values that are likely to be problematic are high-
lighted (red grain in Figure 3f) and also made available in a sum-
mary form. We highlight memory hierarchy utilization less than
two, parallel benefit below one, load balance greater than one, work
deviation greater than two, instantaneous parallelism less than the
number of cores used to execute the program, and scatter farther
than the number of cores in a CPU socket as likely problems.

4. Performance Analysis with Grain Graphs
We demonstrate how the grain graph enables programmers to
quickly diagnose performance problems and find portable solu-
tions to improve performance in OpenMP programs. We first indi-
cate programs and evaluation methods used to test the effectiveness
of grain graphs before diving into the performance analysis.

4.1 Programs
We profiled all C/C++ OpenMP programs except one in three
standard benchmark suites – SPEC OMP 2012 [29] (SPEC-OMP),
Barcelona OpenMP Task Suite [14] version 1.1.2 (BOTS), and



Parsec [5] version 3.0 (Parsec). Our aim is to use grain graphs to
explain and improve poor performance so we characterize and pin-
point performance problems at the level of grains and link them
back to source code which has not been done before. We give a
detailed analysis of 359.botsspar and 376.kdtree from SPEC-OMP,
Freqmine from Parsec, and Sort, Strassen, and FFT from BOTS.
We conclude the section with a brief discussion of the metrics
and performance of the remaining programs to demonstrate that
performance analysis with grain graphs works for programs with
good performance as well. We omit analysis of 352.nab in SPEC-
OMP because the profiler does not support nested parallelism.

4.2 Evaluation Details
We used the MIR profiler [28] to obtain raw per-grain performance
and properties required to construct the grain graph and derive
metrics listed in Section 3.2.

The MIR profiler collects raw performance information with
low overhead from hardware performance counters during grain
events notified by the MIR runtime system [27]. The MIR run-
time system supports OpenMP 3.0 tasks and parallel for-loops
and notifies grain events based on a superset of the OMPT inter-
face [16] that includes parallel for-loop chunk events and affinity
information. The MIR runtime system uses a state-of-the-art work-
stealing scheduler with lock-free task queues [8] by default and
is implemented as a drop-in replacement for libgomp, the GCC
OpenMP runtime system. Hardware performance counters are ac-
cessed through PAPI [26] to measure grain execution time and
memory behavior statistics such as L1 cache misses and mem-
ory stall cycles. Less than 2.5% overhead is incurred by the MIR
profiler to determine grain properties and hardware performance
counts. Although we have used the MIR profiler, the grain graph
visualization works irrespective of the profiling method.

Raw information from the MIR profiler was used in a post-
profiling step to construct grain graphs and derive metrics. We used
the igraph [10] package to construct the grain graph and annotated
it with performance information. The grain graph is stored as a
GRAPHML file that is viewable on off-the-shelf, large-scale graph
viewers such as yED [45] and Cytoscape [40]. Grain graphs in the
paper were viewed on yEd.

We extracted the programs from their benchmark suite eco-
systems into standalone versions while retaining compiler and
runtime options. We converted parallel for-loops with implied or
explicit schedule static clauses to schedule runtime clauses
and set the environment variable OMP SCHEDULE=static to pro-
file chunks from within the runtime system. For-loops with static
schedules without this modification make the compiler insert chunk
assignment code directly into the program. Our conversion affected
performance by at most 3% on ICC.

Programs were compiled with GCC v4.9.2 and ICC v15.0.1
using optimization flags -O3 except for BOTS which used -O2 for
ICC. Cutoffs were chosen for best performance on a 48-core test
machine with 64GB memory and four 2.1GHz AMD Opteron 6172
processors with frequency scaling disabled. We used the manual
cutoff version of BOTS programs.

We demonstrate that problems pin-pointed by our method are
general problems by comparing program performance before and
after optimization on other runtime systems. We used the median
execution time of ten trials of the timed sections for comparison on
ICC v15.0.1, GCC v4.9.2, and GCC v4.9.2 linked with MIR.

The grain graph based visual performance analysis work-flow is
as follows. The grain graph has multiple views with colors encod-
ing a single problem or property per view. Problematic grains, i.e.,
those that have crossed thresholds, are highlighted and other ele-
ments are dimmed in views where grain colors encode problems.
Programmers shift views to understand problem areas to tackle.

Clicking on a grain displays its timing, source location, and other
properties in a separate window. Problem thresholds have sensible
defaults listed in Section 3.3 and can be refined by programmers.

4.3 Analysis and Optimization
We demonstrate performance analysis using grain graphs on poor
performing OpenMP programs that we optimize in the section.

4.3.1 Sort
Sort is a recursive fork-join task-based program from BOTS that
sorts an array using divide-and-conquer in three phases. The first

0.0

0.1

0.2

0.3

0 10 20 30 40
Core

T
im

e 
in

 s
ec

on
ds

CPU Time Spin and Overhead

Figure 4: Existing visualizations show load imbalance and offer
no actionable information about Sort performance. Intel VTune
Amplifier shows cores performing uneven work and spending a
large fraction of time inside the runtime system during execution of
the parallel region. Nothing links the load imbalance to the culprit
tasks. Visualizations in other tools suffer from the same problem.

phase uses parallel merge-sort, the second phase uses sequential
quick sort, and the third uses sequential insertion sort. Phase shifts
occur when the size of the divided array reaches thresholds speci-
fied by cutoffs which are crucial for performance [13, 28, 33].

Sort scales poorly for an input array with 16M elements on all
runtime systems for the best cutoff values (Figure 1). Visualizations
in existing tools point to load imbalance (Figure 4) as the reason for
the poor performance and offer no further insight.

