
Debugging parallel programs using fork handlers

Javier Alcázar Zapién
International Systems Research Co.

Suginami 166-0003
Tokyo, Japan

javier@isr.co.jp

ABSTRACT
Nowadays multicore computers are easy to find everywhere,
from mobile phones to high end servers. However, producing
parallel programs that take advantage of these computers is
not easy: parallel programs are error prone and finding these
errors and their causes is a hard and time consuming task
for which proper debugging is needed.

In the main implementation of Python, Ruby and other
platforms, the only way to achieve real parallelism in multi-
core computers is using multiple processes rather than mul-
tiple threads. Debugging programs composed of multiple
processes turns out to be more complicated than debugging
multi-threaded programs composed of a single process.

This paper proposes using fork handlers to debug multi-
process programs. To demonstrate this proposal we review
the implementation for Ruby and Python in Dionea, an open
source debugger. The same approach, and similar imple-
mentation techniques, can be extended to other platforms
and debuggers lacking of debugging features for parallel pro-
grams that use processes to exploit concurrency on multicore
computers.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Tracing; D.1.3 [Concurrent
Programming]: Parallel programming

General Terms
Debugging, Parallel programming

Keywords
Debugging, multicore, parallel programming, Ruby, Python

1. INTRODUCTION
Programming languages have had concurrency constructs

for decades [9] but, is just now with the ubiquity of multicore
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computers, which are easy to find everywhere, from mobile
phones to high end servers, passing through network appli-
ances, workstations and laptops, that parallel applications
are in high demand.

Concurrent programs are more error prone than serial
ones, and although there is decent debugging support for
parallel programs written in C or Java, e.g., GDB/jdb +
Eclipse, this is not the case for other mainstream languages
such as Python and Ruby.

Python and Ruby provide thread constructs to express
concurrency, but due to their Interpreter Locks, usually called
GIL (Global Interpreter Lock) [3] in CPython and GVL
(Global or Giant VM Lock) [18, 24] in CRuby, application
threads cannot run in parallel, even on multicore computers.
Therefore, on these platforms the only way to take full ad-
vantage of multiple cores is to use processes as concurrency
construct but, the debugging support for multi-process par-
allel programs is limited.

Since multi-process parallel programs spawn processes us-
ing fork functions, we use a set of custom fork handlers,
which allows to catch the debuggee processes, make the per-
tinent arrangements in both, child and parent processes, and
continue the execution of the debuggees in a low intrusive
fashion [26]. 1

First, in order to present our proposal we make clear some
concepts, and enumerate some of the reasons that make par-
allel programs more error prone. We also discuss the impor-
tance of having tools that aid the production of faster and
correct parallel programs.

Next, we give an overview of Dionea and explain the pro-
possed approach with its problems and solutions; followed
by the implementation of the proposal in Dionea, which sup-
ports Python and Ruby. Then, we demonstrate simple and
representative examples of parallel programs where Dionea
has proved to be useful. Finally, we review Dionea’s per-
formance, compare some related contributions and discuss
future work.

2. SERIAL, CONCURRENT AND PARAL-
LEL

We use the terms Processing Element and Unit of Execu-
tion as in Patterns for Parallel Programming [17] where:

• Processing Element (PE) is a generic term for a
hardware element that executes a stream of instruc-
tions, e.g., a core of a multi-core computer.

1low-intrusive refers to the capability of debugging a single
thread while other threads continue executing freely.
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• UE (Unit of Execution) is a generic term for an
executing entity, e.g., a process or a thread.

Through this text we differentiate three kinds of programs:
serial, concurrent and parallel.

i Serial programs, are those that have been designed to
execute their instructions one after another, i.e., only
one instruction is executed at any given instant.

ii We call concurrent programs to those able to maintain
active more than one task simultaneously. In concurrent
programs that run on systems with a single PE, only
one instruction is being executed at any given instant.
Concurrent programs that share a common PE among all
the given UEs only simulate the execution of more than
one task at the same time. e.g., multithreaded programs
running on a computer with a single core.

iii More than one instruction of a parallel program can be
executed at the same time, i.e., while one instruction of
a parallel program is executed in a PE, another instruc-
tion of the same program is being executed in another
PE at the same instant. Parallelism can be seen as a
special case of concurrency. With the appropriate hard-
ware and software support concurrent programs can run
in parallel.

