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Abstract
Efficient locking mechanisms are critically important for high per-
formance computers. On highly-threaded systems with a deep
memory hierarchy, the throughput of traditional queueing locks,
e.g., MCS locks, falls off due to NUMA effects. Two-level cohort
locks perform better on NUMA systems, but fail to deliver top per-
formance for deep NUMA hierarchies. In this paper, we describe a
hierarchical variant of the MCS lock that adapts the principles of
cohort locking for architectures with deep NUMA hierarchies. We
describe analytical models for throughput and fairness of Cohort-
MCS (C-MCS) and Hierarchical MCS (HMCS) locks that enable
us to tailor these locks for high performance on any target platform
without empirical tuning. Using these models, one can select pa-
rameters such that an HMCS lock will deliver better fairness than
a C-MCS lock for a given throughput, or deliver better throughput
for a given fairness.

Our experiments show that, under high contention, a three-level
HMCS lock delivers up to 7.6× higher lock throughput than a
C-MCS lock on a 128-thread IBM Power 755 and a five-level
HMCS lock delivers up to 72× higher lock throughput on a 4096-
thread SGI UV 1000. On the K-means clustering code from the
MineBench suit, a three-level HMCS lock reduces the running time
by up to 55% compared to the C-MCS lock on a IBM Power 755.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming

General Terms Algorithms, Design, Performance

Keywords NUMA, MCS, Hierarchical locks, Spin locks, Analyt-
ical modeling, Lock fairness, Lock throughput

1. Introduction
Over the last decade, the number of hardware threads in shared-
memory systems has grown dramatically. Multiple hardware threads
executing on a core share one or more levels of private cache. Mul-
tiple cores share caches on the same die. Multi-socket systems
share memory on a node, and multi-node shared-memory systems
(e.g, SGI UV 1000 [9]) share memory across the entire system.

Modern architectures organize hardware threads into clusters
known as NUMA (Non-Uniform Memory Access) domains. Each
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Figure 1. Shared-memory NUMA system.

NUMA domain of threads experiences a spectrum of memory ac-
cess latencies, depending upon the level of the memory hierarchy
where the data is resident; the core, socket, or node where the
data is resident; and the NUMA domain that is the home location
for the data in memory. A memory location gains proximity to a
thread when the location is accessed by the thread itself or by other
threads in the same NUMA domain. Conversely, a memory loca-
tion loses proximity when the location is modified by a thread far-
ther away in the NUMA hierarchy. Thus, the latency when a thread
accesses a datum depends on the NUMA domain of the thread that
wrote it last. Efficient use of deep NUMA systems requires exploit-
ing locality. Once a memory location is cached in a NUMA domain,
it is beneficial to reuse it multiple times. Ideally, the same thread or
its NUMA peers would reuse the data. The next best alternative is
access by threads in a NUMA domain nearby.

Figure 1 illustrates a typical 4-level NUMA system. Each pair
of SMT threads (Simultaneous Multi Threading [10]—the most
common style of hardware multithreading) sharing a core form the
first level of NUMA hierarchy. M different CPU cores sharing the
same socket form the second level of NUMA hierarchy. K sockets
on the same node form the third level of NUMA hierarchy. All
nodes together form the fourth and last level of NUMA hierarchy.

Deep NUMA hierarchies pose a challenge for efficient mutual
exclusion in multi-threaded programs. Software queueing locks,
namely the MCS [7] lock and CLH [6] lock, are known as scalable
locks for shared-memory systems. An advantage of queueing locks
is that after a thread enqueues itself for a lock, it spins waits locally,
which avoids clogging the interconnect. For this reason, queuing
locks scale well in the presence of contention. However, throughput
for these locks falls off on NUMA systems.

On deep NUMA hierarchies, a lock and data accessed in a
critical section protected by the lock ping-pong between NUMA
domains, resulting in lower lock throughput. Figure 2 shows how
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Figure 2. MCS lock passing times on SGI UV 1000.

the lock-passing latency grows on a SGI UV 1000 as the data
becomes farther away from the requesting processor core.

Dice et al. [4] partially address this problem with “lock cohort-
ing”, which increases lock throughput by passing the lock among
threads within the same NUMA domain before passing the lock
to any thread in a remote NUMA domain. This design addresses
only a two-level NUMA hierarchy arising from multiple sockets
on a node. For the system in Figure 1, cohort locks would only
exploit locality between threads sharing the same socket, leaving
other levels of locality unexploited. Deep NUMA hierarchies of-
fer additional opportunities for exploiting locality between SMT
threads sharing a cache or within a node.

In this paper, we present hierarchical MCS locks (HMCS)—a
full generalization of lock cohorting that takes advantage of each
level of NUMA hierarchy. The HMCS lock is designed to provide
efficient mutual exclusion for highly-contended critical sections in
NUMA architectures. The HMCS lock is modeled as a composition
of classical MCS locks at each level of NUMA hierarchy. By
usually passing a lock to a waiting thread in the same or a nearby
NUMA domain, the HMCS lock fully exploits locality on multi-
level NUMA systems.

The contributions of this paper are: (1) a novel, fully-general,
queuing lock suitable for mutual exclusion in highly contended
critical sections in multi-level NUMA systems, (2) analytical per-
formance models for throughput and fairness of queuing locks
on NUMA systems that eliminate empirical tuning, (3) proofs for
throughput and fairness superiority of multi-level queuing locks
over state-of-the-art two-level locks under high contention, (4)
demonstration of up to 7.6× higher throughput over state-of-the-
art C-MCS locks on a 128-thread IBM Power 755 and up to 72×
higher throughput on a 4096-thread SGI UV 1000, and (5) demon-
stration of 9.2× speedup compared to the original non-scaling K-
means clustering code (55% improvement compared to the C-MCS
lock) on a IBM Power 755.

The rest of the paper is organized as follows. Section 2 reviews
related work. Section 3 explains the HMCS algorithm. Section 4
discusses analytical performance models. Section 5 proves proper-
ties of HMCS locks. Section 6 presents an empirical evaluation of
HMCS locks. Finally, Section 7 summarizes our conclusions.

2. Background and Related Work
Queuing lock algorithms form the basis for the current work. In this
section, we define some terminology used in the paper, followed by
details about the MCS and CLH queuing locks. We also describe
the state-of-the-art in analyzing lock characteristics.

Terminology: We refer to a system with N-levels of NUMA hi-
erarchy as an N-level system. We refer to a NUMA domain as sim-
ply a domain. When the domain is important, we will refer to a
level-k domain. We also freely abbreviate “critical section” as CS.
Where necessary, we distinguish one thread from another with dot-
separated hierarchical numbering, with left-most number represent-
ing the cardinality of the outer-most NUMA-domain. For example,

in Figure 1, thread 1.2.8.3 means the 3rd SMT thread of the 8th

core of the 2nd socket on the 1st node.

MCS locks: The MCS [7] lock acquire protocol enqueues a
record in the queue for a lock by: 1) swapping the queue’s tail
pointer with a pointer to its own record and 2) linking behind a
predecessor (if any). If a thread has a predecessor, it spins locally
on a flag in its record. Releasing an MCS lock involves setting a
successor’s flag or resetting the queue’s tail pointer to null if no
successor is present.

The Cohort MCS (C-MCS) lock by Dice et al. [4] for NUMA
systems employs two levels of MCS locks, treating a system as
a two-level NUMA hierarchy. (Dice et al. refer to this lock as C-
MCS-MCS; we use the shorter C-MCS for convenience.) One MCS
lock is local to each NUMA domain and a global MCS lock is
shared by all NUMA domains. Each thread trying to enter a critical
section acquires the local lock first. The first thread to acquire the
local lock in each domain proceeds to compete for the global lock,
while other threads in each domain spin wait for their local lock.
A releasing thread grants the global lock to a local successor by
releasing the local lock. A lock passes within the same domain for
a threshold number of times at which point the domain relinquishes
the global lock to another domain. Dice et al. [4] also explore
other lock cohorting variants beyond C-MCS that employ various
locking protocols at each of the two levels, with the local and
global locking protocols selected independently. We focus on MCS
lock at each level of the HMCS lock, and leave exploring different
locks at different levels for the future work. Moreover, even Dice et
al.’s best performing backoff and MCS lock combination (C-BO-
MCS) is only marginally better than the second best C-MCS-MCS
lock. Furthermore, the C-BO-MCS lock has unbounded unfairness,
where as the C-MCS-MCS lock has bounded unfairness.

Dice et al. also devised a flat-combining MCS lock [3] (FC-
MCS). FC-MCS builds local queues of waiting threads and em-
ploys a designated thread to join them into a global MCS queue.

CLH locks: The CLH lock [6] is analogous to the MCS lock, with
the following two differences: (1) each thread enqueues its own
record into a queue when acquiring a lock, but does not reclaim
its record on release; instead, its successor is responsible for its
record, and (2) a thread waiting to acquire a lock waits on a flag in
its predecessor’s record rather than its own.

