Coarse Grain Parallelization of Deep Neural Networks

Marc Gonzalez Tallada

Universitat Politecnica de Catalunya-BarcelonaTech

marc@ac.upc.edu

Abstract

Deep neural networks (DNN) have recently achieved extraordinary
results in domains like computer vision and speech recognition. An
essential element for this success has been the introduction of high
performance computing (HPC) techniques in the critical step of
training the neural network. This paper describes the implementa-
tion and analysis of a network-agnostic and convergence-invariant
coarse-grain parallelization of the DNN training algorithm. The
coarse-grain parallelization is achieved through the exploitation of
the batch-level parallelism. This strategy is independent from the
support of specialized and optimized libraries. Therefore, the opti-
mization is immediately available for accelerating the DNN training.
The proposal is compatible with multi-GPU execution without al-
tering the algorithm convergence rate. The parallelization has been
implemented in Caffe, a state-of-the-art DNN framework. The pa-
per describes the code transformations for the parallelization and
we also identify the limiting performance factors of the approach.
We show competitive performance results for two state-of-the-art
computer vision datasets, MNIST and CIFAR-10. In particular, on
a 16-core Xeon E5-2667v2 at 3.30GHz we observe speedups of 8 x
over the sequential execution, at similar performance levels of those
obtained by the GPU optimized Caffe version in a NVIDIA K40
GPU.

Categories and Subject Descriptors [Computing Methodologies]:
Parallel Algorithms, Machine Learning, Neural Networks

General Terms Performance, Coarse-grain Parallelism, Shared
Memory Algorithms

Keywords Deep Learning, Neural Networks, OpenMP, Stochastic
Gradient Descent

1. Introduction

Recently, deep neural networks (DNN) have achieved extraordinary
results in domains like computer vision and speech recognition
[15, 25]. One key and essential element for this success has been
the introduction of high performance computing (HPC) techniques
within one critical step in the network deployment: the network
training. Neural networks require a training stage which typically
has very high computational demands. Currently, the optimization

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PPoPP ’16, March 12-16, 2016, Barcelona, Spain.

Copyright © 2016 ACM 978-1-4503-4092-2/16/03. .. $15.00.
http://dx.doi.org/10.1145/2851141.2851158

of this stage has become the main bottleneck for a reasonable trade-
off between the final network accuracy and the actual length of the
training process [8, 10]

During the training process, a gradient descent algorithm min-
imizes a pre-defined cost function. Most computations along this
process correspond to basic linear algebra operations. In general,
an optimal training algorithm is built upon a very specific data
layout mainly composed of matrices and vectors, and an iterative
procedure that invokes specialized and highly optimized basic linear
algebra subroutines (BLAS). All the widely used DNN frameworks
(e,g.: Caffe [17], Theano [1] or Torch [9]) follow this approach.
When it comes to optimization, GPU acceleration has been the
most widespread adopted strategy and it has shown extraordinary
performance levels. GPU’s are massively parallel architectures for
very fine grain parallelism and BLAS computations make a perfect
fit for them. But in terms of programmability, porting the original
code to GPU kernels requires significant programming efforts. The
general solution has been to use specialized libraries like cuBLAS
and cuDNN [5]. Unfortunately, this approach lacks from generality.
During the research cycle to create a DNN, the optimal network
topology, parameters and data layout are unknown. So, the special-
ized GPU libraries are not yet useful. Even for the case of cuDNN,
only DNN transformations that are very well understood (e.g.: con-
volution and pooling operations), are supported, and has a strong
bias towards computer vision applications.

An unexplored strategy is a CPU parallelization at a coarser
level. Neural networks are trained with batches of data where each
batch contains a fixed number of data samples. Each sample is used
to advance the minimization of the cost function and all samples in
the batch can be processed in parallel. This defines a much coarser
thread level parallelism but adds complexity to the parallelization
process: thread level parallelism has to be explicitly introduced and
race conditions appear for the network coefficient update. The batch-
level parallelism is inherent to the gradient descent algorithm and
produces immediate acceleration irrespective of the nature of the
network computations. It does not rely on a particular optimal data
layout nor the availability of any specialized and highly optimized
library for the network layers. So, its activation does not require any
code porting efforts. We name this property as network-agnostic.
Moreover, a batch-level parallelization does not change any training
parameter, thus it does not affect the convergence of the gradient
descent. This is important, because parallelization strategies that
do change the training parameters do not ensure convergence
invariance. For instance, multi-GPU systems have been explored
when the batch and model parameters do not fit in the memory
of a single GPU. The solution has been to reduce the batch size
and make it fit in memory. But this changes the batch size and
alters the convergence. In general, doubling the number of GPUs
having halved the batch size is never a guarantee of observing a
2x speedup for the training process [15]. We name this property as
convergence-invariance.

images

Figure 1. Example of blob structure and data segments within
the blob. Each image is composed of data of three channels. Each
channel is stored in one blob segment, so that every image occupies
three blob segments. Images are stored sequentially one after the
other within the blob.

The main contribution of this paper is the implementation
and analysis of a network-agnostic and convergence-invariance
coarse-grain parallelization of the DNN training algorithm. It ex-
ploits a parallelism level that is independent from the support of
specialized and optimized libraries. Therefore, the optimization is
immediately available for accelerating the DNN training. And it
is compatible with multi-GPU execution without altering the algo-
rithm convergence rate. The parallelization has been implemented in
Caffe [17], a state-of-the-art DNN framework. The paper describes
the code transformations for the parallelization and we also identify
the limiting performance factors of the approach and expose ap-
propriate optimizations. We show competitive performance results
for two state-of-the-art computer vision datasets, MNIST [11, 22]
and CIFAR-10 [18]. In particular, in a 16-core Xeon E5-2667 at
3.30GHz we observe speedups of 8 X, at similar performance levels
of those obtained by the GPU optimized Caffe version in a NVIDIA
K40 GPU.

The rest of this paper is organized as follows: Section 2 describes
the main design aspects of Caffe regarding its parallelization.
Section 3 describes the code transformations and optimizations
for a batch-level parallelization of the training core of Caffe. Section
4 analyses the performance limiting factors of the approach and its
overall performance. Section 5 presents the related work and finally
Section 6 concludes the paper with its main conclusions.

2. The Caffe DNN Framework

Caffe is a deep learning framework for research in deep neural
networks. It is widely used across the DNN community and has
become one main platform for neural network algorithm develop-
ment. Two main reasons justify this. Firstly, Caffe supports many
network architectures and different training algorithms for neural
networks. Secondly, Caffe is optimized with GPU acceleration. All
supported layers in Caffe have two implementations, one for CPU
one for GPU. This section describes the main operational aspects of
Caffe regarding its parallelization. The objective is to describe the
neural network training algorithm in terms of how the computations
happen across the network, how the data flow across these layers
and the different types and levels of parallelism that exist within
each layer.

Input blob

Output blob

Figure 2. Example of layer transformation and its corresponding
blob organization. Every 9 input segments generate the content of
one segment in the output blob. This scheme is usual in deep neural
networks for dimensionality reduction purposes. Pooling layers (e.g.:
Caffe AVERAGE or MAX pooling layers) perform such type of
computations.

2.1 Neural Networks in Caffe

Caffe allows a user to specify the network structure in a prototext
format [14] that can capture any kind of arbitrary DAG (directed
acyclic graph). Caffe allows users to define their own networks
and each network is composed of a set of layers. Each layer
has a pre-defined generic interface. As users compose a network
of layers it becomes very easy to define extremely complicated
graphs in a very compact notation. Caffe also allows users to
specify a solver and its parameters to implement the neural network
training. The training process uses back propagation and implements
several solver algorithms such as SGD[4], ADAGRAD[13] and
NESTEROV[23].