3. FINDING ERRORS ON PROGRAMS IS
NOT EASY, FINDING ERRORS ON CON-
CURRENT PROGRAMS IS DIFFICULT

A well known quote in the programming world says De-
bugging is twice as hard as writing the code in the first place.
Therefore, if you write the code as cleverly as possible, you
are, by definition, not smart enough to debug it [12]. This
proves to be true in parallel programs, where actually it
could be harder than twice. Concurrent programs are ex-
posed to more errors than the traditional serial programs,
errors such as, deadlock, liveliness, starvation and data race
are unique to concurrent programs and are difficult to de-
tect.

The Heisenberg’s principle also relates to software debug-
ging, the more examination is done to a program the more its
normal behavior is altered. Therefore, is difficult to debug
the exact behavior of a program without altering the be-
havior that it would show when is not being debugged, and
concurrent programs are even more sensitive. Using log mes-
sages to debug might appear useful when lacking of proper
debugging features but, in concurrent programs this prac-
tice may introduce more errors and hide the real problems;
sometimes the streams or libraries to log messages have im-
plicit locks or use other synchronization primitives that may
interfere with the program execution; also executing the in-
structions to log messages alters the normal execution of the
program.

On top of the previously expressed difficulties, most pro-
grammers have little or no experience in concurrent pro-
gramming, which increases the error ratio on concurrent
programs. Trying to find bugs is exhausting and time con-
suming, thus a tool such as Dionea is great help to produce
correct parallel programs.

4. DIONEA OVERVIEW
Dionea has a distributed architecture following the client-

server model [25, 26], this distributed architecture makes
possible to debug multiple processes from a single client;
the debuggee processes could be part of the same program
or an independent processes.

Figure 1: Dionea architecture

• Debug server: In Dionea, each debuggee has its own
debug server, the debug server is a shim to control
the execution of the debuggee based on the commands
sent by the client. Both, debuggee and debug server
run in the same process. The debug server traces de-
buggee’s execution using custom functions in conjunc-
tion with the tracing facilities provided by the inter-
preters, i.e., Dionea’s trace callback functions set by
Kernel#set_trace_func and sys.settrace for Ruby
and Python respectively. In Dionea, each debug server
has a dedicated listener thread to receive requests and
send responses from and to the client; this dedicated
thread handles the requests asynchronously, treating
each request as an event dispatched by a loop. The
implementation of this listener thread is inspired by
the Reactor pattern [27].

• Client: The client is an independent GUI that acts as
interface between the user and the debuggee. Server
and client interact through a predefined protocol using
TCP/IP, making possible to debug remote processes.

• Debug server - client communication: Dionea
uses three TCP/IP sockets for communication between
the server and the client.

1. One socket is used to listen and handle new con-
nections.

2. One more socket is used to synchronize the source
code between the debug server and the client.

3. Finally, another socket is used for sending debug
commands. e.g., set break point, continue.
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The client sends debug commands to the debugger server,
such as set break point, continue, step, next and so on; the
server receives commands from the client, executes them and
sends appropriate responses to the client. Even when one
single client is able to operate more than one process at the
same time, the debuggee execution can be controlled individ-
ually for each process or even each thread, this is what makes
Dionea a low-intrusive debugger [26], however, Dionea can
also operate over the whole program, e.g., suspending all the
threads of a multithreaded program.

4.1 Debug sessions
In Dionea, a debug session is a sequence of interactions

between debugger and debuggee, i.e., user commands sent
from the GUI client to the debug server, and replies sent
from the debug server to the client. Figure 1 shows a single
client controlling the execution of more than one debuggee,
which implies that one client maintains one session per de-
buggee. It is analogous to a single web browser having differ-
ent web sessions on different web pages, e.g., a web browser
maintains a session with a web based mail client to check
user’s email, and at the same time another session is main-
tained to access online bank. However, in Dionea’s case a
debug server is tied to a single client, otherwise two different
clients could control the same debuggee at the same time,
making it inconsistent, which obviously is an undesired sit-
uation. The relationship between Dionea client and servers
is in the form 1client : Nservers; 1server : 1client.