The HCLH lock [5] is a variant of the CLH lock that is tailored
for 2-level NUMA systems. Threads on cores of the same chip form
a local CLH queue. The thread at the head of the queue splices the
local queue into the global queue. The splicing thread may have to
wait for a long time or splice a very short queue of local threads,
both of which lengthen the critical path.

While the CLH lock could be generalized into a hierarchical
lock with similar properties, in the remainder of this paper we focus
solely on MCS locks. We note that none of the aforementioned
locks exploit more than two levels of locality in a multi-level
NUMA system.

Analysis of lock characteristics: There is limited prior work in
analytical modeling of lock throughput. Boyd-Wickizer et al. [1]
use Markov models for ticket-based spin locks to reason about an
observed collapse in performance of several threaded applications
on Linux. We are unaware of any analytical modeling of lock
fairness. Buhr et al. [2] conduct an empirical study of fairness of
various locks. To the best of our knowledge, our paper is the first to
provide combined throughput-fairness analytical models for locks.

3. HMCS Lock Algorithm
The HMCS lock extends the two-level cohorting strategy of Dice
et al. [4] to a general N-level NUMA hierarchy. The HMCS lock
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employs MCS locks at multiple levels of the hierarchy to exploit
locality at each level. An HMCS lock is an n-ary tree of MCS
locks, shown in Figure 3. A critical section can be entered only
when all locks along a path from a leaf to the root of the tree are
held by the acquiring thread. Not all threads, however, explicitly
acquire all locks along a path from leaf to root to enter the CS. A
thread holding the lock, after finishing its CS, passes the lock to a
successor in its NUMA domain. After a threshold number of lock
transfers within a NUMA domain, a thread passes the lock at the
lowest enclosing ancestor NUMA domain where a thread from a
peer domain is waiting. This chain of passing to a successor thread
in the current or peer domain continues throughout the protocol.
Under high contention, threads acquiring the lock via lock passing,
incur the cost of only a single leaf-level MCS lock acquisition. The
HMCS lock, like the C-MCS and HCLH locks, does not ensure
system-wide FIFO ordering; however, it ensures FIFO ordering
within requesting threads at the same level of the NUMA hierarchy.

Initial setup: Initialization of an HMCS lock involves creating a
tree of MCS locks, with a lock for each domain at each level of the
NUMA hierarchy. If exploiting locality at each level of the hier-
archy is not profitable, one may create a shallower tree. For every
non-leaf node of the tree, we preallocate a lock record within the
corresponding NUMA domain. These preallocated records remain
for the lifetime of the lock.

Key data structures: The HMCS algorithm employs two key data
structures: QNode and HNode. The QNode is a modification of the
original MCS lock’s QNode, with its boolean status field replaced
by a 64-bit integer. All HNodes representing a lock form a tree
as shown in Figure 3. As shown in Figure 4, each HNode has the
following fields:

• lock: the tail pointer of the MCS lock at this level,
• parent: a pointer to the parent HNode (if any),
• QNode: a node to enqueue when acquiring the parent HNode’s

MCS lock. This QNode is shared by all threads in the subtree of
the NUMA hierarchy represented by this HNode, and

1 enum {COHORT_START =0x1 , ACQUIRE_PARENT=UINT64_MAX -1, WAIT=UINT64_MAX };

2 enum {UNLOCKED =0x0 , LOCKED =0x1};

3
4 template <int depth > struct HMCS {

5 inline void AcquireReal(HNode *L, QNode *I) {

6 // Prepare the node for use.

7 I->status = WAIT; I->next = NULL;

release fence

8 QNode * pred = (QNode *) SWAP (&(L->lock), I);

9 if (pred) {

10 pred ->next = I;{

11 uint64_t curStatus;

12 I while( (curStatus=I->status) == WAIT); // spin

13 I if(curStatus < ACQUIRE_PARENT) return; // Acquired , enter CS

14 }

15 I->status = COHORT_START;

16 HMCS <depth -1>:: AcquireReal(L->parent , &(L->node));

17 }

18
19 inline void Acquire(HNode *L, QNode *I) {

20 AcquireReal(L, I);

21 I acquire fence

22 }

23
24 inline void ReleaseReal(HNode *L, QNode *I) {

25 I uint64_t curCount = I->status;

26 // Lower level releases

27 I if (curCount == L->GetThreshold ()) {

28 // reached threshold , release to next level

29 I HMCS <depth -1>:: ReleaseReal(L->parent , &(L->node));

release fence

30 // Ask successor to acquire next level lock

31 ReleaseHelper(L, I, ACQUIRE_PARENT);

32 return; // Released

33 }

34 // Not reached threshold

35 I QNode * succ = I->next;

36 I if (succ) { // Pass within cohorts

37 I succ ->status = curCount + 1;

38 return;

39 }

40 // else: No known successor , release to parent

41 HMCS <depth -1>:: ReleaseReal(L->parent , &(L->node));

release fence

42 // Ask successor to acquire next level lock

43 ReleaseHelper(L,I, ACQUIRE_PARENT);

44 }

45
46 inline void Release(HNode *L, QNode *I) {

47 I release fence

48 ReleaseReal(L, I);

49 }

50 };

51
52 void ReleaseHelper(HNode *L, QNode *I, uint64_t val){

53 I QNode * succ = I->next;

54 I if (succ) {

55 I succ ->status = val; // pass lock

56 } else {

57 if (CAS (&(L->lock), I, NULL)) return;

58 while( (succ=I->next) == NULL); // spin

59 succ ->status = val; // pass lock

60 }

61 }

62
63 template <> struct HMCS <1> {

64 inline void AcquireReal(HNode *L, QNode *I) {

65 // Prepare the node for use.

66 I->status = LOCKED; I->next = NULL;

67 QNode * pred = (QNode *) SWAP (&(L->lock), I);

68 if (!pred) {

69 I->status = UNLOCKED;

70 } else {

71 pred ->next = I;

72 I while(I->status == LOCKED); // spin

73 }

74 }

75
76 inline void Acquire(HNode *L, QNode *I) {

77 AcquireReal(L, I);

78 I acquire fence

79 }

80
81 inline void ReleaseReal(HNode *L, QNode *I) {

82 ReleaseHelper(L, I, UNLOCKED);

83 }

84
85 inline void Release(HNode *L, QNode *I) {

86 I release fence

87 ReleaseReal(L, I);

88 }

89 };

Listing 1. Hierarchical MCS lock.
• threshold: the lock passing threshold at this level.

Acquire protocol: The HMCS lock algorithm is shown in List-
ing 1. The acquire protocol begins at the leaf (level-1) of the tree.
Each thread arrives with its own QNode and a pointer to the lock—
an HNode used by a group of peer threads at level-1 in the hierarchy.
Each thread attempts to acquire the local level-1 MCS lock. The
first thread to enqueue at each level-1 domain acquires the local
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MCS lock; other threads in the same domain spin wait on the status
field of their QNode. The threads that acquire the level-i MCS lock
in their respective domains proceed to acquire the level-(i+1) MCS
lock, competing with threads from peer NUMA domains. This con-
tinues until a single thread acquires all MCS locks along the path to
the root (inclusive), at which point the acquisition is complete and
the thread enters the critical section.

A thread, T, that is not the first to arrive at a level (say K) spin
waits on the status field of the enqueued QNode at levelK (line 12
in Listing 1). Eventually one of the following happens for a thread
waiting at any level:

• (Line 13 in Listing 1) T’s predecessor in the MCS lock at level
K passes the lock to T, which completes the acquire protocol
and T immediately enters the CS.

• (Line 13 Listing 1) The quantum of lock passing exhausts at
levelK, in which case T proceeds to compete for the level-(K+
1) MCS lock (Line 15, 16 Listing 1). Thread T also prepares for
a full quantum of passing for the next round within the domain
by resetting the status field of that domain’s QNode.

Release protocol: While the classical MCS lock uses a boolean
status flag to pass a lock to its successor, the HMCS lock uses a
64-bit integer in the QNode to encode the current pass count. When
passing a lock to a successor level of the NUMA hierarchy, the
releasing thread writes the current pass count for that level into the
status field of its successor. This serves both to release the waiting
successor as well as convey the local pass count. Furthermore, this
technique eliminates the need for a shared counter.

The release protocol begins at the leaf of the tree. If the pass-
ing threshold has not yet been reached at a leaf lock, and there is a
waiting successor within that domain, then the releaser (R) passes
the lock to its waiting peer within the domain. Otherwise, R relin-
quishes the lock at the deepest node along the path to the root where
a peer is waiting and the passing threshold has not been exceeded.

When releaser R encounters a threshold that has been exceeded
at some L->lock other than the tree root, R recursively performs
the release protocol (Line 29 in Listing 1) at L->parent before
signaling its successor S at L->lock. If S is non-null, R signals S by
setting its status to ACQUIRE PARENT, which indicates that S must
compete for the MCS lock at the parent level (L->parent->lock).
If R were to signal S before releasing L->parent, there would be a
data race between R and S for the QNode they both use (L->node)
to interact with the MCS lock at the parent level.