The reason behind Sort’s load imbalance becomes clear from
the grain graph in Figure 5. Sort exposes non-uniform parallelism.
A lot of parallelism is available when the program starts executing,
but the amount of parallelism gradually decreases in a waxing and
waning pattern. The crux is that instantaneous parallelism is less
than the number of cores available (48) at several points during
execution.

We reduced the depth cutoff to increase instantaneous paral-
lelism, but grains became too small and performance decreased due
to low parallel benefit (Figure 5b). We can conclude that sorting
16M elements with the best cutoffs will always have load imbal-
ance irrespective of scheduling.

Sort has additional problems that can be seen on the grain graph
in a mutually exclusive manner. We summarize the problems and
optimization results in the table below for space reasons:

Affected grains (%)
Problem Before After
Work Inflation 68.54 37.08
Poor Memory Hierarchy Utilization 56.05 30.11

We reduced both problems with round-robin memory page dis-
tribution to different NUMA nodes. Performance improved on all



●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

0

0

(0,5]
(5,10]
(10,15]
(15,20]
(20,25]
(25,30]
(30,35]
(35,40]
(40,45]
(45,50]

task−graph.prob_task_min_shape_contrib_to_color

(a)

(b)

Figure 5: Sort grain graph. (a) Low instantaneous parallelism causes load imbalance. Phases with decreasing and non-uniform parallelism can
be seen on the graph. Problematic grains are highlighted and others are dimmed. The highlighted grains have lower instantaneous parallelism
than the 48 available cores on our machine. The highlight indicates the amount of instantaneous parallelism exposed using a red-to-yellow
heatmap. The grain graph contains 815 grains. (b) Increasing instantaneous parallelism by lowering cutoffs reduces parallel benefit and does
not improve performance. Low parallel benefit is highlighted in a red-to-yellow (red is low) linear color gradient. Grains without the problem
are dimmed. Only lower half of graph shown for space reasons. Entire graph contains 18373 grains, 48% with low parallel benefit.

runtime systems as shown in Figure 1. Further improvements can
come from algorithmic changes, access-pattern-aware data distri-
bution and locality-aware scheduling.

4.3.2 359.botsspar
359.botsspar is an iterative task-based program from SPEC-OMP
to compute the L-U factorization of a sparse matrix. The program
scales poorly with an input matrix with 60X60 blocks of size
250X250 shown in Figure 1. The input is half of SPEC specified
test input and is chosen for space reasons in the paper.

Figure 6a shows 359.botsspar exposing non-uniform and grad-
ually decreasing parallelism in two distinct interleaved phases. The
first phase consists of grains from sparselu.c:229(fwd) in light-
green and sparselu.c:235(bdiv) in orange and exposes less
parallelism than the second phase. The second phase exposes large
amounts of parallelism from sparselu.c:246(bmod) (magenta
grains in Figure 6a). Both gradually reduce the amount of paral-
lelism and therefore fail to take advantage of all 48 cores on our
machine.

359.botsspar has a more severe bottleneck than gradually re-
ducing parallelism – work inflation. This is known since Olivier
et al. [30] reported work inflation at program-level granularity for
BOTS SparseLU, the ancestor of 359.botsspar. We gradually lower
the work deviation problem threshold from 2 to 1.2 and see that
many tasks suffer from work inflation (Figure 6c). Visualizations
in existing tools do not flag any problems since load is balanced
and tasks are sufficiently large. Olivier et al. found that enabling
inter-procedural optimizations with ICC minimize work inflation
and improve performance upto 60% during parallel and upto 3X

for sequential execution. The drawbacks are being tied to ICC for
these improvements and that culprit tasks cannot be discerned.

By sorting task definitions by creation count and work infla-
tion, the graph pin-pointed sparselu.c:246(bmod) as the culprit.
These grains were most frequent since they contribute work solely
to the phase that exposes the largest amount of parallelism (ma-
genta colored tasks in Figure 6a). Since sparselu.c:246(bmod)
had similar work inflation to other tasks (Figure 6c), programmers
could focus on optimizing that first.

We decided to improve the cache behavior since the graph also
highlighted poor memory hierarchy utilization for the same task.
Cache misses and coherence latency are the main sources of work
inflation [30]. The body of sparselu.c:246(bmod) called bmod
which had a triple-nested loop with a cache-unfriendly access pat-
tern. We performed manual loop interchange to get a more cache-
friendly access pattern which reduced work inflation (Figure 6d)
and improved performance for all runtime systems (Figure 1).

4.3.3 FFT
FFT is a recursive fork-join task-based program from BOTS that
calculates the 1-D DFT of a set of complex-valued samples. The
program uses divide-and-conquer to divide the samples into smaller
sets before calculating the DFT. Many tasks are created even for
small inputs since several tasks are created for each divide.

FFT scales badly on all except ICC for an input of 16M sam-
ples (Figure 1). Visualizations in existing tools show that load is
balanced and provide no further information to understand and im-
prove performance.