4.2 Debug views
Debug views exist in the context of debug sessions, de-

bug views can be understood as the sequence of interactions
between the client and a concrete UE of the debuggee as
shown in Figure 3. There is only one debuggee view ac-
tive at a time. Debug views are presented on the client side
in form of source code and variables with their values, and
the command shell or the buttons on the toolbar serve as
terminal to send commands to the UE being debugged.

Figure 3: Multiplexing debug sessions

In Figure 3 there are two sessions, one between the client
and process A, and other between the same client and process
B. In this scenario, the thread 1 of process B is active, now
let’s examine what happens to the thread 2 of process B
when:

1 thread 2 of process B is clicked in the GUI.

2 The previous action generates a call, which in turn triggers
the execution of the trace callback.

3 Source of thread 1, which until now was active is hidden
on the client.

4 The debuggee view corresponding to thread 2 becomes
active, therefore source of thread 2 is displayed on the
client.

Summing up, debug sessions are between the client and
debuggee processes, and debuggee views are between the
client and debuggee threads.

5. FORK

5.1 Fork functions
Is common that libraries to write parallel programs, use

fork functions to create processes that will act as UEs to
exploit parallelism. Fork functions usually make a copy
from the actual process. General examples of fork functions
include: the function fork (2) defined in unistd.h [28],
clone (2) defined on sched.h which is invoked on Linux
systems instead of fork [13], and os.fork [30] on Python.
A fork function can be either a system call or functions pro-
vided by the relevant language, in the later case these func-
tions may in turn use system calls.

When using fork functions is common to call exec func-
tions in the child process right after fork, doing so replaces
the process image, but this is not the case when using pro-
cesses as means of concurrency. Hence forking without call-
ing exec is an special case that requires special treatment;
also is not recommended to fork multithreaded process, there-
fore when it becomes necessary (as in the case of Dionea,
which is explained later), special precautions should be taken.
In Python and Ruby, fork semantics indicate that, only
the thread that called fork remains in the child, i.e., other
threads present in the parent at the moment of fork remain
in the parent but not in the child.

5.2 Fork handlers
Fork handlers are functions hooked to the fork function,

therefore, when the fork function is called these hooked func-
tions are called. Since using fork functions to create new
processes is a standard way to create processes, and using
fork handlers to decorate fork functions can be applied gen-
erally, we believe that using fork handlers to debug process
based parallel programs is a sound approach.

In Dionea’s case, fork handlers are responsible to ensure
the proper execution and debugging around the fork event;
they should take care of the parent process before the fork
occurs, during and after the fork in both, the parent and
the child process. When designing and implementing fork
handlers, it should be noted that other hooked fork handlers
will be called along with our fork handlers.

In POSIX programming, fork handlers are registered (hooked)
with the pthread_atfork() function [28], other interesting
examples of fork handlers can be found in MRI (Matz’s Ruby
Interpreter, is de facto implementation of Ruby 1.8) and
YARV [23] (Yet Another Ruby VM is de facto implementa-
tion of Ruby 1.9.).
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Figure 2: Dionea client

Source code view: In the figure above, the process (4) with PID 4257 is selected in the Process and threads view,
therefore the source code corresponding to process (4) is shown here. In this situation, the active debug view corresponds to
the main and only thread of process (4), which becomes active.

Processes and threads view: This area shows processes and their threads. Whenever a thread or process is
clicked its corresponding debug view becomes active, as a consequence its source code is shown in Source code view.

Command shell: The command shell is used to send commands to the debuggee, e.g., continue, step, next.

Input window: This area corresponds to the standard input of the active debug view, if the program requires in-
put from the user, this is the place to enter data.

Output window: This area corresponds to the standard output of the active UE.

Variables: Variables and their values are displayed in the area just below of the Source code view.
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13176 void

13177 rb_thread_atfork()

13178 {

13179 rb_thread_t th;

13180

13181 rb_reset_random_seed();

13182 if (rb_thread_alone()) return;

13183 FOREACH_THREAD(th) {

13184 if (th != curr_thread) {

13185 rb_thread_die(th);

13186 }

13187 }

13188 END_FOREACH(th);

13189 main_thread = curr_thread;

13190 curr_thread->next = curr_thread;

13191 curr_thread->prev = curr_thread;

13192 STOP_TIMER();

13193 }

Listing 1: Fork handlers in MRI ruby-1.8.7-p358, eval.c

[16].