Attempting to pass a lock to a thread in the same NUMA
domain before relinquishing the lock to the next level enhances
reuse of shared data. Limiting the number of local passes ensures
starvation freedom. If the passing threshold is exceeded, but there is
a successor at the current level whereas no threads in other domains
are waiting, then we retain the lock within the domain for another
round. This optimization is not shown in Listing 1.

Relaxed memory models: Listing 1 shows the fences necessary
for the HMCS lock on systems with processors that use weak
ordering.

3.1 Discussion
Latency vs. throughput: Clearly, the cost of occasionally ma-
nipulating a sequence of locks along a path in a tree is more ex-
pensive than working with a single lock. For highly contended
locks, however, this cost is outweighed by the benefits of increased
locality that result from sharing within a NUMA domain. The
HMCS design improves throughput at the expense of latency and
it is best suited for highly contended locks. To reduce latency, a
client can use a shallower HMCS tree, though doing so would re-
duce the lock’s peak potential throughput. With the templated de-
sign, we can instantiate the HMCS lock as a classical MCS lock

(HMCS〈1〉), a 2-level cohort lock (HMCS〈2〉), or use a larger
template constant for a deeper hierarchy. Although, the code in
Listing 1 uses compile time instantiation, one could write a non-
templated HMCS lock by using recursion.
Memory management: The HMCS lock needs no explicit mem-
ory management after initialization. On the other hand, Dice et al.’s
cohort MCS lock requires maintaining a pool of free nodes. Hence,
HMCS lock’s memory management is superior.

Cache policy: Performance benefits of the HMCS lock can vary
based on the caching policies such as inclusive vs. exclusive. By
passing the lock to a nearby thread more often, the HMCS lock
benefits from data locality irrespective of the caching policy.

Thread binding: The code in Listing 1 is agnostic to operating-
system (OS) thread to hardware (HW) thread bindings. The thread
calling the HMCS lock’s Acquire and Release routines is respon-
sible for using the correct L—the pointer to its leaf-level HNode. If
the OS thread is bound to a HW thread belonging to the same inner-
most NUMA domain, then the program can set the value of L once
during lock initialization and use it for the duration of the program.

To address thread migration across NUMA domains, we replace
the L argument in the Acquire and Release routines to point to
an array of pointers to leaf-level HNodes. The Acquire indexes
into this array to obtain the pointer to its HNode. The Acquire
will also remember the inferred value of the index, which the
matching Release will use. The index itself will be a cached,
thread-local value derived by querying the CPU that the thread is
currently running on. We register a signal handler with Linux perf
events for task migration. On task migration, the handler invalidates
the migrating thread’s cached CPU index. An acquire following
a migration, gets the new CPU index either via an architecture-
specific instructions such as RDTSCP or via the getcpu system call.

4. Performance Metrics
Two key governing design criteria for any locks are their through-
put and fairness. The HMCS and C-MCS locks are designed to
deliver high throughput under heavy contention. For this reason,
we evaluate throughput and fairness of these locks in the fully-
contended case. In the rest of this paper, reference to C-MCS sim-
ply means HMCS〈2〉 .

One can evaluate locks under full contention in various ways.
Mellor-Crummey et al. [7] suggest continuous lock acquisitions
and releases with an empty critical sections to assess the pure over-
head of locks. Dice et al. suggest adding a delay outside the CS
and accessing a few cache lines of shared data inside the CS. Each
evaluation method has its own advantages and disadvantages. Dice
et al.’s technique of accessing sharing data can give a false im-
pression of reduced lock overhead since the shared data is also
passed between NUMA domains. The larger the shared data ac-
cessed in the CS, the lower the observed overhead of the lock. Fur-
ther, there is never an appropriate delay to choose for the time spent
outside a CS. On the other hand, Mellor-Crummey’s tight loop
ignores the actual gain possible on a real program, which would
certainly access some shared data inside CS; passing shared data
within NUMA domains has nontrivial benefits. Finally, if the data
accessed inside a CS is so large that it evicts critical lock data struc-
tures, both Dice and Mellor-Crummey’s techniques are moot. Be-
ing aware of these differences and deficiencies, we adopt Mellor-
Crummey’s tight loop technique to quantify the pure lock overhead
in the absence of external interference from the program.

Let ni be the number of peers in domain i. The lowest possible
domain is the L1 cache of a core, so n1 is the number of hardware
threads per core. Analogously, n2 is the number of cores per chip,
n3 is the number of chips / socket, etc. Given this definition, it is
clear that the total number of threads in the system is

N∏
i=1

ni.
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4.1 Throughput
Definition 1 (Lock throughput). Lock throughput, Tk, of a lock k,
is the average number of lock acquisitions by k per unit time.

Definition 2 (Critical path). The critical path is the longest se-
quence of weighted operations in the execution of a concurrent pro-
gram, where operation weights correspond to their latencies.

Naturally, all statements in the critical section (CS) are on the
critical path. The time to execute the statements in the CS is a
property of the program. For assessing lock overhead, however, we
assume an empty CS. All statements that are executed from the time
the lock is granted to the time the lock is passed to the next waiting
thread contribute to the critical path. Not all statements in the lock-
acquire and lock-release protocols contribute to the critical path.
Under high contention, a large number of threads will be waiting to
acquire the lock. The thread releasing the lock will have a successor
linked behind it at each level in the hierarchy. Each waiting thread
will be spin-waiting at line 12 in Listing 1 in the acquire protocol.
We have marked all statements that may appear on the critical path
with a “I” symbol in Listing 1.

The following statements in the acquire protocol appear on the
critical path: 1) the last trip through the spin-wait loop after the lock
is granted, and 2) the check to ensure that the passing threshold was
not exceeded.

The following statements in the release protocol appear on the
critical path: 1) loading of the status field, 2) checking if the passing
threshold has reached, 3) relinquishing the global lock to the parent
level when the passing threshold is reached, and 4) checking for the
presence of successor and subsequent global lock passing to the
successor when the passing threshold has not reached.

If the lock is relinquished to the parent level, the sequence
of statements executed until the global lock is granted to another
domain contribute to the critical path. Subsequent signaling of
successors at lower levels is not on the critical path. In a fully
contended system, there is always a successor waiting to acquire
the lock, hence the case of not having a successor (line 56 in
Listing 1) is not on the critical path.

Our implementation takes advantage of C++ template’s value
specialization to unroll recursion. Template specialization allows
the deepest level of recursion which manipulates the root lock to be
implemented with lower overhead. When the acquisition involves
several layers of recursion, tail recursion reduces the critical path
length since the lock acquiring thread can enter the CS with a single
return statement from the last level of recursion. Furthermore, we
engineered the code to reduce branches on the critical path (not
shown in Listing 1.)
A variant of the C-MCS lock: While Dice et al.’s C-MCS lock
formed cohorts within threads on the same socket, it ignored the
other levels of NUMA hierarchy inside a socket. We propose a
variant of C-MCS lock where cohorts are formed only at the inner
level (e.g., among SMT threads). All other levels of the NUMA
hierarchy are ignored. We call Dice et al.’s original C-MCS lock an
outer cohorting lock (C-MCSout). We call aforementioned variant
of the C-MCS an inner cohorting lock (C-MCSin).

For simplicity, in Section 4.1.1- 4.1.3 we assume a 3-level
system and build analytical models of throughput for C-MCSin, C-
MCSout and HMCS〈3〉 locks. We provide throughput models of the
HMCS lock for any N-level system at the end of Section 4.1.3.

4.1.1 Throughput of the C-MCSin Lock
In a C-MCSin lock, threads at level-1 of the NUMA hierarchy (e.g.,
SMT threads) form cohorts. On reaching the passing threshold,
however, a C-MCSin lock may relinquish the lock either to a level-
2 NUMA peer (e.g., a thread on the same socket) or to a level-3
NUMA peer (e.g, a thread on another socket). Consider a chain of

Re
l2⊕
3

Acq
2⊕3

Acq
1Re

l1

p1

Figure 5. Lock passing in the C-MCSin lock.

successive lock passing as shown in Figure 5. The first thread in the
cohort acquires the lock either from a level-2 or level-3 peer in the
NUMA hierarchy. Let Acq2 and Acq3 be the critical path lengths
if the lock is acquired from a level-2 or level-3 peer respectively.
Since the level-3 memory access latency is larger than level-2
memory access latency, Acq3 > Acq2 . The expected critical path
length to acquire the lock either from a level-2 or level-3 NUMA
domain peer is given by:

Acq2⊕3 =Pr [Acquisition from level 2 ]Acq2

+(1 − Pr [Acquisition from level 2 ])Acq3
(1)

There are (n2n3−1) other domains in the system of which (n2−1)
are peers at level 2. Hence,

Pr [Acquisition from level 2 ] =
n2 − 1

n2n3 − 1
(2)

=⇒ Acq2⊕3 =
n2 − 1

n2n3 − 1
Acq2 +

n2n3 − n2

n2n3 − 1
Acq3 (3)

Let Rel1 and Acq1 be the critical paths in the release and ac-
quire protocols when releasing and acquiring at level-1 respec-
tively. We represent Rel1 +Acq1 = p1 as the lock passing time
at level 1. If cin is the passing threshold for the lock, there will be
(cin − 1 ) lock passings at level 1, each adding p1 to the critical
path length. At the end, the lock will be released to a thread be-
longing to either level-2 or level-3 domains and the expected cost
of releasing (Rel2⊕3 ) is defined similar to Acq2⊕3 . We represent
Acq2⊕3 + Rel2⊕3 as p2⊕3 , where p2 and p3 are the passing times
at level 2 and 3 respectively. The expected passing time is:

p2⊕3 =
n2 − 1

n2n3 − 1
p2 +

n2n3 − n2

n2n3 − 1
p3 (4)

The cycle of remote acquisition, local passing, and remote release
repeats in each domain. The C-MCSin lock acquires cin number
of locks in time p2⊕3 + (cin − 1 )p1 . Hence the throughput of a
C-MCSin lock, Tin, in a 3-level system is given by:

Tin (3 ) =
cin

p2⊕3 + (cin − 1 )p1
(5)

As cin →∞, Tin(3 )→ 1/p1 . Maximum throughput of the C-
MCSin lock, T max

in , in a 3-level system is given by:

T max
in (3 ) =

1

p1
(6)

This bound holds for any N-level system.