The grain graph reveals the main problem with FFT: most grains
are too small to provide parallel benefit. Figure 7 contains a sum-



(a) (b) (c) (d)

Figure 6: Grain graph of 359.botsspar. (a) 359.botsspar has two distinct, interleaved computation phases that expose gradually decreasing
parallelism. The graph is for a small input (5,5). (b) Grain graph with evaluation input contains 19811 grains. Grains that suffer from work
inflation are highlighted in a red-to-yellow (red is high) linear color gradient. Non-problematic grains are dimmed. (c) Performance is lost
due to wide-spread work inflation (threshold set to 1.2). (d) Optimizations reduce work inflation. No work inflation is seen on grains in the
larger parallelism phase. Work-inflated grains are isolated to the lesser parallelism phase.

mary of parallel benefit since 600 thousand grains can be displayed
on a monitor but does not fit in this paper. Increasing parallel ben-

0

25

50

75

fft
.c:

10
18

fft
.c:

10
20

fft
.c:

16
80

fft
.c:

16
82

fft
.c:

20
80

fft
.c:

20
82

fft
.c:

46
64

fft
.c:

46
80

fft
.c:

46
96

fft
.c:

47
00

fft
.c:

48
67

fft
.c:

58

fft
.c:

60

fft
.c:

83
4

fft
.c:

83
6

P
er

ce
nt

ag
e 

gr
ai

ns
 w

ith
 

 p
ro

bl
em

at
ic

 p
ar

al
le

l b
en

ef
it

Before After

0

5

10

15

20

25

fft
.c:

10
18

fft
.c:

10
20

fft
.c:

16
80

fft
.c:

16
82

fft
.c:

20
80

fft
.c:

20
82

fft
.c:

46
64

fft
.c:

46
80

fft
.c:

46
96

fft
.c:

47
00

fft
.c:

48
67

fft
.c:

58

fft
.c:

60

fft
.c:

83
4

fft
.c:

83
6

P
er

ce
nt

ag
e 

co
nt

rib
ut

io
n 

to
 

 to
ta

l p
ro

gr
am

 w
or

k

Before After

Figure 7: FFT performance grouped by definition in source files.
Several grains have low parallel benefit in the original program.
Grains show good parallel benefit after optimizations. Not all grains
are created in the optimized program due to cutoffs.

efit is key to improving performance.
We began to optimize FFT to increase the parallel benefit. The

graph singled out the first optimization candidate – fft.c:4680.
Those grains have a high prevalence of poor parallel benefit and
contribute most heavily to to total program work (Figure 7). We
decided to increase the parallel benefit by adding cutoffs to prevent
creation of too small grains. Inspecting fft aux called solely in the
body of fft.c:4680 revealed an opportunity to add a cutoff based
on recursion depth. Systematically inspecting other optimization
candidates on the grain graph revealed similar opportunities to
introduce cutoffs. The same cutoff could be used in several places
which allowed us to reduce the number of cutoffs to two. Good
values for the cutoffs were quickly obtained using performance and
structural feedback from the graph.

FFT performance improves after optimizations as shown in
Figure 1. All runtime systems benefit since tasks are big enough
to provide good parallel benefit (Figure 7).

ICC performed well without optimizations, which led us to sup-
pose that the ICC runtime system uses internal cutoffs to improve

parallel benefit. We inspected the sources for version 15.0.1 [20]
and found a queue-size based internal cutoff. GCC fares poorly de-
spite limiting task creation at 64 times the number of threads [34].

Despite improving the parallel benefit, FFT fails to scale to a
high degree. Figure 8 shows the graph for the optimized program
which points out the next bottleneck. A majority of grains have
poor memory hierarchy utilization. Since the problem is observed
despite using a work-stealing scheduler, we can conclude that al-
gorithmic changes and locality-aware scheduling (or any schedule
better than work-stealing) are necessary to further improve FFT
performance. Optimization focused on the critical path alone will
not suffice since poor memory hierarchy utilization is wide-spread.

4.3.4 Freqmine
Freqmine is a parallel for-loop based program from Parsec that
mines transactions for association rules using an array-based im-
plementation of the FP-growth algorithm. The program takes a
database and a minimum support and finds all frequent item-sets
with support equal to or greater than the minimum support.

Freqmine performs poorly on all runtime systems under what
Parsec calls simlarge inputs, kosarac 990k.dat as transaction
database and 11000 as minimum support as shown in Table 1.
Visualizations in existing tools show load is imbalanced while
executing a dynamically scheduled parallel for-loop in function
FP tree::FP growth first(). We refer to the loop as FPGF.

Table 1: Freqmine performs poorly on all runtime systems due
to the imbalanced FPGF loop. 7 cores are sufficient to maintain
performance for the evaluation input. RTS is short for runtime
system.

RTS Speedup 48-core exec. time 7-core exec. time
ICC 6.58 1.71s 1.72s
GCC 6.68 1.68s 1.69s
MIR 7.2 1.65s 1.68s



Figure 8: Grain graph of FFT shows the next problem to be tackled. Several grains have poor memory hierarchy utilization highlighted
in a red-to-yellow (red is low) linear color gradient. Non-problematic grains are dimmed. Algorithmic changes and better scheduling are
necessary to further improve performance. Grain graph has 4591 grains.

The loop is instantiated thrice and the second instance takes up 70%
of the program execution time.

We first focused on improving the load balance of FPGF. Tra-
ditional wisdom advocates creating more chunks by reducing the
chunk size but that is already set to the smallest value, one.

Existing tools also show that FPGF has high synchronization
cost for most cores. Traditional wisdom advocates making syn-
chronizations more infrequent by increasing the chunk size. This
seemed reasonable considering the load imbalance was already
bad. However, increasing the chunk size even by a small amount
increases the load imbalance. At this stage, we looked for opportu-
nities to speedup FPGF’s body. Unfortunately, the README notes
that functions called from the body are inherently sequential and
algorithmic optimizations are unlikely to be revealed by tools.