Fork handlers shown in listings 1 and 2 are used to enforce
the only the thread that called fork exists in the child seman-
tics, and take care of synchronization objects. Although
Dionea uses fork handlers to debug parallel programs com-
posed of multiple process, the fork handlers shown in list-
ings 1 and 2 are relevant to Dionea because they will be
executed along with Dionea fork handlers. The fork han-
dlers presented here take care of synchronization objects,
therefore Dionea’s may choose to don’t take care of this.
However, since this is not stated in the Ruby specification
[10] and other Ruby implementations may not take care of
synchronization objects, Dionea fork handlers also take care
of synchronization objects before forking.

2745 static void

2746 rb_thread_atfork_internal(int (*atfork)

(st_data_t, st_data_t, st_data_t))

2747 {

2748 rb_thread_t *th = GET_THREAD();

2749 rb_vm_t *vm = th->vm;

2750 VALUE thval = th->self;

2751 vm->main_thread = th;

2752

2753 native_mutex_reinitialize_atfork

(&th->vm->global_vm_lock);

2754 st_foreach(vm->living_threads,

atfork, (st_data_t)th);

2755 st_clear(vm->living_threads);

2756 st_insert(vm->living_threads,

thval, (st_data_t)th->thread_id);

2757 vm->sleeper = 0;

2758 clear_coverage();

2759 }

Listing 2: Fork handlers in YARV ruby-1.9.2-p180, thread.c
[18].

5.3 Dealing with forks in Dionea
The debug server always will have at least two threads,

i.e., the debuggee’s main thread and the debug server lis-
tener thread. The semantics of fork functions in POSIX

[28], Ruby [32] and Python [30] are that only the thread
that called fork survives in the child process. These seman-
tics don’t apply everywhere; for example, in Scsh all appli-
cation threads are copied into the child when a process is
forked [6].

Dionea’s fork handlers should be aware of this situation.
Whenever a debuggee (with its debug server) creates an-
other process, these handlers ensure the proper debugging
and tracing of the spawned process; they deal with three
main problems.

1 Ensuring the new process continues running. We
know that in Ruby and Python only the thread calling
fork survives in the child. It is also known that concur-
rent programs use synchronization objects like mutexes,
condition variables, etc. So, Dionea takes ownership of
the debuggee’s synchronization objects, e.g., mutex.lock
before forking the process. Taking ownership of the syn-
chronization objects ensures that the thread that survives
in the child owns the synchronization objects, therefore
this thread can later release the synchronization objects,
eliminating the possibility of deadlocks.

2 Debugging on child. As depicted in figure 4 when a
child process is created, it inherits the data structures
from its parent, these data structures contain metadata
for debugging, such as breakpoint information, PID (pro-
cess identifier), debug session and so on. These data struc-
tures don’t contain child information but parent informa-
tion, therefore they should be updated with child’s infor-
mation.

3 Establishing proper communication with the client.
When a child process is created, it inherits the sockets
from its parent and will try to communicate with the
client using its parent sockets, this would result in mixed
requests and responses. Therefore, the child needs to
establish its own debug session with the client using its
own sockets. Dionea’s fork handlers use a temporary file,
where the port number of the most recently created pro-
cess is saved. See figures 5 and 6.

In figure 4, debug sessions and other metadata are in the
data structures block, these data structures are inherited in
the child process from its parent, the child process needs
to get rid of its parent data structures and create its own.
Also note that, in the child process all the threads disappear
except for the thread that called fork ; in order to continue
debugging on the child, Dionea debug server needs to estab-
lish a session with the client, to accomplish this, the listener
thread is recreated in the child.

5.4 Fork handlers in Dionea
To cope with the situations described in the previous sec-

tion, Dionea uses a set of augmented fork functions which
in turn call Dionea fork handlers.

These augmented fork functions do the following:

A Prepare fork. Acquire control over synchonization ob-
jects. Disable the tracing until the listener thread is
restarted, to avoid a deadlock in the child process, there-
fore is not possible to step inside of the augmented fork.