4.1.2 Throughput of the C-MCSout Lock
In this lock, cohorts are formed among threads belonging to level-
1 and level-2 NUMA domains aggregated and no distinction is
made between these two levels of hierarchy. Let cout be the passing
threshold. Let the cost of acquisition and release from an outside
domain (at level-3) be Acq3 and Rel3 respectively. We represent
Acq3 + Rel3 as p3 — the lock passing time at level 3. The ex-
pected cohort passing time within level-1 and level-2 NUMA do-
mains is:

p1⊕2 =Pr [passing within level 1 ]p1

+(1 − Pr [passing within level 1 ])p2

There are (n1n2 − 1 ) other threads within level-2 of the NUMA
hierarchy, of which (n1 − 1 ) are level-1 NUMA peers. Hence,
the probability of cohort passing between level-1 NUMA peers is
(n1 − 1 )/(n1n2 − 1 ).

=⇒ p1⊕2 =
n1 − 1

n1n2 − 1
p1 +

n1n2 − n1

n1n2 − 1
p2 (7)
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Figure 6. Lock passing in the HMCS〈3〉 lock.

The C-MCSout lock passes the lock (cout − 1 ) times within its
cohorts adding a total of (cout − 1 )p1⊕2 length to the critical
path. cout lock acquisitions acquire time p3 + (cout − 1 )p1⊕2 .
The cycle of remote acquisition at level-3, local passing within
either level-1 or level-2 and remote release to level-3 repeats in
each domain. Hence throughput of the C-MCSout lock, Tout, in a
3-level system is given by:

Tout (3 ) =
cout

p3 + (cout − 1 )p1⊕2
(8)

As cout →∞, Tout → 1/p1⊕2 . Maximum throughput of a C-
MCSout lock, T max

out , in a 3-level system is given by:

T max
out (3 ) =

1

p1⊕2
(9)

This bound holds for any N-level system. In general, if the in-
nermost cohort formation is at level k , the peak throughput is
1/p1⊕2⊕...⊕k .

Since p2 (the lock passing time at level 2) is higher than p1 (the
lock passing time at level 1), p1⊕2 (the expected lock passing time
between level-1 or level-2) is higher than p1 . From Eqn 6 and 9,
it follows that T max

out (3 ) < T max
in (3 ), Hence, C-MCSin achieves

higher peak throughput than C-MCSout. Experiments on an IBM
Power 755, a 3-level system, corroborate this finding (Sec. 6).

4.1.3 Throughput of HMCS Locks
The HMCS〈3〉 lock forms cohorts both at level 1 and level 2 of the
NUMA hierarchy in a 3-level system. Let h1 and h2 respectively be
the passing thresholds at level 1 and level 2. In a 3-level lock, a full
cycle begins by obtaining the lock at level-3 (Acq3 ). Subsequently,
the lock is passed (h1 − 1 ) times within level-1, releasing the lock
at level-2 (Rel2 ), followed by an acquisition at level-2 (Acq2 ).
The cycle of passing within level-2 happens for (h2 − 1 ) times.
On reaching the passing threshold at level 2, the HMCS〈3〉 lock
relinquishes the global lock to a level-3 peer adding Rel3 to the
critical path. There will be a total of (h1 − 1 )h2 lock passes within
level 1, each one adding p1 length to the critical path. There will
be (h2 − 1 ) lock passes at level 2, each one adding p̂2 length to
the critical path. There will be one lock passing at level 3 adding
p̂3 length to the critical path. In the entire cycle, h1h2 locks will be
acquired. Hence throughput of the HMCS〈3〉 lock, Thmcs〈3〉, in a
3-level system is given by:

Thmcs〈3〉(3 ) =
h1h2

p̂3 + (h2 − 1 )p̂2 + h2 (h1 − 1 )p1
(10)

p̂3 and p̂2 are the lock passing times respectively at level-2 and
level-3 in the HMCS〈3〉 lock. The level-2 lock passing in the
HMCS〈3〉 lock has an additional critical path component that loads
and compares the status flag (Lines 25-27 in Listing 1) with the
threshold, which is not needed by optimal implementations of C-
MCS locks. If this additional cost is ε0 , then p̂2 = p2 + ε0 . On
reaching the passing threshold at level 2, the HMCS〈3〉 lock needs
to traverse to the parent lock before releasing the global lock to
a level-3 peer (Line 29 in Listing 1)—a cost not incurred in C-
MCS locks. Let ε1 be the cost of traversing from level-2 lock to
the level-3 parent lock (all necessary datum will be in the nearest
level cache). For that reason, p̂3 = p3 + ε1 . Hence, the throughput
of the HMCS〈3〉 lock is:

Thmcs〈3〉(3 ) =
h1h2

p3 + (h2 − 1 )p2 + h2 (h1 − 1 )p1 + ε
(11)

where ε = ε1 + (h2 − 1 )ε0 .

As h1 →∞, Thmcs〈3〉 → 1/p1 . Maximum throughput of the
HMCS〈3〉 lock, T max

hmcs〈3〉, in a 3-level system is given by:

T max
hmcs〈3〉(3 ) =

1

p1
(12)

It is straightforward to infer from Eqn 6, 9 and 12 that:
T max
in (3 ) = T max

hmcs〈3〉(3 ) > T
max
out (3 ) (13)

Hence, the C-MCSin lock—a C-MCS variant with inner cohorting
and the HMCS〈3〉 lock have the same peak throughput and both of
them can deliver higher throughput than Dice et al.’s C-MCS lock
with outer cohorting.

From Eqn 10, it is straight forward to generalize the throughput
of an N-level HMCS lock, Thmcs〈N〉, for an N-level NUMA system
as:

Thmcs〈N〉(N ) =

N−1∏
i=1

hi

pN +
N−1∑
i=1

(
pi (hi − 1 )

N−1∏
j=i+1

hj

) (14)

Discussion: While our performance models assumed empty crit-
ical sections for assessing lock overhead, we can model non-empty
critical sections by including an additional cs term to account for
the cost of the CS in each lock passing term (pi ). While the C-
MCSin and HMCS locks can theoretically deliver top throughput,
in practice, threads may not be able to achieve the maximum pos-
sible throughput when the delay outside the critical path is large.
The average number of threads enqueuing for the same lock acqui-
sition at a level per unit time is defined as the arrival rate at that
level. For a lock representing a NUMA domain in the HMCS tree
to be useful, the arrival rate for that domain must exceed the rate
at which the domain is selected for service. Furthermore, the re-
duction in access latency realized by passing a lock and the data
it protects within a domain should outweigh the cost of adding an
addition lock level.

4.2 (Un)Fairness
If a lock serves threads in the first-in first-out (FIFO) order, then
the lock is considered fully fair. The MCS lock ensures FIFO or-
dering once a requesting thread has swapped the lock’s tail pointer.
HMCS and C-MCS locks do not ensure FIFO ordering since they
allow multiple turns for threads within the same domain even when
threads are already enqueued elsewhere in the lock hierarchy.

We devise a metric of unfairness to compare HMCS and C-
MCS locks. In this scheme, each subdomain can acquire the lock as
many times as the total number of threads in its subdomain; every
additional acquisitions counts towards a unit of unfairness. Under
high contention, a thread that just released the lock must wait until
all other threads already waiting at that level are serviced, which is
ensured by the FIFO property of MCS lock at each level. Hence,
under high contention, from the viewpoint of a waiting thread,
this penalizes a threader for multiple acquisitions while the lock is
passed within a domain, but does not penalize for not maintaining
the system-wide FIFO order.

Definition 3 (Unfairness:). Unfairness is the maximum possible
total number of additional rounds of lock acquisitions over the
designated quota of one, by other threads in the system when a
thread is still waiting to acquire the lock. Formally, if T is the set
of all threads in the system, the unfairness, U , is given by:
U = Max

(
∀j ∈ T,

∑
i∈T−j

(
acquisitions by i | j is waiting−1

))
.