Our method reveals the root cause of the problem: grains of
FPGF have uneven size, as shown in Figure 10. Most grains are
small and provide poor parallel benefit. Only a few grains are
large. Inspection reveals that the large grains execute single loop
iterations that are spaced irregularly across the iteration range and
not isolated to a particular portion of the iteration range causing
some cores get more work than others due to the greedy nature
of the dynamic schedule. The many small chunks cause the high
synchronization overhead indicated by existing tools. We increased
the chunk size to improve parallel benefit, but that made the load
balance even worse.

That FPGF is bound to have load imbalance presented us with
an opportunity to optimize resource usage instead. We used a
straight-forward bin-packer implemented in Gecode [42] to com-
pute the minimum number of cores necessary to retain the same
makespan – 7 cores. We set num threads to 7 for the instance in

0e+00

1e+09

2e+09

3e+09

0 10 20 30 40
Core

W
or

k 
cy

cl
es

48 cores 7 cores

Figure 10: Load balance of second instance of loop FPGF which
contains 1292 chunks of disproportionate size. Load balance is 35.5
on 48 cores and improves to 1.06 on 7 cores.

the source code and show the resulting load balance with similar
execution time in Figure 10 and Table 1.

4.3.5 Strassen
Strassen is a recursive fork-join task-based program from BOTS to
multiply matrices using the Strassen algorithm. The matrices are
decomposed recursively into smaller submatrices and multiplica-
tion is performed at the leaves of the recursion on the smallest sub-
matrices. The amount of recursive decomposition is controlled by
a cutoff for the smallest submatrix size. We refer to the submatrix
size cutoff as SC for the remainder of the section.

Strassen scales poorly on all runtime systems (Figure 1, input:
8192 X 8192 matrix, SC = 128). Visualizations in existing tools
show that the load is imbalanced, and remains imbalanced despite
lowering SC. The behavior contradicts the intuition that balance
should improve when more tasks are created. Increasing SC does



(a)

(b)

Figure 9: Grain graph of Freqmine with evaluation input contains 6985 grains. (a) The large magenta grains from for-loop in
FP tree::FP growth first() give bad load balance of 35.5. Grain colors encode for-loop definition in source code. (b) Most grains
are too small and provide poor parallel benefit highlighted in a red-to-yellow (red is low) linear color gradient. Grains without the problem
are dimmed. Poor parallel benefit also seen in other loops.

not worsen the balance either, which is surprising since tasks be-
come larger.

The reason for the load imbalance becomes clear when we com-
pare grain graphs for different SC values. All graphs are shallow
and look the same (Figure 11a) indicating the cutoff has no effect.

Strassen suffers from a similar problem as 376.kdtree. We found
a hard-coded cutoff that overrides SC and limits the exposed paral-
lelism in the functions for matrix decomposition. Performance im-
proves without cutoff on all runtime systems (Figure 1) since that
provides sufficient parallelism for our machine (Figure 11a).

However, a new problem surfaces – poor memory hierarchy uti-
lization (Figure 11b). Olivier et al. [30], who identify the same
problem at a program-level granularity, catalog fixes that include
using standard blocked matrix multiplication algorithm for multi-
plying submatrices at recursion leaves and placing data hierarchi-
cally using Morton ordering [43].

Strassen also performs poorly (48-core speedup of 10) with a
central queue-based task scheduler. Sibling tasks are scattered un-
der central queue scheduling (Figure 11d). Recall that scatter is
highlighted when tasks are executed far away from each other (far-
ther than 12 cores, i.e., off-socket on our machine) since communi-
cation and data fetching off-core takes more time. A work-stealing
scheduler reduces scatter by adding children to the front of a local
queue and other workers steal from the back of that queue. Scatter
under work-stealing scheduling is shown in Figure 11c.

4.3.6 Other benchmarks
We summarize the performance analysis with grain graphs on the
remaining programs. We group programs based on speedup with
MIR over single core execution with ICC on the 48-core machine.

Speedup over 30: Over 65% of chunks of the sole parallel for-
loop in Blackscholes (input 4 million points) have poor memory
hierarchy utilization. Around 33% of the chunks also have low
parallel benefit. Other metrics indicate good behavior. The other
possible problems are serial sections.
367.imagick contains for-loops with poor parallel benefit
(magick shear.c:1694, magick decorate.c:406,
magick enhance.c:3554, magick shear.c:1474 and
magick transform.c:650). These loops miss conditional
for-loop throttling macros called omp throttle present else-
where. Our method points out these inconsistencies. The input
we tested for 367.imagick is the chain -shear 31 -resize
1280x960 -negate -edge 14 -implode 1.2 -flop
-convolve 1,2,1,4,3,4,1,2,1 -edge 100 which is poor
performing according to documentation by SPEC.
372.smithwa (input 34) parallel blocks mergeAlignment.c:160
and verifyData.c:46 suffer from load imbalance, low mem-
ory hierarchy utilization and poor parallel benefit. The load
imbalance in verifyData.c:46 is not visible in timings since



(a)

(b)

(c)

(d)

Figure 11: Grain graph of Strassen for small input (2048X2048). (a) Strassen contains a hard-coded cutoff that limits performance since depth
is shallow irrespective of program input causing insufficient parallelism to be exposed for our 48-core machine. The graph is limited to 58
grains. Grain colors encode task definition in source code. (b) Many more tasks are seen at recursion leaves, exposing increased parallelism
and improving performance when the hard-coded cutoff is disabled. The graph contains 2801 grains. Only the right half of the graph is
shown for space reasons. The problem of poor memory hierarchy utilization comes to fore. Grains with poor memory hierarchy utilization
are highlighted using a red-to-yellow (red is low) linear color gradient that encodes the relative intensity of memory hierarchy utilization.
Non-problematic grains are dimmed. (c) Scheduler choice is crucial for performance. Few grains are scattered with a work-stealing scheduler.
Problematic scatter is highlighted using a violet-to-red (rainbow) color gradient that encodes the executing core. Non-problematic grains are
dimmed. (d) Many tasks are scattered when a central queue-based scheduler is used.

the region of interest excludes this blocks. Our method shows
the problem since the graph represents the whole program.
NQueens (input 14) and 358.botsalgn (input prot.200.aa)
scale linearly and all metrics indicate good behavior.
Fibonacci is a common example for illustrating task-based
OpenMP programming and metrics for input 48 with cutoff
12 indicate problems in work deviation and parallel benefit.
The grain graph immediately demonstrates how depth cutoffs
control recursion depth and amount of computation performed
by leaf grains which commonly do brunt of the work in task-
parallel programs.