In a feed-forward network each layer is stacked such that the
output of one layer becomes the input to the next immediate layer
in the network graph. The first layer processes the input (Data)
that is fed to the neural network. Each of the subsequent layers
apply a data transformation according to their specific computation.
The output of Caffe is the set of the coefficients in each layer
after the network training process is completed. Regarding the
parallelization of the training process, the main aspects to consider
are how the input/output data flow across the network, the structure
of the computation in each layer and the training algorithm itself.

2.1.1 Input-Output Data

Caffe stores and communicates data using blobs. Blobs provide
a unified memory interface holding data; e.g., batches of images,
model parameters, and derivatives for optimization. Mathematically
a Blob is an N-dimensional array stored in a C-contiguous fashion.
Blobs also conceal the computational overhead of mixed CPU/GPU
operation by synchronizing from the CPU host to the GPU device
as needed. The conventional blob dimensions for batches of image
data are number N x channel K x height H x width W. For example,
if a network is trained on image data, the input data would be
organized as a 4-dimensional blob and the value at index (n, k, h, w)
is physically located at index ((n * K + k) * H+ h) * W + w within
the sequential Blob data structure. The first dimension corresponds
to the image index in a batch of images and the other three indicates
the number of channels (e.g. 3 for an RGB encoded image) and the
image dimensions (height and width). Figure 1 shows an example
of an input blob. For this case, the blob stores one image with 3
data segments, one per each image channel. Images are sequentially
stored in the blob following this pattern.

2.1.2 Layer Computation

Each layer performs a data transformation by operating on the input
blobs and generates output blobs. These operations are computed in
a piecewise manner throughout the input blob. The input blobs are
organized in data segments where the linear algebra operations are
applied. The size of the segments is constant and layer dependent.
The output of the computation are blobs, again organized in fixed
size segments. The computation of a layer is built upon an iterative
structure that traverses the segments in the input blobs and applies a
specific transformation based on one or more BLAS computations
on each segment. The output of the processing of one input data
segment is stored in one segment in the output blob. Figure. 2
shows an example for this computational scheme as well as the
relation between the input and output blobs for a layer computation.
Shadowed patches correspond data segments in the blobs. In this
case, 9 data segments in the input blob are used to compute one
segment in the output blob.

In general, such transformations are implemented using basic al-
gebra operations like matrix- x -vector or matrix- X -matrix products
and are often referred to as Level 2/3 BLAS operations [3, 12]. A
layer can be understood as a procedure based on several functions in
the form of f;(x, W, b;) = W;x + b;. The layer coefficients would
correspond to the matrices W; and vectors b;. Input x would corre-
spond to a data segment in the input blob. The training process of
a neural network optimizes the W; and b; coefficients so that the
network accuracy is maximized for a particular data model.

2.1.3 Neural Network Training

The training process of a neural network is based on the gradient de-
scent algorithm. The algorithm continuously seeks the minimization
of a cost function along training epochs, where one epoch consti-
tutes of processing all the training data samples. These are grouped
in batches of fixed size and during every epoch each batch is pro-
cessed in two steps. First, the batch samples are used to compute
the average error of the network. The samples traverse the network
where each layer applies its transformation and temporally stores
its output in a blob. This phase is identified as the forward pass
of the network. Second, the network computes the gradient of its
transformation as a whole. In this phase, every layer applies the
chain rule for propagating the derivatives across the layers in the
backward direction. From the last layer up to the first one in the
network, each layer propagates its output multiplied by its deriva-
tive value. This phase is identified as the backward pass. Both the
forward and backward pass are inherently sequential as both the
output and the gradients have to be propagated through the layers in
an upward and downward manner across the network. Algorithms
1, 2 and 3 show the high level structure of the training algorithm
as well as how the data flow across the layers in the forward and
backward pass.

Algorithm 1 corresponds to one training iteration. Each data
batch b is propagated through the network. First layer processes
the batch and outputs the first transformation for each sample
in it. This is then forwarded to the second layer to apply the
next transformation. This process continues until all layers have
applied their transformation. The last layer of the network is the
one responsible to check the output of the network and evaluate the
network accuracy. The loop in line 3 implements the batch network
computation, the network forward pass. This loop is inherently
sequential and each layer transformation happens within the forward
call. The output of this call is stored in vector top for all data
samples in the batch. Each forward invocation uses as input the
top produced by the previous layer. Loop in line 6 corresponds
to the computation of network gradients. Once the network has
been evaluated with one batch, the algorithm computes every layers
gradient with respect its input. This process seeks the minimization

Algorithm 1: Iteration of the DNN training algorithm.

input : Set of B batches of S data samples each
output: Network layer coefficients

1 begin

2 while loss not acceptable do

3 for b < 1to B do

4 for s < 1to S do

5 top[1]=layers(1)— forward(batches[b][s]);
6 for [+ 2to L do

7 L top[l]=layers(1)— forward(top[l-1]);
8 diffs[L]=layers(L)— backward(top[L]);
9 for/ < L —1to1do
10 diffs[1]=layers(l)—

backward(top[1],diffs[1+1]);

1 | updateCoefficients(layers, top, diffs);
12 | loss = evaluateNetwork(layers);
13 end

of the network error. This loop is also inherently sequential and
the backward call computes the layer gradient, diffs. This process
requires both the evaluation of the layer transformation (top) and
the previous gradient computed in the immediate previous layer
(diffs) in backward manner. It corresponds to the network backward
pass. Once both the forward and backward passes are completed,
the training algorithm updates the network coefficients in all layers.
This corresponds to line 8 and procedure call to updateCoefficients.

Algorithm 2: Layer forward pass

input : Bottom blob (S, N+1, D1, Da, ..., Dn)
output: Top blob for the layer transformation

1 for s < 1to S do

2 fOI‘dl <—1t0D1 do
3 for ds < 1to D5 do
4
5 for dyy + 1to Dy do
6 tOp[f(S, dl, dg, ey dN)]=BLAS(W(d1, d2,
L ..., dnN),b(d1,da, ..., dN), bottom[g(s,
di,da, ..., dN)];

Algorithm 2 corresponds to the description of the structure of one
layer transformation. In general, the layer computation is organized
in a nest of loops that traverse the N+/ dimensions (S, D1, Do, ...,
D) of the layer input blob bottom and produces a transformation
stored in the output blob top. The first dimension corresponds to
the data samples in the batch. These are indexed with the variable
s. According to layer specific functions (f and g in line 5 of the
algorithm), data segments in the input/ouput blobs are processed
through basic linear algebra transformations (BLAS call in line 5)
that are also dependent to the data segment being processed (W and b
depend on the loop induction variables). Algorithm 3 follows a very
similar structure, but operating with blobs that store the gradient
computation (diffs_bottom and diffs_top).

poolt conv2

i (MAX Pooling) (Convolution) (MAX Poolmg]

(Data) Kernel size: 2 Kemel size: 5 » Kemnel size: 2
stride:1 stride:1 stride:1

pad: 0 pad: 0 pad: 0

convl
(Convolution)
Kemel size: 5 ‘>
stride:1

Unified memory interface to store input/output layers data,

BLOB - L
layer coefficients and derivatives.

pad: 0

relut ip2
(Rectified (Inner
Linear Uml) Product)

(Inner

ip1
Product)

Data transformation, and computation of gradients
respect input and output blobs.

LAYER

norm1
relut (Local
(Rectified

Linear Unit)

poolt
cifar (MAX Pooling)
(Data) Kernel size: 3 @
stride:2
pad: 0

convl
(Convolution)
Kemel size: 5 ‘>
stride:1

pad: 2

{routy—| Response
Normalization)

conv2

(Convolution)

Kemel size: 5
stride:1
pad: 2

relu2
(Rectified
Linear Unit)

pool2 norm2
(AVE Pooling) (Local
stride:2 Normalization)
pad: 0
(o el e
(Softmax)

pool3
(AVE Pooling)
Kernel size: 3

stride:2

pad: 0

relu3
(Rectified
Linear Unit)

ip1
(Inner

Product)

conv3
(Convolution)
Kemel size: 5

stride:1

pad: 2

Figure 3. MNIST network: composed of 9 layers, organized in two sections. First data plus convolutional and pooling layers. Second, inner
product and rectified linear units and loss. CIFAR network: composed 14 layers, organized in two sections. First, data plus convolutional,
pooling, rectified linear units and local response normalization layers. Second, pooling and inner product and loss.