The worst case wait for a thread when using an MCS lock
is (

N∏
i=1

ni − 1) lock acquisitions and its unfairness is 0 . In fully

contended cohort locks, if the threshold of each level hi equals to
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Figure 7. Unfairness in the C-MCSin lock, when
cin ≥ n1 .
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Figure 8. Unfairness in the C-MCSin lock, when cin < n1 .

the number of contenders ni at level i , then the longest waiting
thread waits for a maximum of (

N∏
i=1

ni − 1) lock acquisition, which

is same as the longest wait in the classical MCS lock. However,
if any hi > ni , threads will be served more than once causing
unfairness for some waiting threads in the system.

4.2.1 Unfairness of the C-MCSin Lock
Consider the case when cin ≥ n1 . The maximum unfairness will
be incurred by the last thread—shown in blue color in Figure 7,
enqueued in the last domain Dlast enqueued in the outer queue of
the C-MCSin lock. Each of the first (n2n3 − 1 ) NUMA domains
acquires cin locks of which only n1 are fair and the remaining
(cin − n1 ) are unfair. The acquisitions in the Dlast domain don’t
contribute to the unfairness since by the time repetitions happen,
the longest waiting thread would have already been serviced. Hence
the unfairness of the C-MCSin lock in a 3-level system is:

Uin (3 ) = (cin − n1 )(n2n3 − 1 ) (15)

In Figure 7, n1 = 2 ,n2 = 2 ,n3 = 2 and cin = 4 . Total unfair-
ness is (4 − 2 )(2 × 2 − 1 ) = 6 .

When cin < n1 , each domain goes through multiple rounds of
service before the longest waiting thread in the last domain can be
serviced. We demonstrate this with the example in Figure 8, where
n1 = 4 ,n2 = 2 ,n3 = 2 , and cin = 3 . Only 3 out of 4 threads
will be served in each domain in the the first round through all
domains. In the worst case, it takes a total of two rounds through
all domains before the longest waiting thread can be serviced. In
the second round through all the domains, the first thread (t4 ) in
domains 1-3 will be serviced for the first time, but the remaining
2 threads (t1 and t2 ) will be taking their additional round adding
to two units of unfairness. As before, no repetitions happen in the
Dlast domain. Each domain gets lock acquisitions in cin quantum;
from the point of view of longest waiting thread, each of the other
(n2n3 − 1 ) domains acquire d n1

cin
ecin locks of which n1 are fair.

Hence, the total unfairness is:

Uin (3 ) =
(⌈

n1

cin

⌉
cin − n1

)
(n2n3 − 1 ) (16)

When cin ≥ n1, Eqn 16 simply reduces into Eqn 15. In Figure 8,
the unfairness is (d4/3e3 − 4 )(2 × 2 − 1 ) = 6 .

4.2.2 Unfairness of the C-MCSout Lock
The C-MCSout lock collapses level-1 and level-2 of the NUMA
hierarchy into a single domain of n1n2 threads and assumes that
there are n3 such domains. Following the same argument as before,
it is straight forward to show that the unfairness of the C-MCSout
lock in a 3-level system is:

Uout (3 ) =
(⌈

n1n2

cout

⌉
cout − n1n2

)
(n3 − 1 ) (17)

4.2.3 Unfairness of HMCS Locks
First we compute the unfairness when, h1 ≥ n1 and h2 ≥ n2 .
Consider a system where n1 = 2 ,n2 = 2 and let h1 = 4 , h2 = 4
as shown in Figure 9. Maximum unfairness will be observed by
the last enqueued thread in the last level-1 domain (DlastL1 ) be-
longing to the last enqueued level-2 domain (DlastL2 ). There will
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Figure 9. Unfairness in the HMCS〈3〉 lock, when h1 ≥ n1 and h2 ≥ n2 .
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Figure 10. Unfairness in the HMCS〈3〉 lock, when h1 < n1 and h2 < n2 .

be h1h2 lock acquisitions inside each of the first (n3 − 1 ) level-
2 domains of which (h1h2 − n1n2 ) are unfair. Inside the DlastL2

domain, there will be (h1 − n1 ) unfair acquisitions in each of the
first (n2 − 1 ) level-1 domains. The DlastL1 domain adds no un-
fairness since any repetitions will happen only after the longest-
waiting thread is already serviced. Thus the total unfairness of the
HMCS〈3〉 lock in a 3-level system when h1 ≥ n1 and h2 ≥ n2 is:
Uhmcs〈3〉(3 ) = (h1h2 − n1n2 )(n3 − 1 ) + (h1 − n1 )(n2 − 1 )

(18)
We use Figure 10 to provide intuition for deriving unfairness

when h1 < n1 and h2 < n2 . In Figure 10, n1 = 3 , n2 = 4 ,
n3 = 2 , h1 = 2 , and h2 = 3 . In the first round, three out of four
level-1 domains will be served in each of the level-2 domains.
Within each serviced level-1 domains, two out of three threads
will be serviced. Round 1 accrues no unfairness. In round 2, two
threads inside the domain 1.4 will be served for the first time; In
domains 1 .1 and 1 .2 one thread (t3 ) will be served for the first
time, whereas one thread (t1 ) will be enjoying its second round of
service, while the longest waiting thread is still waiting. This accu-
mulates an unfairness of 2 units in domains 1. The same repeats in
domain-2 also. In the third round, one thread (t3 ) in the domains
1 .3 and 1 .4 will be served fairly, whereas one thread (t1 ) will
be served for the second time, hence unfair. Furthermore, due to a
remaining one round in the h2 quantum, we serve two threads (t2
and t3 ) in the domain 1 .1 for the 3 rd time accruing a total of 4
units of unfairness in domain 1. In domain 2 .3 , one thread (t3 ) is
served fairly, whereas one thread (t1 ) will be served for the second
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Figure 11. Impact of threshold on unfairness.

time. Thus total unfairness in round 3 is 5. The total unfairness in
all rounds taken together is 9.

Since each level-2 lock acquisition provides a chunk of h1 locks
at a time, each level-1 domains has to experience d n1

h1
e level-2

lock acquisitions before the longest-waiting thread is served. Let
us first focus on a level-2 domain to which the longest waiting
thread does not belong to arrive at the number of level-3 acqui-
sitions that need to happen. Since there are n2 peers at level-2, a
total of d n1

h1
en2 level-2 lock acquisitions need to happen. Level-

2 locks are given in a chunk of h2 , which means each level-2
domain needs to experience dd n1

h1
e n2
h2
e level-3 lock acquisitions.

Each round of level-3 lock acquisition serves a total of h1h2 locks
inside its subdomain. Hence, the total lock acquisitions will be
dd n1

h1
e n2
h2
eh1h2 , of which only n1n2 are fair. Hence, the unfairness

in each domain to which the longest waiting thread does not belong
is dd n1

h1
e n2
h2
eh1h2 − n1n2 . There are a maximum of (n3 − 1 )

such domains.
In the level-2 domain to which the longest-waiting thread be-

longs, each of the (n2 − 1 ) domains need to experience d n1
h1
eh1

lock acquisitions, of which only n1 will be fair. Thus, the total un-
fairness in the last level-2 domain will be (d n1

h1
eh1 − n1 )(n2 − 1 ).

Combining the unfairness from both cases, we arrive at the total un-
fairness of the HMCS〈3〉 lock in a 3-level system as:

Uhmcs〈3〉(3 ) =

(⌈⌈n1

h1

⌉n2

h2

⌉
h1h2 − n1n2

)
(n3 − 1 )

+
(⌈n1

h1

⌉
h1 − n1

)
(n2 − 1 )

(19)

For the example in Figure 10, the unfairness is:

(
⌈
d3/2e4/3

⌉
2× 3− 3× 4)(2− 1) + (d3/2e2− 3)(4− 1) = 9.

When h1 ≥ n1 and h2 ≥ n2 , Eqn 19 degenerates into Eqn 18.
Eqn 18 also covers the cases of h1 ≥ n1 and h2 < n2 , as well as
h1 < n1 and h2 ≥ n2 . We omit the details for brevity. We note
that when h1 < n1 unfairness is 0 , if either h1 divides n1 and h2
divides n2 or h2 divides d n1

h1
en2 .

Figure 11 provides visualization of unfairness in the C-MCSin
and HMCS〈3〉 locks with varying values of thresholds. Both
graphs assume a hypothetical machine where n1 = 40 ,n2 = 8 ,
and n3 = 4 . For the C-MCSin lock, the unfairness is 0 , when the
threshold cin divides n1 . For the HMCS〈3〉 lock, the unfairness is
0, when the threshold h1 divides n1 and h2 divides n2 and grows
linearly with both increase in h1 and h2 . Finally, we extend the
Eqn 19 to generalize the unfairness of an N-level HMCS lock,
Uhmcs〈N〉, for any N-level NUMA system as:

Uhmcs〈N〉(N ) =

N−1∑
i=1

(
ψi

i∏
j=1

hi −
i∏

j=1

ni

)
(ni+1 − 1 ) (20)

where ψi =

⌈⌈⌈n1

h1

⌉n2

h2

⌉
...
ni

hi

⌉
When hi ≥ ni ,∀i , the ψi term in Eqn 20 vanishes.