B Handle parent at fork. Immediately after the fork,
release control of synchronization objects, and re-enable
tracing.
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Figure 4: Dionea debuggee before and after fork

Figure 5: When a new child is created, at the beginning its
sockets are the same as its parents’

C Handle child at fork. Initialize the synchronization ob-
jects, close the inherited sockets, initialize the data struc-
tures, create a listener thread, register the thread that
called fork as the main thread, inform the client about
the creation of a new debuggee, and finally re-enable the
tracing that was disabled in A.

In Ruby’s case Dionea uses metaprogramming techniques
to catch fork events. The original Ruby methods of Pro-

cess#fork and Kernek#fork have been modified to handle
debugee’s fork using the Ruby’s feature of open class [21].

Figure 6: Dionea’s fork handlers create appropriate sockets
for the child debuggee

module Kernel

alias_method :old_fork, :fork

def fork(&block)

Dionea.prepare_fork #A

pid = old_fork

#Executes child’s code

if pid == nil then

Dionea.handle_child_atfork #C

if block_given? then

# executes block’s code

yield

#free resources, inform termination

Dionea.debugger.at_finalize_proc

# terminates the process as specified

# by the documentation

Kernel.exit(0)

else

return nil

end

end#if

Dionea.unlock_parent #B

Dionea.processes << pid unless

Dionea.processes.include?(pid)

return pid

end

end#Kernel

Listing 3: Dionea’s Ruby fork.

In Python’s case Dionea uses a method alias, so when the
original method os.fork is called the Dionea’s method is
executed instead.

def _dionea_fork():

#prepare_fork: lock the mutex in dionea

handle_prepare_fork() #A

pid = __python_fork()

if pid == 0:

#Execute child code

handle_child_at_fork() #C

return 0

else:

handle_parent_at_fork() #B

# purpose: INT --> shutdown

_processes.append(pid)

return pid

__python_fork = os.fork

os.fork = _dionea_fork

Listing 4: Dionea’s Python fork.

6. USAGE SCENARIOS

6.1 Typical usage of Dionea
Once Dionea concepts have been outlined, let’s describe a

typical Dionea’s use case. First, we start Dionea server issu-
ing ruby bin/dioneas.rb path/to/debuggee/ruby/program.

rb in Ruby’s case. And python dioneas.py path/to/debuggee/

117



python/program.py for Python programs; once Dionea server
has been started it waits until the client connects to it. Then
the client sends debug commands to the debug server, e.g.,
set breakpoint, continue, either via the command shell or
clicking on the source and toolbar’s buttons; the server re-
ceives commands from the client, executes them and sends
appropriate response to the client. Using low-intrusive fea-
tures, i.e., being able to debug individual processes while
simultaneously other processes continue running, is more ef-
ficient than stopping all the processes because the overhead
associated to debugging only affects particular processes.

6.2 Finding deadlocks in Ruby programs
In Ruby as in other languages, concurrent programs use

synchronization mechanisms to control UEs and data, how-
ever they should be used very carefully because a simple
mistake can lead to subtle errors, such as deadlocks.

Figure 7: Dionea showing the exact place where a deadlock
occurs.

1 require ’thread’

2

3 queue = Queue.new

4

5 Thread.new{

6 puts "Inside thread -- PARENT"

7 sleep 3

8 queue.push(true)

9 }

10

11 #Queue is inter-thread,

12 # not inter-process

13 fork do

14 queue.pop

15 puts "In -- CHILD"

16 end

17

18 sleep

Listing 5: Intentional deadlock

In figure 7 we have intentionally produced a deadlock,
Dionea shows the line number where the deadlock has oc-
curred. Without Dionea only a message like the shown in
listing 6 would be displayed, such message is detailed but

not clear to find where the deadlock occurred, especially in
real applications where the exact place where the deadlock
occurred may not be present in the stack trace.