Algorithm 3: Layer backward pass

input : Gradient w.r.t. top blob (S, N+1, D1, Do, ...
output: Gradient w.r.t. to bottom blob

, Dn)

1 for s <+ 1to S do

for d; < 1to D; do
for ds < 1 to D> do

_ W N

wn

for dy + 1to Dy do

6 diffs_bottom[f(s, d1,da2, ...,

dn)]|=BLAS(W(d1,ds, ..., dn), b(d1, d2,
.y dN), top[h(s, dl, do, ..., d]\])],

diffs_top[g(s, d1,d2, ..., dn)]);

2.2 Network Examples: MNIST and CIFAR-10

The MNIST [11, 22] and CIFAR-10 [18] datasets are standard
datasets for computer vision. The MNIST dataset is composed of
60,000 images, each of dimension 28 x28 pixels of handwritten
digits for training and 10,000 test examples. The Caffe distribution
includes the LeNet [21] network for generating an image classifier
for this dataset. Given a handwritten digit, the network outputs
which digit is represented (e.g.: 0 ...9).

The CIFAR-10 is a CNN (Convolution Neural network) [20]
included in the Caffe distribution that performs as an image classifier
for the CIFAR dataset. CIFAR is composed of 60,000 32x32
color images with 10 classes: airplane, automobile, bird, cat, deer,
dog, frog, horse, ship, truck with 6000 images per class. Both the
networks are built with a subset of the available layers within Caffe.

2.2.1 Networks

The aim of this section is to briefly introduce the two networks used
in this paper. The section describes the network layers and charac-
terizes them in terms of feature learning layers and dimensionality
reduction layers. Regarding the parallelization, it is important to
notice that deeper the layers, smaller the size of the input/output
blobs. Thus, the level in the network will affect the work granularity
of the existing parallelism within the layer.

Figure 3 shows the layer composition for the MNIST network.
This network is composed of an initial data layer followed by the
combination of two instances of convolutional and pooling layers.

The convolutional layers are responsible for feature learning while
the pooling layers correspond to dimensionality reduction. This
is followed by a inner product layer (ip) and ReLU layer which
furthermore reduce the dimensionality of the data traversing the
network, until the last inner product layer which outputs a vector of
10 elements, one per digit class. The last layer corresponds to a loss
layer.

Figure 3 shows the layer composition for the CIFAR network.
As in the previous network, the first layer is a data layer, followed by
the combination of convolutional, ReLU and pooling layers. Again,
convolutional layers perform the feature learning and pooling layers
perform the dimensionality reduction. The ReLU layer controls the
saturation of the output of the convolutional coefficients. CIFAR
also includes normalization layers between the first two instances
of convolution and pooling layers. The inner product layer (ip) and
loss layer (SoftMax) are the last layers of the network.

3. Caffe Coarse Grain Parallelization

This section describes the parallelization process for a coarse-grain
parallelization of the DNN training process in the Caffe DNN
framework. First, we identify the different sources of parallelism and
their granularity. Second, we describe the methodology to generate
a coarse-grain parallelism version of the algorithms discussed
previously in section 2. The coarse-grain approach targets a CPU
execution. Finally, we compare our approach to that of a fine-grain
parallelization targeting a GPU execution.

3.1 Sources of Parallelism

Given the structure of the computation in algorithms 1, 2 and 3, the
training procedure of a neural network exposes several levels and
types of parallelism.

3.1.1 BLAS Level Parallelism

This level of parallelism corresponds to the computations that are
based on basic linear algebra operations. It appears in the BLAS
computations executed for each data segment in the input/output
blobs. In algorithms 2 and 3 the BLAS calls in line 6 in both cases
hide this level of parallelism. In general, these computations corre-
spond to matrix and vector operations like matrix- x -matrix products.
Caffe includes a native and limited BLAS implementation that can
be substituted with specialized libraries like Atlas, OpenBLAS or
Intel MKL [3, 12]. These implementations are highly optimized and
exploit both thread-level parallelism and SIMD level parallelism
with vectorized code.

3.1.2 Blob Level Parallelism

This level of parallelism corresponds to the nested loops in the
forward and backward passes in lines 2 and 5 in algorithms 2 and 3.
These loops traverse the data segments in the input and output blobs
and perform BLAS calls for each segment. This kind of parallelism
can be achieved with thread-level parallelism as each BLAS call
can be executed in parallel. In general, the dimensions of the input
blob are layer dependent. Therefore the number of iterations in each
loop level is also layer dependent. All loops are interchangeable
and parallel, given the appropriate data privatization. So, in order to
have control over the most appropriate loop scheduling, loops can
be rearranged in different manners.

3.1.3 Batch Level Parallelism

This level corresponds to the loop in line 1 of algorithms 2 and 3.
This loop traverses the data samples in the batch and its parallelism
can be exploited but with limitations. Specifically for the backward
pass, it requires reduction operations for the network coefficient
update. The training algorithm averages all gradients computed with
each sample in the batch. This averaging has to be protected with
mutual exclusion operations or ordered loops plus data privatization
for the blobs that temporally store the gradients.

Algorithm 4: Coarse-grain parallel layer forward pass

input : Bottom blob (S, N+1, D1, Ds, ..., Dy)
output: Top blob for the layer transformation
1 #pragma omp parallel {

2 /* Object Privatization */ ...
3 #pragma omp for private(s, di, da,...)
4 for civ <+ 1to S x D1xDo*...*Dy do

5 s = fs(civ);

6 di = fi(civ);

7 da = fa(civ);

8 o

9 di = fr(civ);

10 for dy.; + 1to Dyy; do

11

12 for dy + 1to Dy do

13 tOp[f(S, d1, da, ..., dN)]=BLAS(W(d1, do, ...,
dn), bias(di, da, . . ., dn), bottom[g(s, d1, da,
con dN)DDs

14 }

3.2 Code Transformation

The Caffe framework is designed using object-oriented method-
ologies and uses a C++ implementation. Its main data structures
and algorithms have been designed with functional principles with
the aim of giving support for neural network development. In this
paper, we followed a methodology to parallelize Caffe so that these
principles are kept intact. We wanted to minimize code reorganiza-
tion for the optimization process. To indicate the parallelism to be
exploited, only directive-based transformations have been applied.
We used OpenMP [2] directives to indicate which loops have to be
parallelized. Whenever possible, we used the OpenMP primitives
to indicate data privatizations and reduction operations, as well as
the necessary synchronization points along the parallel code. To

increase performance, we applied very simple manual code transfor-
mations like loop coalescing or loop interchange. Therefore, in order
to enable a coarse-grain parallelization, no object data structure has
been modified and the implementation of every Cafte layer has not
been recoded with any platform-specific optimization.

3.2.1 Coarse grain parallelization and optimizations

Algorithm 4 shows a high-level description of a coarse grain
parallelization of the forward layer transformation described in
section 2. The parallelization is specified with directive-based
annotations following the OpenMP syntax and semantics. Coarse
parallelism is defined by a parallel region that englobes all the
layer code (lines 1-16). The original loop nest appears with a
coalescing transformation where some of the outermost loops have
been collapsed into a single loop statement (line 6). A parallelizing
directive for this loop is inserted (line 5) specifying the parallel
execution of this loop under a static loop scheduling (default
scheduling for OpenMP [2]). The loop coalescing transformation is
related to the parallelization process and is done to have effective
control over the work distribution under a static loop scheduling.
To understand this issue, recall the code structure in Algorithm 2.
In that version, the outermost loop corresponds to the loop that
processes every data sample in the batch (loop with variable s).
In general, after the parallelization under a static scheduling, one
iteration is the minimal work unit for work distribution. If that loop
were parallelized, the amount of work per iteration is coarse enough
so that any difference in the number of assigned iterations per thread
can cause a significant work unbalance. To maintain the coarse
level parallelization, but minimize the size of the work unit, the
coalescing transformation increments the total number of iterations,
but every iteration having a smaller amount of work. In general, the
number of coalesced loops is layer dependent. Some of the layers
are parallelized with no coalescing, other coalesce the whole loop
nest. In general, this optimization was made manually. Although
that, some of the loops define a perfect nest so that they could be
automatically transformed by the usage of the collapse construct in
OpenMP.