Speedup less than 20: UTS (test.input) suffers from poor parallel
benefit for most of the 4 million grains. Despite the sheer size
the graph still captures the imbalance after zooming. UTS can
benefit from inlining within the runtime system or depth-based
cutoffs.
In Bodytrack, chunks of parallel for-loops in all functions
except ParticleFilterOMP::CalcWeights() suffer from
poor parallel benefit and low memory hierarchy utilization.
Loop fusion might improve the scaling and the metrics point
out good candidates such as loops in FlexFilterRowVOMP()
and FlexFliterColumnVOMP(). Serial sections are also bot-
tlenecks.

Floorplan is a branch-and-bound optimal solution search that
has non-deterministic behavior built-in due to pruning of the
search space [14]. This behavior is reflected by the grain graph
since the shape of the graph changes for different thread counts.

5. Related Work
Numerous performance visualization techniques and performance
analysis tools [17, 25] have been developed since 1997 when
OpenMP version 1.0 was released. We focus on techniques and
tools that visualize OpenMP execution.

Tools predominantly visualize OpenMP execution using thread
time-line and function call graph structures. Task execution is de-
picted on the structures from the perspective of the runtime sys-
tem where tasks execute interleaved with other tasks in a runtime-
optimized manner. The unfamiliar nature of the interleaving makes
connecting performance back to program structure impractical for
programmers. Parallel for-loop performance is similarly difficult to
analyze since it is aggregated at the thread-level without distinc-
tion between chunks. The disconnect between performance visual-
ization and program structure is a long-standing problem that was
echoed more than a decade ago by the creators of DMPL [9] and
continues to persist in recent tools [37]. We follow with a detailed



discussion on problems with visualizing tasks and chunks on thread
time-lines and function call graphs and compare with our method.

Thread Time-line Visualization: The thread time-line shows state
transitions of individual threads as they happen. Several tools
including Intel VTune Amplifier, Vampir [7], Paraver [32], hpc-
traceviewer of HPCToolKit [1], Aftermath [12] and GOMP
Profiler [2] visualize time-lines. Most tools use built-in profiling
infrastructure. Exceptions include Vampir that uses traces from
Score-P [22] or Scalasca [19], and Paraver that uses traces from
OmpSs-Extrae [15]. The tools differentiate tasks and for-loop
execution on the thread time-line as states separate from other
thread states with the exception of VTune Amplifier. Time and
hardware events spent in individual states can be aggregated,
as seen in the histogram feature in Paraver. Task and for-loop
load balance can be determined per thread by aggregating time
spent in their particular execution states. It can be globally un-
derstood that tasks or chunks are too fine grained by checking
if aggregated parallelization time exceeds aggregated execu-
tion time. Identifying large grained chunks is not possible using
visualizations in existing tools.
Parallelism trends such as instantaneous parallelism are not
captured by the time-line visualization since it restricts itself
to number of the threads and manual inference is prevented
since parent-child task connections are typically not shown.
Ding et al. [11] show parent-child relationship on the time-
line by super-imposing edges between parent and child tasks.
Their visualization does not however distinguish task fragments
and connects parent and child tasks using cyclic and redundant
edges, producing convoluted graph layouts. Servat et al. [38]
connect tasks to parent on the time-line without capturing prox-
imity in code.
Task identifiers help in understanding scheduling action and to
compare parent and children to infer parallel benefit, but are not
shown on the time-line. Exceptions are the GOMP profiler and
a research prototype [36] of Vampir that show unique identifiers
for tasks. Parents cannot be identified from task identifiers in the
Vampir research prototype. The GOMP profiler captures both
task and parent identifiers in a table associated with the time-
line. No tools provide schedule independent task identifiers
which are essential to calculate work deviation per task.
Computing execution time per task from the time-line is im-
practical because tasks are spread out and interleaved on differ-
ent time-lines since threads are free to schedule and run other
tasks. Fragments have to be individually tracked and aggregated
to infer per-instance time – an error-prone and tedious step in
the presence of thousands of tasks typically created by task-
based OpenMP programs. The time-line aggregation function
does not work at a per-task instance level. Aggregating other
per-task instance metrics such as hardware performance counter
events is similarly impractical for typical programs with thou-
sands of tasks.
None of the time-lines we have seen highlight the critical path
through tasks or for-loops. The critical path is an important fil-
ter for selecting first-optimization candidates. Sampling-based
tools such as VTune and hpctraceviewer show frequently sam-
pled regions of code, hotspots, on the time-line but there is no
guarantee that hotspots appear on the critical path. Scalasca [19]
identifies and visualizes the critical path for MPI programs.