Inside thread --

thread.rb:185:in ‘sleep’: deadlock detected (fatal)

from thread.rb:185:in ‘block in pop’

from <internal:prelude>:10:in ‘synchronize’

from thread.rb:180:in ‘pop’

from deadlock.rb:14:in ‘block in <main>’

from deadlock.rb:13:in ‘fork’

from deadlock.rb:13:in ‘<main>’

Listing 6: Standard deadlock error message in Ruby

6.3 MapReduce in Python
In CPython threads can not run in parallel, however since

version 2.6 the multiprocessing package subtitled Process-
based “threading” interface [31] is part of the standard dis-
tribution, and is available as egg (Python library) for previ-
ous versions. This library provides an API very similar to
threads, allowing to write programs that can take advantage
of multicore computers using processes rather than threads
to express concurrency. The ability of Dionea to debug over
multiple processes fits very well for programs using Python’s
multiprocessing library.

Figure 8 shows a snapshot of tracing a word count pro-
gram by MapReduce, the parent and the worker processes
share the same input and output queues. The queue is
implemented using a semaphore and a pipe. Functions or
methods to be executed by the child process are passed from
parent to child via queues encoded using pickle. When every
other process is stopped by break points as shown in Figure
8, we observe that an available child process takes over the
jobs. The low intrusive operations for threads and processes
make it easy and efficient to analyze the behavior of parallel
programs.

6.4 Finding errors in Ruby libraries
Ruby libraries are usually packed in a defined format called

gems, there are different gems to create parallel programs
based on process, a popular one is parallel [8]. The parallel
gem spawns workers, either threads or processes, assigning
tasks to them and getting their results. When processes are
used the communication is done via IO.pipe.

When Dionea debugs parallel programs using the version
0.5.9 of the parallel gem, where fork and IO.pipe oper-
ations take place interleaved by the threads that interact
with the child processes, Dionea very often detects a con-
currency error that rarely happens running without Dionea:
The debuggee processes get into a deadlock situation due to
the failure in closing input pipe of the child process. The dis-
cussions with the developers resulted in the fruitful upgrade
to 0.5.10 and to 0.5.11. All the unnecessary pipes used for
each of the forked processes are copied. Therefore, the forks
must be done sequentially by the main thread, not by the
threads that interact with the child processes. By doing so,
each of the forked processes can close the copied but unused
pipes (for sibling processes). Once the problem has arisen,
is easy to reproduce such critical cases of concurrency, and
moreover identify the cause: setting disturb mode in Dionea,
which will cause to stop the execution of every newly cre-
ated process or thread; and then interleaving the execution
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Figure 8: Dionea debugging a word count program running in a computer with 8 cores and 8 worker processes.

of the threads using Dionea’s low intrusiveness.

7. PERFORMACE
A Python program that uses multiprocessing [31] to im-

plement MapReduce [15] was prepared to quantify the over-
head of running a program with Dionea and no breakpoints.
This program maps words that contain only letters and are
not reserved words, then the program reduces the values ob-
tained in the map phase to calculate the frequency of each
word.

An increment of 12.11% in the execution time was found
for a small set of data when executing the program with
Dionea, while bigger sets of data showed an increment of
around 20%.

CPU Intel(R) Core(TM) i5 CPU, 4 cores
HD OCZ Technology Vertex 2 SATA II (SSD)
Memory 6GB DDR3 1333MHz
OS Ubuntu 13.04 (3.8.0-27 SMP x86 64 GNU/Linux)
Python 2.5.2

Table 1: Computer specifications

The same program was also run in the same way for Rust’s
source code (master 7613b15). The average time without
Dionea was 3’49” and with Dionea was 4’36”.

Running a program with a debugger attached and no
breakpoints, as we have done in this section, is not a com-
mon scenario but, it has been useful to quantify the overhead
when debugging with Dionea.

0 0.5 1 1.5 2 2.5

Debugging

Normal 2.31

2.58

Real time (s)

Dionea source code (trunk r656)

Figure 9: Calculating words’ frequency with Dionea in
Dionea source code showed an increment of around 12%.