Algorithm 5 shows the coarse-grain parallelization of the back-
ward layer pass. For parallelism specification and work distribution,
the transformations are the same as in the previous case for the layer
forward pass. The same coalescing transformation has been applied
and parallelism has been specified at the same levels. The number of
coalesced loops is layer dependent, and this optimization has been
manually performed. The main difference resides on the special
treatment for the gradient update (diffs_top and diffs_bottom vari-
ables). Recall that the DNN training algorithm averages all gradients
computed within a batch. This happens during the layer backward
pass. Now, this computation has been parallelized, so the gradient
update has to be implemented through a reduction operation and
thread mutual exclusion mechanisms. In the algorithm, this corre-
sponds to lines 18-20. An ordered loop is added so that every thread
incorporates its gradient computation to the global variable that
stores the gradients. This mechanism requires the per-thread privati-
zation of the blob storing the gradients. The private storage for the
gradients has to be properly initialized to the neuter value of the
reduction operation, in this case the zero value (lines 4-5 in the algo-
rithm). Notice the usage of the ordered construct. A reduction-based
solution would also be valid, but would not ensure the same update
value with any number of threads. In particular, only the ordered
execution will produce the value obtained through the sequential
execution. Along the research cycle for neural networks, this issue
is critical for tuning and debugging purposes. In general, neural net-
work developers use the loss vaule to monitor the correct evolution
of the training process. Many parameters affect the convergence
of the SGD algorithm. The parallelization of the SGD algortihm

adds another one: it happens that the gradient computation affects
the overall loss value for the neural network training. Therefore,
during tuning and debugging stages developers prefer to keep the
sequential update for the gradient computation. Once appropriate
convergence is ensured, the reduction-based solution would also be
applicable.

Algorithm 5: Coarse-grain parallel layer backward pass

input : Gradient w.r.t. top blob (S, N+1, D1, Do, ..., Dn)
output: Gradient w.r.t. to bottom blob (M, O1, O2, ..., Onr)

1 #pragma omp parallel

2 {

3 /* Object Privatization */

4 Blob private-diffs_bottom(M, O1, Oa, ..., On);

5 caffe_zero(S * O1xO2%*. .. *O)y, private-diffs_bottom);

7 #pragma omp for private(s, d1, da,...)
8 for civ «+ 1to S * DixD2*. .. *Dj do

9 s = fs(civ);
10 di = fl(CiV);
11 da = fa(civ);
12
13 di, = fr(civ);
14 for diy; < 1to Dyy; do
15
16 for dy <+ 1to Dy do
17 private-diffs_bottom[f(s, d1,da2, ..., dn)]=
18 BLAS(W(dl, dg, PN dN),
19 bias(dl, do, ..., dN),
20 tOp[h(S, d1, da, ... s dN)],
21 diffs_top[g(s, d1,da, - . ., dn)]);

22 #pragma omp for ordered
23 for th < 1 to omp_get_num_threads() do
24 L caffe_average(diffs_bottom[th], private-diffs_bottom, ...);

25 }

In terms of memory utilization, the batch-level parallelism
requires extra memory related to data privatization. In particular,
the gradient computation needs temporal storage per each thread.
The amount of additional memory is determined by the number
of coefficients computed by every layer. This memory allocation
happens within the layer implementation, and the memory usage
never crosses the layer boundaries in the network. This means
that the temporal storage can be reused accross layers, so that
the total extra memory is determined by the layer with more
coefficients. For the studied networks (CIFAR-10 and MNIST),
these correspond to the convolutional layers which depend on the
size of the convolutional filters. In general, this type of layers never
required more than 1250KB (CIFAR-10) and 640KB (MNIST) of
additional memory (16 threads configuration). This corresponds to
an increment in the order of 5% given that the sequential executions
allocate 36MB (CIFAR-10) and 8MB (MNIST) of total memory.

3.3 Coarse-grain vs Fine-grain parallelization

The aim of this section is to describe the main differences between
the coarse-grain and fine-grain approaches when it comes to the
parallelization of a layer transformation. In the coarse-grain case
the outermost loop is parallelized after appropriate loop coalescing.
This loop corresponds to the batch-level parallelism, so coarse-grain
and batch-level parallelism are equivalent. In contrast, the fine-grain
approach focusses on the innermost loops. This approach coalesces
as much as possible inner loops so that enough work is generated for
the fine-grain threads It is this process which requires considerable
programming efforts. The inner loop coalescing has to be done
keeping in mind the work distribution mechanisms available for
fine-grain parallelism. Specifically for the CUDA case, here we
refer to the thread blocks and grids concepts. In general, the more
loops are coalesced, the more effective the parallelization. Besides,
optimal data layouts have to be designed so that this work-thread
association translates into an efficient data-thread association. After
this loop transformation, the resulting loop has to be extracted to
generate a GPU kernel and introduce all necessary data transfers
between host and guest devices before and after the kernel execution.
Clearly, when compared to the coarse-grain parallelization, the
programming efforts are much more significant in the case of
the fine-grain parallelization. At this point, what we identified as
network-agnostic feature becomes evident and important. Because
the coarse-grain transformations are done from the outermost loop
(batch-level parallelism) to the inner loops, the recoding efforts are
independent of the layer transformation. The programmer is required
to parallelize the batch-level loop without any other consideration
than applying the necessary data privatization. In contrast, the fine-
grain parallelization forces the programmer to know about the exact
nature of the layer computation to design the most optimal data
layout and work distribution schemes.

4. Performance Analysis

We evaluated the coarse-grain parallelization in the Caffe DNN
framework. All experiments have been performed in a 16-core Xeon
E5-2667v2 at 3.30GHz with a NVIDIA K40 GPU. The machine
runs a Red Hat Enterprise Linux Server release 6.6 (Santiago),
and we used the GCC compiler suite version g++ (GCC) 4.4.7
20120313 (Red Hat 4.4.7-11). We configured the Caffe framework
to use OpenBLAS for the implementation of basic linear algebra
subroutines. For the GPU programming, we used the CUDA toolkit
7.0 and cuDNN v2. The datasets used for the evaluation are the
MNIST and CIFAR-10 image classifiers, which are available
within the Caffe framework. We did not introduce any architectural
dependent optimization. Therefore, the portability of both the coarse-
grain and fine-grain approaches is ensured by the OpenMP, CUDA
and cuDNN portability.

4.1 MNIST dataset

For the performance analysis of the MNIST dataset we first devel-
oped a per-layer study of both the coarse-grain and the fine-grain
parallelizations. For the coarse-grain case we identify what are the
main limiting performance factors. Then we describe the overall
performance of both versions.