Function Call Graph Visualization: The function call graph is a
tree-like visualization that shows how functions call each other.
Fewer tools provide call graph visualization in comparison to
the widely available time-line visualization. The call graph is
useful to understand how functions performed under sequential

execution but ill-suited to depict task/parallel for-loop execu-
tion since the instantiation and execution of these constructs are
decoupled and subject to runtime-optimizations unlike function
calls which execute immediately when called.
Call graphs typically show that tasks execute within the con-
text of task synchronization calls to the runtime system. Tasks
are typically not differentiated from other functions and tasks
executing within the synchronization context are not necessar-
ily children of the caller. Parent-child relationships cannot be
inferred from the call graph so a time-line graph is required.
Task execution within synchronization contexts on call graphs
are difficult to follow since they embody runtime-optimizations.
For example, the VTune call graph requires runtime system
knowledge to infer that tasks are inlined and executed immedi-
ately or deferred for later execution based on internal cutoffs. In
addition, the synchronization context turns into a deeply-nested
task tree which is difficult to navigate since OpenMP tasks can
create children of their own typically in a recursive manner. In-
ferring parallelism trends from the call graph is hard.
Task visualization on call graphs is not uniform across tools.
The CUBE call graph provided by Scalasca [19] aggregates task
computation time to the definition in the program. Individual
task instances are not differentiated and average task duration
has to be estimated through visit counts. OmpP [18] has a tex-
tual call graph with execution time of task definitions but not
per instance. The call graph in the Oracle Solaris Studio perfor-
mance analyzer does not explicitly label tasks, instead functions
called by tasks are shown. This complicates calculating exclu-
sive task execution time since tasks and ordinary functions are
not differentiated. The VTune call graph does not constantly
distinguish tasks from functions due to runtime system inlining
optimizations. The call graph visualized by Vampir [7] provides
the highest information by aggregating execution time and call
counts of task definitions by depth, but does not differentiate
individual task instances.
Parallel for-loops are retro-fitted as special functions on the call
graph similar to tasks. Computation time, scheduling overhead,
and iteration counts of all loop instances are aggregated to the
definition in the program with the exception of the latest 2016
version of VTune which separates loop instances. No call graph
visualization in existing tools distinguishes chunks or functions
called within loops.

Task Graph Visualization: DAGs are useful to visualize dynamic
program behavior. Few performance analysis tools visualize
tasks in DAGs.
Temanejo [6] visualizes data-flow execution of OmpSs and
OpenMP 4.0 tasks in a task dependence graph and uses it
as a graphical debugging aid. Tasks on the dependence graph
do not have problems highlighted but they can be selected
for execution in a step-by-step manner. It is unclear if the
dependence graph shows execution time and other performance
properties of tasks.
Tareador is an OmpSs tool that visualizes data-flow execu-
tion of OmpSs/OpenMP 4.0 tasks in a static task dependence
graph [4, 41]. Task execution time and other performance in-
formation are not available as annotations and problems are not
highlighted. The Flow Graph Designer [44] visualizes compile-
time data dependencies between Intel TBB tasks in a graph.
Performance of per-task instances created during execution are
not available on the Flow Graph Designer.
Paradyn [24] uses dynamic instrumentation and automatically
tests hypotheses to narrow down performance problems in long-
running programs displayed in multiple DAGs grouped by re-



sources. Paradyn’s notion of tasks is different from tasks in
OpenMP [3].
The recent OMPT interface [16] is a good step towards enabling
per-task performance visualization tools for OpenMP. No tool
to the best of our knowledge uses OMPT events to visualize
task graphs yet.

Our method complements thread time-lines, function call graphs
and existing task graph visualizations by zooming into execution at
the grain level. We visualize problems in a single graph that shows
performance of all grains. Trends in parallelism can be immedi-
ately inferred and grain performance is readily available on the
graph along with problem highlights. Programmers can connect
execution to program structure since children are depicted close
to the parent. The graph structure is robust under runtime system
optimizations such as task inlining. We generalize load balance to
include tasks and display work deviation per-grain. Metrics such as
parallel benefit, instantaneous parallelism, and scatter are absent in
other tools.

Cilkprof [35] is a low-overhead profiler for Cilk programs that
textually quantifies the parallelism contributed by call sites – task
definitions. Our method works at the finer resolution of grains,
which are individual instances of task definitions, and graphically
visualizes problems with several performance metrics including
parallelism contribution (instantaneous parallelism metric) .

The disconnect between performance visualization and program
structure is not isolated to OpenMP and until recently also troubled
programmers of Charm++, a task-based programming model based
on asynchronous messaging. Isaacs et al. [21] solve the problem by
re-ordering Charm++ event traces to recover and visualize the log-
ical structure familiar to programmers. They also derive and map
metrics onto the logical structure visualization to aid performance
analysis, similar to our approach.

The starting point for our work was the elegant graph notation
used by McCool et al. [23] to explain parallelization patterns.

6. Conclusions
We have presented grain graphs, a method to visualize program
execution from a predictable program perspective while retaining
essential runtime system execution aspects such as scheduling and
memory hierarchy performance. We demonstrated how our method
guides programmers to understand and optimize poorly perform-
ing, inadequately understood standard programs.

Grain graphs are independent of profiling method and can be
adopted to depict any control-flow that creates and synchronizes
asynchronously with explicit, implicit or conceptual tasks.

We do not yet visualize OpenMP 4.0 data-flow tasks due to lack
of data-dependence resolution support in the MIR profiler. There
are no conceptual problems in extending our method to task de-
pendence graphs when the profiler supports data-flow tasks. Sim-
ilarly there are no conceptual problems to visualize the recently
announced task-generating for-loops (version 4.5) once they are
supported by the profiler. Large graphs have long rendering times,
which is a scalability issue since programmer work flow is iterative.
We have encouraging results from early experiments with collaps-
ing collections of nodes and replacing them with a single summary
node in the graph.