5. HMCS Properties
In this section we prove some of the important attributes of HMCS
locks in comparison with the C-MCS locks. From Eqn 13 the peak
throughput of the HMCS lock is same as the peak throughput of the
C-MCSin lock. Hence the competition between them is for fairness
when delivering the same throughput. We prove, in Section 5.1,
that on a 3-level NUMA system, when the difference in latencies
between two consecutive levels of the NUMA hierarchy is suffi-
ciently large, a 3-level HMCS lock delivers higher fairness than a
C-MCSin lock for any user-chosen throughput.

The competition between the C-MCSout and HMCS〈3〉 locks is
for the throughput at the same level of fairness. In this regard, in
Section 5.2, we prove that on a 3-level system, when the difference
in latencies between two consecutive levels of NUMA hierarchy is
sufficiently large, a 3-level HMCS lock delvers higher throughput
than the C-MCSout lock for any user-chosen fairness level.

5.1 Fairness Assurance of HMCS Over C-MCSin

Let α ∈ [0 − 1 ] be the user chosen level of throughput represented
as a fraction of peak throughput. If the value of cin in the C-
MCSin lock needed to achieve this throughput is less than n1 ,
then, the HMCS〈3〉 lock can set h1 = n1 and h2 = n2 , which not
only achieves more throughput but also delivers 0 unfairness, thus
proving its superiority. Hence the comparison is needed only when
cin ≥ n1 . The value of cin to achieve the expected throughput is
derived by solving Eqn 5:

cin

p2⊕3 + (cin − 1 )p1
=α T max

in (3 ) (21)

=⇒ cin =
α(p2⊕3 − p1 )

p1 (1 − α)
(22)

In the HMCS〈3〉 lock we set h2 = n2 . The value of h1 to achieve
the expected throughput α is derived by solving Eqn 11.

h1n2

p3 + (n2 − 1 )p2 + n2 (h1 − 1 )p1 + ε
= α T max

hmcs〈3〉(3 ) (23)

=⇒ h1 =
α(p3 + p2 (n2 − 1 )− p1n2 + ε)

n2p1 (1 − α)
(24)

Again, only values of h1 ≥ n1 are of interests, since smaller values
can be replaced with h1 = n1 to obtain 0 unfairness but superior
throughput. We note in passing that practical comparisons can only
be made when the thresholds in both Eqn 22 and 24 take integer
values. Substituting cin from Eqn 22 in Eqn 15, we get:

Uin (3 ) =
(α(p2⊕3 − p1 )

p1 (1 − α)
− n1

)
(n2n3 − 1 ) (25)

Substituting h2 = n2 and h1 from Eqn 24 in Eqn 18, we get:

Uhmcs〈3〉(3) =
(α(p3 + p2 (n2 − 1)− p1n2 + ε)

n2p1 (1 − α)
− n1

)
(n2n3 − 1)

(26)

From Eqn 25 and 26, the necessary condition for the HMCS〈3〉
lock to deliver higher fairness than the C-MCSin lock is:

Eqn 25 ≥ Eqn 26 (27)

=⇒p2⊕3 − p1 ≥
p3 + p2 (n2 − 1 )− p1n2 + ε

n2
(28)

=⇒(p3 − p2 )
(
1 − n2

n2n3 − 1

)
≥ εo +

ε1
n2 − 1

(29)

All terms on the LHS and RHS are positive in Eqn 29. On any
NUMA system, n1 ,n2 ,n3 ≥ 2 ; otherwise it does not form a new
NUMA domain at a level. It can be shown that the minimum value
of the second term on LHS is 1/3. Hence, the sufficiency condition
for the HMCS〈3〉 lock to deliver higher fairness than the C-MCSin
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lock at the same throughput is:

(p3 − p2 )

3
≥ εo +

ε1
n2 − 1

(30)

From Eqn 29 and Eqn 30 we make the following observations:
1. As long as the cost of additional check of status flag and amor-

tized cost of traversing to parent level lock once in h2 = n2

quantum is less than one third the difference in passing time
between level-3 and level-2, it calls for having an additional
level in the HMCS lock hierarchy.

2. Larger difference in passing time (also related to the access la-
tency) between two consecutive levels in the NUMA hierarchy
(first term in LHS of Eqn 29) governs the necessity for addi-
tional level in the HMCS lock hierarchy.

3. From the second term in LHS of Eqn 29, it follows that if a
NUMA domain d has many subdomains, then one can benefit
from having an HMCS lock for each NUMA subdomain of d.

5.2 Throughput Assurance of HMCS Over C-MCSout

Let k be the threshold value of the C-MCSout lock that achieves the
user chosen unfairness value of β. Then from Eqn 17, we know that

Uout (3 ) =
(⌈

n1n2

k

⌉
k − n1n2

)
(n3 − 1 ) (31)

We set h1 = n1 and h2 = k/n1 in the HMCS〈3〉 lock.
The concern here is whether a fractional h2 value is possi-
ble? The answer is yes. For example, assume n1 = 4 , n2 = 3 ,
and k = 13 . We want to set the following configuration:
h1 = n1 = 4 , h2 = 13/4 = 3 .25 . The HMCS〈3〉 lock can
hand out 3 rounds of level-2 quanta each containing h1 (= 4 )
lock acquisitions, totaling 3 × 4 = 12 acquisitions. But in
the 4 th round, the level-2 lock should curtail level-1’s thresh-
old from n1 = 4 to 0 .25 × n1 = 0 .25 × 4 = 1 . Notice that
0 .25 × 4 = 1 = 13 mod 4 = k mod n1 . With this, we would
have given out 12 + 1 = 13 = k acquisitions with exactly the
same amount of unfairness as the C-MCSout lock. It is no accident
that for the last round we chose k mod n1 threshold; it simply fol-
lows from algebra that b k

n1
cn1 + k mod n1 = k .

Intuitively, since level-1 locks go in quantum of n1 , we want to
curtail the last quantum to a smaller value, i.e., k mod n1 . With this
knowledge, we can slightly alter the acquire protocol. Instead of
starting the count from 1 till n1 to reach the threshold, we start the
counter (the status field of the QNode) from (k − k mod n1 ) for
the last round of level-1 acquisitions when there is need to achieve
the fractional h2 value. This adds one extra compare on the critical
path, but we note that this modification is only of theoretical interest
to demonstrate that the fractional h2 value is achievable.
Substituting h1 = n1 and h2 = k/n1 in Eqn 19 yields:

Uhmcs(3 ) =

(⌈⌈n1

n1

⌉n1n2

k

⌉
n1

k

n1
− n1n2

)
(n3 − 1 )

+

(⌈n1

n1

⌉
n1 − n1

)
(n2 − 1 )

=
(⌈n1n2

k

⌉
k − n1n2

)
(n3 − 1 ) = Eqn 31

Thus, when h1 = n1 and h2 = k/n1 , C-MCSout and HMCS〈3〉
locks deliver the same fairness.

Now, we derive the conditions for Thmcs〈3〉(3 ) to be greater
than Tout(3 ) in this configuration. Substituting cout = k in the
throughput equation for the C-MCSout lock (Eqn 8), we get:

Tout (3 ) =
k

p3 + (k − 1 )p1⊕2
(32)

Substituting h1 = n1 and h2 = k/n1 , in the throughput equation
for the HMCS〈3〉 lock (Eqn 11), we get:

Thmcs〈3〉(3 ) =
n1

k
n1

p3 + ( k
n1
− 1 )p2 + k

n1
(n1 − 1 )p1 + ε

(33)

From Eqn 32 and 33, to show that Thmcs(3) ≥ Tout(3), we need
to simply show that:

(k − 1 )p1⊕2 ≥ (
k

n1
− 1 )p2 +

k

n1
(n1 − 1 )p1 + ε (34)

Substituting for p1⊕2 from Eqn 7 in Eqn 34, we obtain:

(p2 − p1 )

(
k(n1n2 − n1 − n2 ) + (n1 − 1 )

(n1n2 − 1 )( k
n1
− 1 )

+
k

n1 (n1n2 − 1 )( k
n1
− 1 )

)
≥ ε0 +

ε1
k
n1
− 1

(35)

Eqn 35 forms the basic constraint to ensure that the HMCS〈3〉
lock has higher throughput compared to the C-MCSout lock. Each
term on the LHS and RHS of Eqn 35 is positive. When k in-
creases, the LHS increases and RHS decreases, ensuring that be-
yond a certain value of k, the inequality is always true. Hence,
we need to find the sufficiency condition at the smallest value
that k can assume. Any value of k < n1n2 increases unfairness in
both locks, and decreases the throughput. Hence if the C-MCSout
chooses k < n1n2 , for the HMCS〈3〉 lock we simply choose
h1 = n1 , h2 = n2 , which guarantees no unfairness and yet deliv-
ers higher throughput than the C-MCSout lock. Hence the smallest
value that a C-MCSout lock can choose for k is n1n2 . Substituting
k = n1n2 in Eqn 35, we arrive at

(p2 − p1 )

(
n1n2 (n1n2 − n1 − n2 ) + (n1 − 1 ) + n2

(n1n2 − 1 )(n2 − 1 )

)
≥ ε0 +

ε1

n2 − 1

(36)

On any system, n1 ,n2 ,n3 ≥ 2 , otherwise it does not form a
new NUMA domain at that level. It can be shown that the min-
imum value of the second term on LHS in Eqn 36 is 3. Hence
the sufficiency condition for the HMCS〈3〉 lock to deliver higher
throughput than the C-MCSout lock at the same fairness level is:

(p2 − p1 )(3 ) ≥ ε0 +
ε1

n2 − 1
(37)

From Eqn 35, 36, and 37 we make following observations:
1. There is always a passing threshold value in the C-MCSout

lock beyond which the HMCS〈3〉 lock is always guaranteed to
deliver higher throughput at the same fairness. This also follows
from the fact that T max

out (3 ) < T max
hmcs〈3〉(3 ).