4.1.1 CPU Layer Performance

Figure 4 shows the absolute execution time per-layer and the relative
weight in the overall execution time. Horizontal bars correspond to
executions with 1, 2, 4, 8, 12 and 16 threads. In general, two layers
dominate the whole execution: the convolutional and pooling layers.
No matter the number of threads, these two type of layers always
account for almost 80% of total execution time, adding their forward
and backward passes. Notice that there are different instances of the

MNIST Layer Execution Time (micro secs)

,
404

omp-16 365 1445 160 301
omp-12 505: 337 ‘ 2027 1_185_ 429 :
omp-8 35 163 : :2659 : J03 s
omp-4 983 289 : s402 ‘ 392 959

omp-2 1281 _Stlls_ 9372 r710_ 1785 ‘
omp-1 2353 _ﬁz:_ ‘ 182189 ‘ :1321_ 3397 ‘

30% 40%
i Forward Layer (conv1,Convolution)
“ Forward Layer (ip1,InnerProduct)
W Backward Layer (loss,SoftmaxWithLoss)
Backward Layer (pool2,Pooling)

10% 20%

& Forward Layer (mnist,Data)

i Forward Layer (pool2,Pooling)
Forward Layer (loss,SoftmaxWithLoss)

Backward Layer (ip1,InnerProduct)

0%

50%
“ Forward Layer (pool1,Pooling)

W Forward Layer (relul,ReLU)

i Backward Layer (ip2,InnerProduct)

70% 80% 90% 100%

i Forward Layer (conv2,Convolution)

W Forward Layer (ip2,InnerProduct)
Backward Layer (relul,ReLU)

Backward Layer (pool1,Pooling)

60%

Backward Layer (conv2,Convolution)

Figure 4. MNIST - Relative and absolute execution layer time for CPU executions. Layers in the legend are ordered from left-to-right in each
horizontal bar. Horizontal bars correspond to the cases of 1, 2, 4, 8, 12 and 16 threads. All execution times are in microseconds.

MNIST- Layer Scalability

14

12

Speedup

oN B~ O

,-_-.__;—.I.h.l.—m__

£ =

omp-2 omp-4

omp-8

omp-16

Figure 5. MNIST - Layer scalability for the CPU executions. Layers are identified as in the legend for Figure 4. Layers in the legend are
ordered from left-to-right in each cluster. Clusters correspond to the cases of 2, 4, 8, 12 and 16 threads. Y-axis measures speedup factors from

the serial CPU execution.

MNIST Overall Performance

MNIST - GPU Layer Speedup

14 70
12 60
10
s . 50
3 S0
o -1
= 6 —1 — @
@ 1
. &30
2 20
0 - DNN — - 10
. cu -
plain-GPU GPU omp-2 omp-4 omp-8 omp-12 omp-16 o
‘ W MNIST 1,87 12,20 1,84 3,40 5,96 6,63 8,18

plain-GPU cuDNN-GPU

Figure 6. MNIST - Left side: Absolute speedup factors for OpenMP (2, 4, 8, 12 and 16 threads), plain-GPU and cuDNN-GPU versions.
performance. Right side: GPU layer scalability for plain-GPU and cuDNN-GPU versions. Layers are identified as in the legend for Figure 4.

same type of layer but with a very different absolute execution time.
For instance, the conv1 and conv2 layers, and in smaller magnitude,
the pooll and pool2 layers. After the convolutional and pooling
layers, the next significant layer is the inner product ip1. The rest
of layers, expose a very small contribution to the overall execution
time (e.g.: loss, ReLU and ip2 layers in their forward and backward
passes). In general, notice that in each horizontal bar there is a zone
where the work in each layer phase decreases. This corresponds
to the center part, composed of the forward and backward passes
of pool2, ipl, ReLU, ip2 and loss. This behavior is associated to
the dimensionality reduction that neural networks do, and affects
the work granularity for the parallelization process. Moreover, this
behavior limits the overall scalability of the training process.
Figure 5 shows the scalability curve of each layer. We identify
three layer behaviors. First, notice the u-shape of the scalability
trends for any number of threads. The center points correspond to
the layers that we previously identified as not significant in the
overall execution time (e.g.: loss, ReLU and ip2 layers). These
layers do not scale at all, but they do not represent a limitation

for the overall performance. The two sides on the center values
correspond to the forward and backward passes of the rest of layers.
For these, we detect two types of layer behavior.

Layers ip1 and pool2 present very poor scalability curves. For
ipl, in both the forward and backward passes, the layer presents
speedups of 4.58 and 5.93 for the forward and backward pass
respectively and with 8 threads. The layer does not improve the
speedup with more threads. The pool2 layer exposes the same
behavior with maximum speedup of 5.52 and 5.73 with 8 threads
in the forward and backward pass respectively. The reason for this
behavior is two-fold. First, notice the two layers are immediately
stacked one on top of the other. This means that the output of the
pool2 layer is the input for the ip1 layer. It happens that the blob
shapes between the two layers do not match. The pool2 layer is
parallelized according to its input blob dimensions, and produces
its output blob (input blob for ip1) following the resulting work and
data distribution coming out from the parallelization. When it comes
the execution of the ip1 layer, its parallelization is done according
to its input blob dimensions (output blob of pool2), which do not

match those of the input blob for the pool2 layer. Thus, there is
an unavoidable lost of locality for the execution of the ipl layer.
Second, both layers suffer from a poor granularity when executing
with more than 8 threads. In Figure 4 we observe that with more
than 8 threads the forward and backward passes of the two layers
are in the range of 350 microseconds.

Layers convl, pooll and conv2 present good scalability curves.
They correspond to the layers in both sides of the center part of
the scalability layer curves. In general, these layers respond well to
the increments on the number of threads. This is explained by two
factors. First, all these layers expose a considerable amount of work,
as it has been indicated with Figure 4. Second, all of them are stacked
one next to each other within the network, and all of them match
their input/output blob dimensions. Thus, data locality is preserved
along the their execution in both the forward and backward passes.
We detected that although being exactly the same layer, the conv1
and conv2 layers have close to a 10% difference in speedup. In
particular, the conv2 layer exposes greater speedups than convl.
This happens more noticeably with more than 8 threads and for
the forward pass. The difference between the two layers is the
position they occupy in the layer stack. Convl is the immediate
layer after the data layer in the MNIST network. The data layer is
responsible for feeding the network with data samples. The layer
executes sequentially, so the data associated to all images generates
a memory footprint that is not matching the one generated along
the parallel execution of the convl layer. Therefore, the conv1 layer
suffers from a poor data locality with its immediate previous layer.

4.1.2 GPU Layer Performance

The fine-grain layer parallelization is available in Caffe in two ver-
sions. All available layers come with a native GPU implementation
of their forward and backward pass. We identify this version as the
plain-GPU version. Specifically for the convolutional and pooling
layers, Caffe includes a cuDNN-based version. We identify this ver-
sion as the cuDNN-GPU version. Rightmost side of Figure 6 shows
the per-layer speedup numbers for the plain-GPU and cuDNN-GPU
versions. For the plain-GPU version, all layers present speedups be-
low the 10 bar except for specific exceptions. The pooll and pool2
layers expose extraordinary speedups of 57 x and 62 for their for-
ward passes respectively. The pool2 layer presents a speedup of
12.81x in its backward pass and the ip1 layer is also above the 10x
bar with a speedup of 12.25x in its backward pass. In contrast, the
convolutional layers present a very poor speedup, with 1.11, 1.63
for the forward passes of convl and conv2, and 0.43x and 2.86x
in their respective backward passes.

For the cuDNN-GPU, the results are similar, except for the
convolutional and pooling layers. The convl and conv2 layers
experiment an extraordinary improvement reaching speedups of
15x%,25x%, 19x and 8x in their forward and backward passes. In
contrast, the pool2 layer experiments a dramatic loss of performance:
it drops from 62x to 27X in its forward pass and from 12.81 X to
8.81x in its backward pass. More moderately, the ReL.U layer also
suffers a performance drop from 2.47x to 1.74x and from 4 to
2,41 x in its forward and backward passes respectively. In general,
cuDNN corresponds to a case where the industry has deployed
a highly optimized implementation of layer transformations that
are well understood and no longer in a research stage. In this
situation, the fine-grain parallelism makes a difference, after the
corresponding recoding efforts.