Acknowledgments
This work was partially funded by the Artemis PaPP Project (nr.
295440).

References
[1] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-

Crummey, and N. R. Tallent. Hpctoolkit: Tools for performance anal-
ysis of optimized parallel programs. Concurrency and Computation:
Practice and Experience, 22(6):685–701, 2010.

[2] J. M. Arul, G.-J. Hwang, and H.-Y. Ko. GOMP profiler: A profiler for
OpenMP task level parallelism. Computer Science and Engineering,
3(3):56–66, 2013.

[3] E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli,
X. Teruel, P. Unnikrishnan, and G. Zhang. The design of OpenMP
tasks. Parallel and Distributed Systems, IEEE Transactions on, 20(3):
404–418, 2009.

[4] Barcelona Supercomputing Center. OmpSs task dependency graph,
2013. http://pm.bsc.es/ompss-docs/user-guide/run-programs-plugin-
instrument-tdg.html. Accessed 10 April 2015.

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark
suite: characterization and architectural implications. In Proc. of the
International Conference on Parallel Architecture and Compilation
Techniques (17th PACT’08), pages 72–81. ACM, 2008.

[6] S. Brinkmann, J. Gracia, and C. Niethammer. Task debugging with
temanejo. In Tools for High Performance Computing 2012, pages 13–
21. Springer, 2013.

[7] H. Brunst and B. Mohr. Performance analysis of large-scale OpenMP
and hybrid MPI/OpenMP applications with Vampir NG. In OpenMP
Shared Memory Parallel Programming, number 4315 in LNCS, pages
5–14. Springer, 2008.

[8] D. Chase and Y. Lev. Dynamic circular work-stealing deque. In Pro-
ceedings of the Seventeenth Annual ACM Symposium on Parallelism
in Algorithms and Architectures, SPAA’05, pages 21–28. ACM, 2005.

[9] J. Cownie, J. DelSignore, John, B. de Supinski, and K. Warren.
DMPL: An OpenMP DLL debugging interface. In OpenMP Shared
Memory Parallel Programming, volume 2716 of LNCS, pages 137–
146. Springer, 2003.

[10] G. Csardi and T. Nepusz. The igraph software package for complex
network research. InterJournal, Complex Systems:1695, 2006.

[11] Y. Ding, K. Hu, K. Wu, and Z. Zhao. Performance monitoring and
analysis of task-based OpenMP. PLoS ONE, 8(10):e77742, 2013. doi:
10.1371/journal.pone.0077742.

[12] A. Drebes, A. Pop, K. Heydemann, A. Cohen, and N. Drach-Temam.
Aftermath: A graphical tool for performance analysis and debugging
of fine-grained task-parallel programs and run-time systems. In 7th
Workshop on Programmability Issues for Heterogeneous Multicores
(MULTIPROG, associated with HiPEAC), Vienna, Austria, 2014.

[13] A. Duran, J. Corbalán, and E. Ayguadé. An adaptive cut-off for task
parallelism. In High Performance Computing, Networking, Storage
and Analysis. SC’08. International Conference for, pages 1–11, 2008.

[14] A. Duran, X. Teruel, R. Ferrer, X. Martorell, and E. Ayguade.
Barcelona OpenMP tasks suite: A set of benchmarks targeting the
exploitation of task parallelism in OpenMP. In Parallel Processing,
2009. ICPP’09. International Conference on, pages 124–131, 2009.

[15] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Mar-
torell, and J. Planas. Ompss: a proposal for programming heteroge-
neous multi-core architectures. Parallel Processing Letters, 21(02):
173–193, 2011.

[16] A. E. Eichenberger, J. Mellor-Crummey, M. Schulz, M. Wong,
N. Copty, R. Dietrich, X. Liu, E. Loh, and D. Lorenz. OMPT: An
OpenMP tools application programming interface for performance
analysis. In OpenMP in the Era of Low Power Devices and Accel-
erators, pages 171–185. Springer, 2013.

[17] K. Fürlinger. OpenMP application profiling—state of the art and
directions for the future. Procedia Computer Science, 1(1):2107–
2114, 2010.

[18] K. Fürlinger and D. Skinner. Performance profiling for OpenMP tasks.
In Evolving OpenMP in an Age of Extreme Parallelism, number 5568
in LNCS, pages 132–139. Springer, Jan. 2009.



[19] M. Geimer, F. Wolf, B. J. Wylie, E. Ábrahám, D. Becker, and B. Mohr.
The Scalasca performance toolset architecture. Concurrency and
Computation: Practice and Experience, 22(6):702–719, 2010.

[20] Intel Corporation. OpenMP* Runtime to align with Intel
Parallel Studio XE 2015 Composer Edition Update 3, 2015.
https://www.openmprtl.org/download. Accessed 10 April 2015.

[21] K. E. Isaacs, A. Bhatele, J. Lifflander, D. Böhme, T. Gamblin,
M. Schulz, B. Hamann, and P.-T. Bremer. Recovering logical structure
from Charm++ event traces. In Proceedings of the International Con-
ference on High Performance Computing, Networking, Storage and
Analysis, ser. SC, volume 15, 2015.

[22] D. Lorenz, P. Philippen, D. Schmidl, and F. Wolf. Profiling of OpenMP
tasks with score-p. In Parallel Processing Workshops (ICPPW), 2012
41st International Conference on, pages 444–453, 2012.