2. When the first condition is not met, as long as the cost of addi-
tional check of the status flag and amortized cost of traversing
to parent level lock once in h1 = n1 quantum is less than three
times the difference in passing time between level-1 and level-2,
it is beneficial to have additional level in the lock hierarchy. The
RHS is, typically, significantly less than the minimum possible
LHS.

Discussion: It is straight forward to show that an N-level HMCS
lock offers the same throughput and fairness superiority guarantees
over an (N-1)-level HMCS lock. The argument follows similar to
the aforementioned derivations; we omit the details for brevity.

6. Experimental Evaluation
We conducted our experimental evaluation on two platforms—an
IBM Power 755 and an SGI UV 1000. In all our experiments, we
densely packed OS threads and bound them to HW threads.
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Table 1. Experimental setup.

IBM Power 755 SGU UV 1000
Processor POWER7 @ 3.86 GHz Intel Xeon X7560 @ 2.27 GHz

SMT 4-way 2-way
Cores/Socket 8 8
Sockets/node 4 2
L1-D-Cache 32KB private 32KB private

L2-Cache 256KB private (L1 inclusive) 256KB private (L1 inclusive)
L3-Cache 8× 4MB victim 24MB shared (L2 inclusive)
Memory 2 on-chip, 2 on-chip,
controller 4-channel DDR3 2-channel DDR3
Compiler xlc++ v1.4.3 icc v.14.0.0

Threshold
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Figure 12. Expected vs. observed throughput of the C-MCSin and C-MCSout locks
on IBM Power 755 with 128 threads.

Table 2. Difference in expected vs. observed throughput on IBM Power 755.
Lock Median Difference Maximum Difference

HMCS〈3〉 6.3% 15%
C-MCSin 5.6% 10%
C-MCSout 4.7% 11%

6.1 Evaluation on IBM Power 755
The IBM Power 755, a 3-level system, used for our experiments has
the specifications shown in Table 1. This system provides a total
of 128 hardware threads. SMTs sharing an L1 and L2 cache form
level-1 of the NUMA hierarchy. All cores on the same socket form
level-2 of the NUMA hierarchy. Four sockets sharing the primary
memory form level-3 of the NUMA hierarchy.

Accuracy of analytical models: We inspected the compiler-
generated assembly instructions appearing on the critical path and
statically computed the number of CPU cycles. By knowing the
passing time at each level of the hierarchy, we computed the ex-
pected throughput values at various passing thresholds. To assess
the accuracy of our analytical models, we compared our model-
derived throughput with the empirically observed throughput at 128
threads. Figure 12 plots the graph of expected vs. observed through-
put of C-MCS locks. Figure 13(a) and 13(b) respectively plot the
expected vs. empirically observed throughput of the HMCS〈3〉
lock. The difference in expected vs. observed throughput is small
(see Table 2). It is clear that our analytical models accurately pre-
dict the performance at each value of lock passing threshold. As ex-
pected, the peak throughputs of the HMCS〈3〉 and C-MCSin locks
are same (4.58E+07 acquisitions / second) and 4.8× higher than
the C-MCSout lock. Beyond a certain point, further increases in
threshold yield no significant increase in the throughput of a lock.
Significant performance gains happen in the HMCS〈3〉 lock by in-
creasing the h1 threshold. Table 3 shows the difference in unfair-
ness of the C-MCSin lock and the HMCS〈3〉 lock to reach a given
target throughput. The HMCS〈3〉 lock delivers up to 7x higher fair-
ness than the C-MCSin lock. At 99.9% of the peak throughput, the
HMCS〈3〉 lock delivers 2× higher fairness than the C-MCSin lock.

Empty CS: Figure 14 demonstrates the scalability of various
MCS lock variants with empty critical sections. We chose the pass-
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Figure 13. Expected vs. observed throughput of HMCS〈3〉 lock on IBM Power
755 with 128 threads.

Table 3. Improvement in fairness of the HMCS〈3〉 lock over the C-MCSin lock.
Percent peak Unfairness (HMCS improvement)
throughput HMCS〈3〉 C-MCSin C-MCSin / HMCS〈3〉

50% 24 173 7.14×
70% 222 568 2.56×
90% 1209 2545 2.10×
99% 14543 29236 2.01×

99.9% 147880 296142 2.00×
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Figure 14. Lock scaling with empty CS on IBM Power 755.
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Figure 15. Throughput improvement of HMCS〈3〉 over C-MCSout with varying
size of data accessed in the critical section on IBM Power 755 with 128 threads.

ing thresholds to deliver 99.9% of the peak throughput for C-MCS
and HMCS〈3〉 locks. Under no contention, the HMCS〈3〉 lock
has 2.9× lower throughput than the MCS lock, but under high
contention, the HMCS〈3〉 lock has 11.7× higher throughput. The
throughput of the MCS lock drops each time a new NUMA level
is introduced. The C-MCSin lock follows similar high-throughput
trend as the HMCS〈3〉 lock. The throughput of the C-MCSout drops
between 4-8 threads when the SMT-threads diverged into multiple
cores. The HMCS〈3〉 lock delivers 5.22× higher throughput than
the C-MCSout lock. At two processors, the MCS lock’s throughput
drops. This anomaly is explained in the original paper describing
the MCS lock [7].

Non-empty CS: We varied the data accessed in the CS from
0 to 8MB, while keeping the number of threads fixed at 128.
We chose the passing thresholds to deliver 99.9% of the peak
throughput. We compared the throughput of the HMCS〈3〉 lock to
the C-MCSout lock (Figure 15). The throughput of the HMCS〈3〉
lock increases from 5.3× at 0 bytes to 7.6× at 32KB—the L1
cache size.The increase in relative throughput is due to the locality
benefits enjoyed by the data accessed in the CS. Beyond the L1-
cache size, the ratio decreases, yet continues to be significantly
superior (more than 6×) until 256KB—the L2 cache size. Beyond
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Figure 16. Lock scaling at lower contention on IBM Power 755.

the L2-cache size, the benefits of the HMCS〈3〉 lock steadily drop
from 6.2× to 1.5× at 4MB—the L3 cache size.

Non-empty CS with lower contention: Figure 16 demonstrates
the scalability of various MCS lock variants with non-empty critical
sections under lower contention. Our benchmark touches two cache
lines inside the CS and spends a random 0-1.58 µs outside the CS to
mimic the test setup by Dice et al. [4]. We chose the passing thresh-
olds to deliver 99.9% of the peak throughput for all cohort locks. In
this case, the C-MCSin lock’s throughput starts to degrade once the
lock passing starts to go outside of the socket due to a lack of cohort
formation. The HMCS〈3〉 lock maintains its high throughput and
remains unaffected by increased NUMA levels, whereas through-
put of all other locks degrades. At 128 threads, the HMCS〈3〉 lock
delivers 1.46×, 2.13×, and 4.5× higher throughput than C-MCSin,
C-MCSout, and MCS locks respectively.

MineBench K-means code: K-means is an OpenMP clustering
code from the MineBench v.3.0.1 suite—a benchmark suite with
full-fledged implementations for data mining workloads [8]. “K-
means represents a cluster by the mean value of all objects con-
tained in it. The initial, user provided, k cluster centers are ran-
domly chosen from the database. Then, each object is assigned a
nearest cluster center based on a similarity function. Once the new
assignments are completed, new centers are found by finding the
mean of all the objects in each cluster. This process is repeated un-
til some convergence criteria is met [8].”

Our experiments used an input file with 65K objects and 32
attributes in each point. We set the convergence threshold to 10−5,
and the minimum and maximum number of initial clusters to 2
and 15 respectively. The K-means code uses OpenMP atomic
directives to update the new clusters centers as shown in Listing 2.
Data ping-pongs indiscriminately between remote NUMA domains
due to true sharing (threads in different NUMA domains modify
the same location) and false sharing (threads in different NUMA
domains modify different locations that share the same cache line).
The result is poor scalability—increasing the number of threads
increases the running time—as shown in Table 4 column #2.