4.1.3 Overall Performance

Figure 6 shows the overall performance of the coarse-grain paral-
lelization and the fine-grain parallelization in its two versions GPU
and GPU-cuDNN. The coarse-grain reaches a speedup close to a 6 x
with 8 threads, and 8 x with 16 threads. The lack of the scalability

for the CPU version is related to the poor scalability of fine-grained
layers that when executing with 16 threads drag down the perfor-
mance. In addition, we suspect the serial initialization of the network
structures is giving a suboptimal memory allocation in the NUMA
nodes. All of this affects the final scalability of the coarse-grain
version. The fine-grain GPU version shows a modest speed up close
to 2x. The reason for this difference is related to the performance
of the convolutional layers. In general, this version corresponds
to a base line defined by the Caffe native implementation of the
GPU acceleration. It represents a case for the performance the DNN
community can obtain with a fine-grain parallelization and very
significant coding efforts. Remember that within Caffe, all layers
must have both a CPU and GPU implementation to guarantee GPU
acceleration. In conclusion, the coarse-grain approach minimizes
the coding efforts and delivers better performance levels. Of course,
when compared to the cuDNN case, the fine-grain approach makes a
difference. It delivers a 12 x speedup. But solutions like the cuDNN
framework are only available when the layer types and their imple-
mentation have become a product and are no longer in a research
stage. Thus, they can have a highly optimized implementation. For
a DNN framework like Caffe, which is aimed to give support for
research in new network architectures with novel layer types, the
fine-grain parallelism imposes hard recoding efforts. In contrast, the
coarse-grain option is much more immediate and effective.

4.2 The CIFAR-10 case

For the performance analysis of the CIFAR-10 dataset we followed
the same methodology as for the MNIST case. First, we developed
a per-layer study for the coarse-grain and fine-grain parallelizations.
For the coarse-grain case we identify what are the main limiting
performance factors. Then we describe the overall performance of
the coarse-grain parallelization.

4.2.1 CPU Layer Performance

The CIFAR-10 dataset generates a work granularity greater than the
MNIST case. This can be observed in Figure 7. The figure shows
per-layer absolute execution time and the relative weight in the
overall execution time. It is clear that just a few layers dominate
the execution, no matter the number of threads. These layers are
the convolutional and pooling layers, and with lesser weight, the
local response normalization layers. In general, these layers account
for almost 85% of total execution time in all thread configurations.
Therefore, the layers with very small granularity and exposing very
poor scalability curves will not determine the overall performance.
Only the scalability of these dominating layers will determine the
effectiveness of the parallelization.

Figure 8 shows the scalability curves of all layers. Notice the
appearance of the u-shape form as long as the number of threads
increases. The center part of each cluster corresponds to layers of
very small granularity which do not affect the overall performance.
These layers are the pool3, ipl and loss. The center part includes
both the forward and backward pass of these layers. Leftmost part
of each cluster corresponds to the layer forward pass, the rightmost
part corresponds to the layer backward pass.

The CIFAR-10 network is organized in three levels all of them
with a similar organization. First level corresponds to a sequence of
a data layer plus conv1+pooll+ReLUIl+norm1. During the forward
pass, the data layer fetches the input data (e.g: the batch images)
sequentially so the conv1 layer suffers from poor locality respect
its input data (the same situation observed with the MNIST case).
The work distribution is constant across the convl, pooll and
ReL U1 layers, and then changes for the norm1. According to this,
the convl has a reasonable speedup up to 8 threads (5.87x) but
for 16 threads the scalability drops with a 9x speedup. This is
explained by the sequential execution of its immediate previous

CIFAR-10 Layer Execution Time (microseconds)

omp-16

omp-12

omp-8

omp-4

omp-2

omp-1

|
2531

g2 15621 " 30
5923 ! . L ‘ 17951 ‘ " 2887‘ 3917 !
8544 l " : 25686 ‘ " 376‘7 . 5582 !
15549 I . ‘ 46448 ‘ . 627‘5 10020 !
28502 ! .- ‘ 84423 ‘ _105‘30_ 18159 !
l : 138320 : ; 31848 !

51797
T

_ 19615

0% 10%

W Forward Layer (cifar,Data)

W Forward Layer (norm1,LRN)
Forward Layer (norm2,LRN)

i Forward Layer (ip1,InnerProduct)

I Backward Layer (pool3,Pooling)
Backward Layer (pool2,Pooling)
Backward Layer (relul,RelLU)

30% 40%
i Forward Layer (conv1,Convolution)
i Forward Layer (conv2,Convolution)
W Forward Layer (conv3,Convolution)

Backward Layer (relu3,ReLU)
Backward Layer (relu2,ReLU)
Backward Layer (pool1,Pooling)

W Forward Layer (loss,SoftmaxWithLoss)

50% 60%

i Forward Layer (pool1,Pooling)

W Forward Layer (relu2,ReLU)

i Forward Layer (relu3,ReLU)
Backward Layer (loss,SoftmaxWithLoss)
Backward Layer (conv3,Convolution)
Backward Layer (conv2,Convolution)
Backward Layer (conv1,Convolution)

70% 80% 90%

W Forward Layer (relul,ReLU)

W Forward Layer (pool2,Pooling)
Forward Layer (pool3,Pooling)

i Backward Layer (ip1,InnerProduct)
Backward Layer (norm2,LRN)
Backward Layer (norm1,LRN)

Figure 7. CIFAR-10 - Relative and absolute execution layer time for CPU executions. Layers in the legend are ordered from left-to-right in
each horizontal bar. Horizontal bars correspond to the cases of 1, 2, 4, 8, 12 and 16 threads. All execution times are in microseconds.

CIFAR-10 - Layer Scalability

omp-2

omp-4

omp-8

omp-12 omp-16

Figure 8. CIFAR-10 - Layer scalability for CPU executions. Layers are identified as in the legend for Figure 7. Layers in the legend are
ordered from left-to-right in each cluster. Clusters correspond to the cases of 2, 4, 8, 12 and 16 threads. Y-axis measures speedup factors from

the serial CPU execution.

CIFAR-10 Overall Performance

ll_—tll

CubDNN-
GPU

26,86

30

25
20
15

Speedup
Speedup

10
5
0

plain-GPU omp-2 omp-4 omp-8 omp-12 omp-16

‘ i CIFAR-10 5,98 1,69 3,09 5,59 7,43 8,83

CIFAR-10 GPU Layer Speedup

plain-GPU cuDNN-GPU

Figure 9. CIFAR-10 - Left side: Absolute speedup factors for OpenMP (2, 4, 8, 12 and 16 threads), plain-GPU and cuDNN-GPU versions.
performance. Right side: GPU layer scalability for plain-GPU and cuDNN-GPU versions. Layers are identified as in the legend for Figure 7.

layer and by the fact that when crossing the 8§ thread border, NUMA
considerations come into play. The effects of data movement are
much more visible than when just executing in one NUMA node.
After the convl forward execution, the pooll and ReL U1 layers
keep the same work distribution and expose reasonable speedups:
6.5x and 7x respectively with 8 threads. These layers scale up to
11x and 13x with 16 threads. The norm1 layer exposes a different
trend. This layer executes changing the data-thread distribution.
With 8 threads reaches a 4.6 speedup and with 16 threads 10.8 x.
Regarding the backward pass of all the layers in this first level, the
relation between the layers are similar, but with less scalability. The
maximum speedup for 16 threads are 10x, 6.6, 7.75x for the
convl, pooll, ReLU1 and norm1 layers respectively. The reduction
operations within the backward pass are negligible, given the work
size in each layer for the CIFAR-10 case. This happens in all the
network levels.

The second level in the network is composed of layers conv2,
ReLU2 and norm?2. In this level, the sizes of the input/output blobs
decrease and the work granularity too, but with the exception of
layer conv2. This working set size reduction affects the overall

scalability, specially with 16 threads. In this level, the maximum
speedups are 8.25x%, 8.5%, 9x and 7. In this case, the data-thread
relation between the layers is constant, except for the norm?2 layer.
Specifically for the first layer in this level, the conv2 layer, its poor
scalability is related to its immediate previous layer, the norm1 layer.
This layer changes the data-thread distribution and the conv2 layer
is affected by this fact. For the backward pass, the performance
trends are similar, and again the reduction operations do not limit
the overall layer scalability.