[23] M. McCool, J. Reinders, and A. Robison. Structured Parallel Pro-
gramming: Patterns for Efficient Computation. Access Online via El-
sevier, 2012.

[24] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth,
R. B. Irvin, K. L. Karavanic, K. Kunchithapadam, and T. Newhall.
The paradyn parallel performance measurement tool. Computer, 28
(11):37–46, 1995.

[25] M. S. Mohsen, R. Abdullah, and Y. M. Teo. A survey on performance
tools for OpenMP. World Academy of Science, Engineering and
Technology, 49, 2009.

[26] P. J. Mucci, S. Browne, C. Deane, and G. Ho. PAPI: A portable
interface to hardware performance counters. In Proceedings of the
Department of Defense HPCMP Users Group Conference, pages 7–
10, 1999.

[27] A. Muddukrishna, P. A. Jonsson, V. Vlassov, and M. Brorsson.
Locality-aware task scheduling and data distribution on NUMA sys-
tems. In OpenMP in the Era of Low Power Devices and Accelerators,
number 8122 in LNCS, pages 156–170. Springer, 2013.

[28] A. Muddukrishna, P. A. Jonsson, and M. Brorsson. Characterizing
task-based OpenMP programs. PLoS ONE, 10(4):e0123545, 2015.
doi: 10.1371/journal.pone.0123545.

[29] M. S. Müller, J. Baron, W. C. Brantley, H. Feng, D. Hackenberg,
R. Henschel, G. Jost, D. Molka, C. Parrott, J. Robichaux, et al. Spec
OMP2012—an application benchmark suite for parallel systems using
openmp. In OpenMP in a Heterogeneous World, pages 223–236.
Springer, 2012.

[30] S. L. Olivier, B. R. de Supinski, M. Schulz, and J. F. Prins. Charac-
terizing and mitigating work time inflation in task parallel programs.
In High Performance Computing, Networking, Storage and Analysis
(SC), 2012 International Conference for, pages 1–12, 2012.

[31] OpenMP Architecture Review Board. OpenMP application pro-
gram interface version 4.5, 2015. http://www.openmp.org/
mp-documents/openmp-4.5.pdf.

[32] V. Pillet, J. Labarta, T. Cortes, and S. Girona. Paraver: A tool to
visualize and analyze parallel code. In Proceedings of WoTUG-18:
Transputer and occam Developments, volume 44, pages 17–31, 1995.

[33] A. Podobas and M. Brorsson. A comparison of some recent task-
based parallel programming models. In Proceedings of the 3rd Work-
shop on Programmability Issues for Multi-Core Computers, (MULTI-
PROG’2010), Pisa, 2010.

[34] A. Podobas, M. Brorsson, and K.-F. Faxén. A comparative per-
formance study of common and popular task-centric programming
frameworks. Concurrency and Computation: Practice and Experi-
ence, 27(1):1–28, 2015.

[35] T. B. Schardl, B. C. Kuszmaul, I. Lee, W. M. Leiserson, C. E. Leis-
erson, and others. The Cilkprof Scalability Profiler. In Proceed-
ings of the 27th ACM on Symposium on Parallelism in Algorithms
and Architectures, pages 89–100. ACM. URL http://dl.acm.org/
citation.cfm?id=2755603.

[36] D. Schmidl, P. Philippen, D. Lorenz, C. Rössel, M. Geimer, D. a. Mey,
B. Mohr, and F. Wolf. Performance analysis techniques for task-based
OpenMP applications. In OpenMP in a Heterogeneous World, number
7312 in LNCS, pages 196–209. Springer, 2012.

[37] D. Schmidl, C. Terboven, D. a. Mey, and M. S. Müller. Suitability of
performance tools for OpenMP task-parallel programs. In Tools for
High Performance Computing 2013, pages 25–37. Springer, 2014.

[38] H. Servat, X. Teruel, G. Llort, A. Duran, J. Gimenez, X. Martorell,
E. Ayguadé, and J. Labarta. On the instrumentation of OpenMP and
OmpSs tasking constructs. In Euro-Par Workshops, volume 7640 of
LNCS, pages 414–428. Springer, 2012.

[39] O. Sinnen. Task scheduling for parallel systems, volume 60. John
Wiley & Sons, 2007.

[40] M. E. Smoot, K. Ono, J. Ruscheinski, P.-L. Wang, and T. Ideker. Cy-
toscape 2.8: new features for data integration and network visualiza-
tion. Bioinformatics, 27(3):431–432, 2011.

[41] V. Subotic, S. Brinkmann, V. Marjanovic, R. M. Badia, J. Gracia,
C. Niethammer, E. Ayguade, J. Labarta, and M. Valero. Programma-
bility and portability for exascale: Top down programming methodol-
ogy and tools with starss. Journal of Computational Science, 4(6):450
– 456, 2013. doi: http://dx.doi.org/10.1016/j.jocs.2013.01.008.

[42] G. Team. Gecode: Generic constraint development environment, 2006.
http://www.gecode.org.

[43] M. Thottethodi, S. Chatterjee, and A. R. Lebeck. Tuning Strassen’s
matrix multiplication for memory efficiency. In Proceedings of the
1998 ACM/IEEE conference on Supercomputing, pages 1–14. IEEE
Computer Society, 1998.

[44] V. Tovinkere and M. Voss. Flow graph designer: A tool for designing
and analyzing Intel R© threading building blocks flow graphs. In ICPP
Workshops, pages 149–158. IEEE Computer Society, 2014.

[45] yWorks GmBh. yEd graph editor, 2015. http://www.yworks.com/
en/products_yed_about.html. Accessed 10 April 2015.