8. RELATED WORK

8.1 Debuggers for concurrent software
The well known GNU Debugger (GDB), is widely used to

debug native programs, and since version 7 has been able to
debug programs that create additional processes using the
fork functions [5], this feature would allow us to debug the
CRuby or CPython interpreters, but would be very difficult
to debug the programs that are being run in the interpreters,
i.e., we can debug the CRuby interpreter itself but not di-
rectly the Ruby program. GDB uses the trace functionality
provided by the operating system, i.e., ptrace and signals,
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0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000

Debugging

Normal 1,601

1,933

Real time (s)

Linux 3.18.1

Figure 10: Calculating words’ frequency with Dionea in
Linux source code showed an increment of around 20%.

whereas Dionea uses the trace functionality provided by the
interpreters.

DBX is another popular debugger for UNIX systems, which
in conjunction with Oracle Solaris Studio is able to debug
programs that create other processes using fork functions.
We can infer that the techniques used by DBX to debug
forked processes are similar to those used in GDB.

It has been possible to debug concurrent Java programs
for a while, either in high or low-intrusive fashion, Java de-
buggers rely on the tracing support provided by the JVM
(Java Virtual Machine). Should be noted that the concur-
rency models used by CPyton, CRuby and popular JVM’s
differ significantly. For example JVMs usually allow threads
to run in parallel, therefore there is no need to create addi-
tional processes to achieve parallelism.

There are other debuggers capable to debug concurrent
and parallel programs, some of them have very interesting
features, and different approaches have been used to imple-
ment those features. An incomplete list of these debuggers
includes: STAT (Stack Trace Analysis Tool), a tool that uses
stack trace analysis techniques, intended for MPI programs
[1]; KDB, a multi-threaded debugger for multi-threaded ap-
plications [4]; TotalView, a debugger that allows debugging
multiple processes from a single GUI, it targets Fortran, C
and C++ programs [14].

8.2 Debuggers for Python and Ruby
PyCharm is a Python specific IDE that added support

for debugging multi-process programs around the same time
Dionea did [11, 2]. Even though the features for debug-
ging multi-process in Dionea and PyCharm have been de-
veloped independently, the underlying principles are similar,
i.e., client-server model and fork handlers. While Dionea and
PyCharm have similar features, PyCharm is a commercial
product developed by JetBrains, which also has a free and
open source version; whereas Dionea has been developed as a
research exercise in the Kanazawa Institute of Technology. A
similar implementation to debug parallel multi-process pro-
grams in PyCharm, which is a commercial product, proves
that our approach is solid and generally applicable.
pdb, the debugger provided with CPython comes in handy

for debugging serial programs. In the Ruby side there have
been different debuggers, some of them work only for MRI
and some others only for YARV, whereas Dionea works with
both.

Dionea is also able to debug parallel programs using JRuby2,
JRuby[19] is a Ruby implementation in Java, which means
that JRuby programs run on top of the JVM. Multithreaded
JRuby programs can run in parallel exploiting the advanced
threading support in the JVM and Dionea is able to debug
these programs.

Dionea also supports Ruby Enterprise Edition, which is a
modified version of MRI that has modified its fork function
implementing copy-on-write semantics [22].

9. CURRENT STATUS AND FUTURE WORK
Dionea GUI uses Qt3 and CPython 2.5, which are consid-

ered obsolete; therefore it is desirable to update Dionea GUI
to Qt4 or refactor it as an Eclipse plugin and add support
for newer versions of CPython.

There is previous research on debugging programs that
use Hardware Transactional Memory (HTM) [33, 7] and it
has been proved that is possible to eliminate the GVL of
CRuby using HTM [20]. These facts suggest that it would
be possible to add support in Dionea for debugging parallel
Ruby programs that use HTM instead of GIL.

Other areas of future work include: support for Jython,
and support for PHP, which does not support threads, leav-
ing processes via the PCNTL functions as the only way to
achieve concurrency in PHP [29].

10. CONCLUSIONS
We have described how fork handlers can be used to de-

bug parallel programs on multicore computers, and demon-
strated the implementation in Dionea for two different plat-
forms. This approach proves to be a general solution, that
so far has been applied for CPython, MRI, YARV and could
be extended to other platforms.

Understanding the internals of the libraries to create par-
allel programs in Ruby and Python, the behavior of the
CPython and CRuby interpreters in multicore computers
and the semantics of fork handlers, new features have been
added in Dionea to debug parallel programs that run on mul-
ticore systems. We have demonstrated these features with
use cases for Python and Ruby programs.
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