To address the indiscriminate data movement, we replaced the
atomic directives with a coarse-grained lock to protect the cluster
centers (see Listing 3). While there exist other parallelization tech-
niques that can deliver higher scalability, our single-lock solution
serves to demonstrate the utility of the HMCS lock under high con-
tention on a nontrivial use case. We employed the MCS, C-MCSin,
C-MCSout, and HMCS〈3〉 locks as coarse-grained lock implemen-
tations. Respective running times are shown in columns #3-#6 in
Table 4. For all cohort locks, we used a very high passing thresh-
old since fairness was immaterial. Columns #7-#10 show the im-
provements of each of the locks, at the same thread settings, when
compared to the K-means that used atomic directives.

The NUMA-agnostic coarse-grained MCS lock improved the
performance of K-means by up to 14.9× over the atomic operations
(Table 4, column #7). Even when there is no false sharing (1
thread), using a coarse-grained lock is superior to using multiple
atomic add instructions, since each atomic add on POWER7 turns
into a sequence of instructions that includes a load reserve and

1 /* update new cluster centers : sum of objects located within */

2 #pragma omp atomic

3 new_centers_len[index ]++;

4 for (j=0; j<nfeatures; j++)

5 #pragma omp atomic

6 new_centers[index][j] += feature[i][j];

Listing 2. K-means atomic updates (poor performance).

1 /* update new cluster centers : sum of objects located within */

2 Acquire(lock , me);

3 new_centers_len[index ]++;

4 for (j=0; j<nfeatures; j++)

5 new_centers[index][j] += feature[i][j];

6 Release(lock , me);

Listing 3. K-means coarse-grained locking (better performance).

a store conditional resulting in higher instruction count. When
contention rises, a thread performing a load reserve frequently
loses reservation to some other thread, resulting in high overhead.

The HMCS〈3〉 lock delivers 22.9× higher performance at 32
threads compared to the original execution that used atomic opera-
tions. This is 9.2× speedup compared to the original serial execu-
tion. Furthermore, beyond 16 threads, the HMCS〈3〉 lock’s perfor-
mance is better than all other locks in the same thread settings.

We compare the performance of the HMCS〈3〉 lock with the
C-MCSin, C-MCSout locks in columns #11-#12 respectively. The
C-MCSin and HMCS〈3〉 locks start to show their superior per-
formance at 8 threads, since they have SMT-level lock passing.
While the MCS and C-MCSout locks degrade in performance be-
yond 8-threads, the C-MCSin and HMCS〈3〉 locks continue to im-
prove untill 32 threads. At 32 threads, the C-MCSin lock degrades
steeply since it does not pass locks among cores of the same socket.
Due to lock passing at both SMT and core levels, the HMCS〈3〉
lock demonstrates superior performance over all other locks as the
contention rises between 16-128 threads. The performance of the
HMCS〈3〉 lock degrades at 64 and 128 threads compared to its
own performance at 32 threads, which is due to the nature of the
program itself. From column #12, we notice that the HMCS〈3〉
lock improves the performance by up to 1.55× compared to the
C-MCSout lock. At lower contention, the HMCS〈3〉 lock incurs up
to 9% slowdown compared to the two-level locks. This slowdown
is expected due to the additional locking overhead of the third level.

6.2 Evaluation on SGI UV 1000
The SGI UV 1000 [9] used for our experiments consists of 256
blades. Each blade has two Intel Xeon X7560 processors proces-
sors, with the specifications shown in Table 1. Pairs of blades are
connected with QuickPath interconnect. All nodes are connected
via NUMAlink [9] technology. We had access to 4096 hardware
threads out of the total 8192 on the system. We organized the SGI
UV 1000 into a 5-level hierarchy:

Level Participants Total
1 SMTs 2
2 Cores 8
3 4 QPI connected sockets 64
4 8-pairs of nodes on the same rack 512
5 8 racks 4096

For the C-MCS locks, we formed the cohorts at level-1 (C-
MCSin), level-2 (C-MCSmid), and level-4 (C-MCSout). We com-
pared the C-MCS locks with a 5-level HMCS lock. In all locks we
set infinite threshold at each level but fixed number of iteration for
each thread, so that the lock may not be needed again once relin-
quished to the parent. This provided the highest possible throughput
for any lock. We tested these locks both with empty and non-empty
CS. The non-empty CS case touched two cache lines inside the
CS and spent 0-2.5 microseconds outside the CS to mimic the test
setup by Dice et al. [4]. Table 5(a) shows that the HMCS lock out-
performs the peak throughput of all other locks in both modes. The
HMCS lock outperforms even the C-MCSin because the threshold
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Table 4. Comparison of different synchronization strategies for K-means on IBM Power 755.
1 2 3 4 5 6 7 8 9 10 11 12

Running time in micro seconds Improvement over Atomic ops HMCS〈3〉 improvement over
Num Atomic MCS C-MCSin C-MCSout HMCS〈3〉 MCS C-MCSin C-MCSout HMCS〈3〉 C-MCSin C-MCSout

Threads ops lock lock lock lock (#2/#3) (#2/#4) (#2/#5) (#2/#6) (#4/#6) (#5/#6)
1 1.61E+08 4.34E+07 4.77E+07 4.78E+07 5.23E+07 3.70× 3.37× 3.36× 3.07× 0.91× 0.91×
2 1.29E+08 3.83E+07 3.70E+07 3.79E+07 4.03E+07 3.37× 3.49× 3.41× 3.21× 0.92× 0.94×
4 9.09E+07 2.95E+07 3.03E+07 3.03E+07 3.22E+07 3.08× 3.01× 3.01× 2.83× 0.94× 0.94×
8 1.28E+08 1.92E+07 1.82E+07 2.08E+07 1.90E+07 6.69× 7.06× 6.17× 6.75× 0.96× 1.09×

16 2.75E+08 2.58E+07 1.97E+07 2.67E+07 1.92E+07 10.7× 14.0× 10.3× 14.4× 1.03× 1.39×
32 4.02E+08 2.70E+07 1.77E+07 2.72E+07 1.76E+07 14.9× 22.7× 14.8× 22.9× 1.01× 1.55×
64 4.82E+08 5.62E+07 3.24E+07 3.56E+07 2.43E+07 8.58× 14.9× 13.5× 19.8× 1.33× 1.46×
128 6.49E+08 7.81E+07 5.67E+07 5.45E+07 3.93E+07 8.31× 11.4× 11.9× 16.5× 1.44× 1.39×

Table 5. Throughput (locks/sec) improvement of HMCS vs. C-MCS locks on a 4096-thread SGI UV 1000.
(a) Throughput mode (b) Fairness mode

HMCS〈4〉 C-MCSin C-MCSmid C-MCSout HMCS〈4〉 C-MCSin C-MCSmid C-MCSout
Empty CS 3.09E+07 1.26E+06 9.76E+06 4.32E+05 2.43E+06 5.02E+05 2.28E+06 4.11E+05

(HMCS improvement) - (24.6x) (3.17x) (71.5x) - (4.84x) (1.07x) (5.92x)
Non-empty CS 5.63E+06 5.27E+05 4.34E+06 2.61E+05 5.63E+06 3.78E+05 1.71E+06 3.96E+05

(HMCS improvement) - (10.7x) (1.3x) (21.5x) - (14.9x) (3.29x) (14.2x)

cin needed to amortize the latency of deep NUMA hierarchy is
larger than the number of lock acquisitions needed by each thread.

We also compared the C-MCS locks with a 4-level HMCS lock,
where the level-1 and level-2 were collapsed into a single domain.
In this case, we set the threshold at each level to the number of
participants at that level. This provided the highest fairness for any
lock. As before, we tested these locks both with empty CS and non-
empty CS. Table 5(b) shows that the HMCS lock outperforms the
peak throughput of all other locks in both modes.

7. Conclusions and Future Work
This paper introduces the Hierarchical MCS (HMCS) lock for sys-
tems with NUMA hierarchies. We present analytical models for
throughput and fairness of both HMCS and two-level Cohort MCS
(C-MCS) locks that provide insight into properties of these de-
signs. Experiments confirm the accuracy of our models. On sys-
tems with more than two levels of NUMA hierarchy, HMCS locks
deliver high throughput with significantly less unfairness than C-
MCS locks. Differences in access latencies between NUMA do-
mains at different levels of a hierarchy determine what levels of the
hierarchy are worth exploiting. Given a measure of the passing time
at each level of a hierarchy, our models show how to pick cohorting
thresholds that deliver a desired fraction of the maximum through-
put. Experimental results confirm that the only way a C-MCS lock
can match the throughput of an HMCS lock is under extreme con-
tention with the inner level of cohorting configured for threads shar-
ing a core, which was not the design point that Dice et al. intended
for C-MCS locks. Furthermore, matching the throughput of HMCS
locks with inner-level C-MCS locks requires cohorting thresholds
that yield much greater unfairness.

While our experiments to date were conducted on shared mem-
ory platforms, our work was motivated by distributed-memory sys-
tems that use Remote Direct Memory Access (RDMA) primitives
to implement system-wide queueing locks. The latency of RDMA
operations between nodes is much higher than the latency of loads
and stores within nodes. We believe that HMCS locks are the best
way to achieve high throughput on such systems. Implementing
HMCS locks for such systems remains future work.
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