Finally, the third level is composed by the conv3, ReLU3 and
pool3 layers. This level follows a similar performance trends as the
second level, with the same relations between its layers and between
the immediate layer in the second level.

4.2.2 GPU Layer Performance

Rightmost side of Figure 9 shows the per-layer speedup numbers
for the plain-GPU and cuDNN-GPU versions. For the plain-GPU
version, the layer speedups are impressive. In the forward pass,
all layers present speedups above 10X, and for the pooling and
LRN layers the speedups are close to 110x and 40x respectively

(depending on the layer instance and pass in the network). The
convolutional layers are the bottleneck. They present speedups
between 1.8 and 6 depending on the layer position in the network
and in the pass (forward or backward).

For the cuDNN-GPU, the trends are similar as in the MNIST
case regarding the convolutional and pooling layers. The convo-
lutional layers expose impressive improvements. They switch to
performance levels close to 50x of speedup in some cases (conv2
layer). Some of the pooling layers expose drastic performance drops
(pool3 forward pass switches from 42 x to 11.75 x). Others improve
the performance (pooll from 8.6x to 20.9x). As it was stated with
the MNIST dataset, cuDNN corresponds to a case where the in-
dustry has deployed a highly optimized implementation of specific
layer transformations that are well understood and no longer in a
research stage. In this situation, the fine-grain parallelism makes a
difference, though after the corresponding recoding efforts.

4.2.3 Overall Performance

Figure 9 shows the overall performance of the coarse-grain par-
allelization and the fine-grain parallelization in its two versions
plain-GPU and GPU-cuDNN. The coarse-grain reaches a speedup
close to a 6 x with 8 threads, and 8.83x with 16 threads. The lack
of scalability for the CPU version is related to the poor scalability of
some of the convolutional layers. This is caused by poor data local-
ity caused by consecutive layers with different data-thread patterns.
In addition, again the serial initialization of the network structures is
giving a suboptimal memory allocation in the NUMA nodes. All of
this is affecting the final scalability of the coarse-grain version. The
fine-grain GPU version shows a modest speed up close to 6 x. Both
the fine-grain GPU version and coarse-grain CPU version expose
problems with the convolutional layers. In general, the fine-grain
plain-GPU version corresponds to the Caffe native implementation.
This implementation is representative of the performance the DNN
community can obtain after the associated recoding efforts. The
coarse-grain parallelization gives similar performance levels, but
not requiring the reimplementation of all layers to target the GPU
device. As with the MNIST case, when compared to the cuDNN
case, the fine-grain approach makes a difference and this time even
greater. cuDNN gives extraordinary speedups and it corresponds
to a highly tuned implementation of the convolutional and pooling
layers made by NVIDIA. It delivers a 27 x speedup. Unfortunately,
this performance levels are only available for these two layer types.
In contrast, the coarse-grain approach is immediately available no
matter the nature of the deep neural network.

4.3 Coarse-grain vs Fine-grain: Pros and Cons

In this section we present the lessons learnt regarding the coarse-
grain and fine-grain parallelizations of the DNN training process.
We identify several limiting factors that affect the performance of
the coarse-grain parallelization. These factors are layer dependent
and are mainly related to specificities of the layers that determine
their work distribution, memory footprint, data privatization and
ordered operations. Also, we identify the advantages and disad-
vantages of the coarse-grain approach in front a fine-grain paral-
lelization. The following paragraph describes these limiting factors,
advantages and disadvantages.

Network agnostic: one important advantage of the coarse-grain
approach is that it exploits a parallelism level that is independent
of the nature of the neural network. The batch-level parallelism is
intrinsic to the gradient descent algorithm. Thus, this approach is
immediately available and does not require programming efforts to
generate GPU layer implementations. In addition, the coarse-grain
approach delivers similar performance levels as the fine-grain ap-
proach. Convergence invariance: the coarse-grain parallelization
does not change any training parameters. Thus, the convergence

rate is kept invariant between the serial and the parallel executions.
For the DNN community this is an important advantage. Before the
training, neural networks need a parameter tuning process to ensure
appropriate convergence. The parallelization has to ensure that the
effects of this tuning are kept for the parallel execution. Sequen-
tial memory allocation: the network memory allocation happens
during the network initialization. This process is sequential, which
causes the layer memory be allocated following a pattern generated
by the initialization code. In terms of performance, this pattern is
not compatible with those that arise during the training process.
Locality between layers: the input/output relation across layers
defines a lost of data locality for specific layers. During the forward
and backward passes, each layer distributes the work according to
the dimensions of the input blobs. Regarding the data locality, it is
possible that input and output blobs do not match their dimensions.
Consequently, the work distribution and data-thread association
defined in one layer will not match that one of the next immediate
layer in the stack. One particular case of this situation corresponds
to the data layers in Caffe. These layers feed the network with input
data organized in batches. Data layers execute sequentially. There-
fore, one thread first accesses all data and then the data is distributed
across the cores and the memory hierarchy when the first parallel
processing layer in the network executes in parallel. Work unbal-
ance: coarse grain parallelism is open to work unbalance. For the
Caffe case, we detected that batch-level parallelism defines very
heavy iterations for the parallelized loops. Therefore, one single
loop iteration can cause a high unbalance between the executing
threads. Loop coalescing has been applied to reduce the effect of
this problem. Work granularity: neural networks do a dimension-
ality reduction over the processed data. This affects the size of the
working sets in the network layers. At some level in the network,
the layer input/output data start decreasing their sizes. When this
happens, a thread level parallelization starts suffering from small
work granularity with modest performance levels. Data privatiza-
tion and reduction operations: specifically in the backward pass,
the network coefficients are updated per each sample in the batch.
At batch-level, this requires mutual exclusion mechanisms to guar-
antee a correct update. Data privatization has been needed for this
purpose. In terms of performance, given the layer granularity, we
did not detect these updates to be a performance limiting factor.

5. Related Work

This section describes some state-of-the-art of deep learning frame-
works. In general, due to the hard computational requirements for
the training of deep neural networks, there has been generalized
strategy based on GPU systems[7, 16, 19, 24, 26]. This has pro-
duced good results when data models fit in a small number of GPUs
in a single server. But this approach is limited in terms of scalability.
A coarse-grain approach has the potential of scaling up to a greater
number of cores due to the fact that the limitations regarding the
fitting of the data model are less strict.

For large scale training, there have been other approaches. In
[10] the authors present a software framework called DistBelief that
enables model parallelism within a machine (via multi-threading)
and across machines (via message passing), with the details of paral-
lelism, synchronization and communication managed by the frame-
work. In addition to supporting model parallelism, the DistBelief
framework also supports data parallelism, where multiple replicas of
amodel are used to optimize a single objective function. To facilitate
training of very large deep networks DistBelief supports distributed
computation in neural networks and layered graphical models. The
user defines the computation that takes place at each node in each
layer of the model, and the messages that should be passed dur-
ing the upward and downward phases of computation.The authors
mention in the paper that in certain cases partitioning the model on

more than certain number of machines actually slows down train-
ing, as communication overhead across hosts starts to dominate in
fully-connected layers. One of the main disadvantages of the this
framework is that one has to efficiently map the compute blocks
onto the host processors such that communication across hosts are
minimized to maximally leverage the model parallelism. The coarse
level parallelism proposed in this paper is network-agnostic and
hence more universally applicable.

In [8] presents a deep learning framework with COTS HPC
systems: a cluster of GPU servers with Infiniband interconnects and
MPI. Their system was able to train 1 billion parameter networks
on just 3 machines in a couple of days, and they showed that it
can scale to networks with over 11 billion parameters using just
16 machines. While the DistBelief framework manages to train a
neural network using 16000 CPU cores (in 1000 machines) in just
a few days, yet this level of resource is likely well beyond those
available to most deep learning researchers. In this paper the authors
present an alternative approach for training large scale networks that
leverages inexpensive computing power in the form of GPUs and
introduces the use of high-speed communications infrastructure to
tightly coordinate distributed gradient computations. The authors in
this paper makes significant efforts to make the most efficient use
of the HPC resources, which may be sometimes well beyond the
capabilities of machine learning researchers.

In [15] presents a state-of-the-art speech recognition system de-
veloped using deep learning. Their approach uses a well-optimized
RNN (recurrent neural network) training system that uses multiple
GPUs and use of a novel model partition scheme to improve par-
allelization. The authors in this paper develop specific data layout
techniques and optimization schemes to scale their training for re-
current networks. The cuDNN [5] libraries are not general enough
and doesn’t provide an API for efficiently mapping recurrent com-
putations on the GPU. The coarse grained parallelism proposed in
this paper is a simplistic approach that can inherently applied for
any feed-forward or recurrent neural network. Hence the proposed
parallelism is more universally applicable across diverse application
domains.

The Project Adam [6] implements a distributed system for large
scale training of deep learning architectures. The system follows
a similar approach as the one described in this paper: coarse-grain
methodologies are applied to assign work to the executing threads.
This approach is embedded in a larger system with asynchrony
is a key aspect to achieve scalability. An asynchronous version
of the stochastic gradient descent algorithm is implemented. This
work succeeds in both achieving good performance results for the
training process through a coarse-grain parallelization approach,
and it avoids the recoding efforts related to acceleration with GPU
programming.

6. Conclusions

In this paper we analyzed the implementation of a coarse-grain
parallelization of the DNN training process. The approach has two
significant properties. On one side, the coarse-grain parallelization
is network-agnostic. It does not rely on any specialized and highly
tuned library for the specificities of the network layers. Therefore,
it does not require recoding the implementation to adapt to such
libraries. Second, it is convergence-invariant as it does not change
any of the training parameters, thus ensuring consistency with the
sequential convergence rate. The implementation and analysis has
been done within Caffe, a general and research oriented DNN
framework. The coarse-grain parallelization follows a directive-
based style, using OpenMP directives. We have identified its main
limiting performance factors as well as the main advantages and
disadvantages in front of a fine-grain parallelization. In particular,
the implementation of fine-grain strategies requires the recoding of

all the network layers in order to port them to the GPU device. For
two state-of-the-art datasets (MNIST and CIFAR-10), the observed
performance levels are similar for both strategies. So, the coarse-
grain approach is not dependent on any recoding efforts given
its network-agnostic key feature. This property is critical when
the network implementation is in research stages, with a constant
tuning of its parameters. Once the network is understood in terms
of its convergence and accuracy, specialized and highly optimized
libraries can be built. This is the case for cuDNN and other. These
libraries include specific layer transformations that clearly make the
difference in terms of performance that justify all the programming
efforts associated to its usage.

Acknowledgments

This work was supported by the Ministry of Science and Innovation
of Spain (CICYT) [TIN-2012-34557]. Special thanks to Myron
Flickner and Pallab Datta who supported this work while Marc
Gonzalez Tallada worked as Visiting Scientist in the Synapse Project
within the Brain-Inspired Software department at the IBM Almaden
Research Center.

References

[1] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. J. Goodfellow,
A. Bergeron, N. Bouchard, and Y. Bengio. Theano: new features
and speed improvements. Deep Learning and Unsupervised Feature
Learning NIPS 2012 Workshop, 2012.

[2] A. Basumallik, S.-J. Min, and R. Eigenmann. Programming distributed
memory sytems using openmp. In Parallel and Distributed Processing
Symposium, 2007. IPDPS 2007. IEEE International, pages 1--8. IEEE,
2007.

[3] L. S. Blackford, A. Petitet, R. Pozo, K. Remington, R. C. Whaley,
J. Demmel, J. Dongarra, 1. Duff, S. Hammarling, G. Henry, et al.
An updated set of basic linear algebra subprograms (blas). ACM
Transactions on Mathematical Software, 28(2):135--151, 2002.

[4] L. Bottou. The tradeoffs of large scale learning. Advances in Neural
Information Processing Systems, 2008.

[51 S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catan-
zaro, and E. Shelhamer. cudnn: Efficient primitives for deep learning.
arXiv preprint arXiv:1410.0759, 2014.

T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman. Project adam:
Building an efficient and scalable deep learning training system. //th
USENIX Symposium on Operating Systems Design and Implementation,
2014.

[7] D. C. Ciresan, U. Meier, and J. Schmidhuber. Multicolumn deep
neural networks for image classification. Computer Vision and Pattern
Recognition. CVPRI12.,2012.

A. Coates, B. Huval, T. Wang, D. J. Wu, B. C. Catanzaro, and A. Y. Ng.
Deep learning with COTS HPC systems. In Proceedings of the 30th
International Conference on Machine Learning, ICML 2013, Atlanta,
GA, USA, 16-21 June 2013, pages 1337--1345, 2013.

R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A matlab-
like environment for machine learning. In BigLearn, NIPS Work-
shop, 2011. URL https://publidiap.idiap.ch/downloads/
/papers/2011/Collobert_NIPSWORKSHOP_2011.pdf.

[10] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z.
Mao, M. Ranzato, A. W. Senior, P. A. Tucker, et al. Large scale
distributed deep networks. In NIPS, pages 1232--1240, 2012.

[11] L. Deng. The MNIST Database of Handwritten Digit Images for
Machine Learning Research [Best of the Web]. Signal Processing
Magazine, IEEE, 29(6):141--142, Nov 2012. ISSN 1053-5888. .

[12] J. Dongarra. Preface: basic linear algebra subprograms technical (blast)
forum standard. International Journal of High Performance Computing
Applications, 16(2):115--115, 2002.

[6

i}

[8

=

[9

[13] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for
online learning and stochastic optimization. The Journal of Machine
Learning Research, 2011.

[14] Google. Protocol buffers. https://developers.google.com/
protocol-buffers/, 2015.

[15] A. Y. Hannun, C. Case, J. Casper, B. C. Catanzaro, G. Diamos,
E. Elsen, R. Prenger, S. Satheesh, S. Sengupta, A. Coates, and A. Y.
Ng. Deep speech: Scaling up end-to-end speech recognition. CoRR,
abs/1412.5567,2014. URL http://arxiv.org/abs/1412.5567.

[16] G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. Sainath, and B. Kingsbury. Deep neural
networks for acoustic modeling in speech recognition. /EEE Signal
Processing Magazine, 2012.

[17] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for
fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.

[18] A. Krizhevsky. Learning multiple layers of features from tiny images.
Technical report, University of Toronto, 2009. URL http://www.cs.
toronto.edu/~kriz/cifar.html.

[19] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification
with deep convolutional neural networks. Advances in Neural Informa-
tion Processing Systems, 2012.

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classifica-
tion with deep convolutional neural networks. Advances in Neural
Information Processing Systems 25, pages 1097--1105, 2012.

[21] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient Based
Learning Applied to Document Recognition. /EEE Press, pages 306--
351, 2001.

[22] Y. LeCun, C. Cortes, and C. Burges. The mnist database of handwritten
digits. http://yann.lecun.com/exdb/mnist/, 2015.

[23] Y. Nesterov. A method of solving a convex programming problem
with convergence rate o(1/k). Soviet Mathematics Doklady, 1983.

[24] R. Raina, A. Madhavan, and A. Ng. Large-scale deep unsupervised
learning using graphics processors. International Conference on
Machine Learning, 2009.

[25] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV), pages 1--42, April
2015. .

[26] M. Zeiler and R. Fergus. Visualizing and understanding convolutional
networks. In Arxiv 1311.2901. http://arxiv.org/abs/1311.2901, 2013.

