
Inferring Ownership Transfer for Efficient Message Passing

Stas Negara Rajesh K. Karmani Gul Agha
University of Illinois at Urbana-Champaign
{snegara2,rkumar8,agha}@illinois.edu

Abstract
One of the more popular paradigms for concurrent programming
is the Actor model of message passing; it has been adopted in one
form or another by a number of languages and frameworks. By
avoiding a shared local state and instead relying on message pass-
ing, the Actor model facilitates modular programming. An impor-
tant challenge for message passing languages is to transmit mes-
sages efficiently. This requires retaining the pass-by-value seman-
tics of messages while avoiding making a deep copy on sequen-
tial or shared memory multicore processors. A key observation is
that many messages have an ownership transfer semantics; such
messages can be sent efficiently using pointers without introducing
shared state between concurrent objects. We propose a conserva-
tive static analysis algorithm which infers if the content of a mes-
sage is compatible with an ownership transfer semantics. Our tool,
called SOTER (for Safe Ownership Transfer enablER1) transforms
the program to avoid the cost of copying the contents of a message
whenever it can infer the content obeys the ownership transfer se-
mantics. Experiments using a range of programs suggest that our
conservative static analysis method is usually able to infer owner-
ship transfer. Performance results demonstrate that the transformed
programs execute up to an order of magnitude faster than the orig-
inal programs.

Categories and Subject Descriptors D.2.0 [Software]: SOFT-
WARE ENGINEERING—General

General Terms Languages, Performance

Keywords Actors, Message Passing, Ownership Transfer, Static
Analysis

1. Introduction
The arrival of computing platforms such as multicores and clouds
have brought a disruption in the field of computer programming:
mainstream developers need to write and maintain parallel pro-
grams. It has been argued that the thread based model makes the
task of parallel programming unnecessarily more difficult (e.g.,
see [14]). The alternative, message passing as in the Actor pro-
gramming model, is gaining increased interest among researchers

1 Soter is also the name of the Greek god of safety, deliverance, and preser-
vation from harm.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPoPP’11, February 12–16, 2011, San Antonio, Texas, USA.
Copyright c© 2011 ACM 978-1-4503-0119-0/11/02. . . $10.00

as well as practitioners. Actors are concurrent, autonomous enti-
ties that encapsulate local state and communicate using messages.
There are two important advantages of using actors. First, the code
is more modular: because the state of different concurrent objects
is isolated, compositional reasoning is facilitated. Second, an ac-
tor program is portable without modification across sequential pro-
cessors, shared memory multicore architectures, message passing
multicore architectures, as well as clusters.

Some of the well known languages and frameworks that in-
corporate Actor-oriented programming include Erlang, E, Scala
Actors library, SALSA, ActorFoundry, Microsoft’s Asynchronous
Agents Library and Axum. (For a brief survey, see [10, 12]). A
number of significant applications have been written using the Ac-
tors model: these include open source applications such as Twit-
ter’s message queuing system and Lift Web Framework, and com-
mercial applications such as the image processing application in
MS Visual Studio 2010 and Vendetta’s game engine. In fact, MPI
processes are also a special case of Actors where some of the dy-
namic aspects of actors are restricted. MPI has been widely used in
the High-Performance Computing (HPC) community to write pro-
grams.

When actors reside in different nodes of a message passing mul-
ticore architecture, or of a networked computers, message passing
provides a natural implementation. However, even on a single core,
programmers want to divide their code into logical units or objects.
Actors add concurrency to objects. The grain size of an actor cor-
responds to the work load generated by an actor and its memory
footprint. The most intuitive decomposition of an application of-
ten leads to actors that are much smaller than the processing and
memory capacity of a node. This means that many actors may time
share on a single node. Sending messages between actors on the
same node corresponds to a pass-by-value semantics [3].

Pass-by-value requires making a deep copy of message contents
before the message is sent out with a fresh copy. Such copying can
severely degrade performance: deep nested object oriented struc-
tures need to be serialized and deserialized to make a fresh copy.
The performance penalty is the major source of inefficiency in im-
plementations of Actor programs [10] as well as MPI programs [1].
The issue gains particular urgency with the adoption of message
passing paradigm for multicore chips (with shared memory).

An important observation is that many message passing pro-
grams tend to have simple structure where messages have an own-
ership transfer semantics, i.e. an actor hands off an object or data
stream to another actor by passing it in a message [9]. If such cases
can be identified in Actor programs, performance may be signifi-
cantly enhanced [10]. This problem is closely related to the prob-
lem of ensuring safe yet efficient message passing [24].

One approach to efficient messaging is to send pointers for all
message contents by default, and ask the programmer to explicitly
make a copy if required [8]. If the programmer is not careful, this
approach breaks Actor encapsulation by introducing shared state
between actors, thereby reducing it to shared state programming. A

81

complimentary approach is to require the programmer to annotate
message contents which can be sent by reference (pointer) safely,
thus explicitly declaring ownership transfer of such objects. A deep
copy for remaining message contents may be provided automati-
cally at runtime [10]. Note that both these approaches require the
programmer to reason about messages in terms of a dual seman-
tics – pass-by-value and ownership transfer. We believe this creates
confusion: for example, the best practices section [15] of the Asyn-
chronous Agents Library documentation suggests sending pointers
for large data structures in messages; however, the walk through
examples [16, 17] create copies even though it would be safe in
these cases to send pointers.

A recent proposal is to ask programmers to use a novel type sys-
tem to annotate message content. Specifically, variants of owner-
ship types have been proposed for Kilim and Scala [7, 24]. The pro-
gramming model for Singularity operating system [5] also proposes
a simple type system based on object capabilities for exchange of
objects between different concurrent processes. We believe such
type systems may be rather restrictive and cumbersome for ordi-
nary programmers. More importantly, the question is whether re-
quiring such type declarations can be justified for the improved
performance they offer: if we could get comparable performance
through automatic inference, the answer would be no.

In this paper, we explore the effectiveness of a simpler alterna-
tive: we develop and apply a static analysis method to determine
the cases where messages contents can be safely passed by refer-
ence. Such an analysis relieves the programmer of the burden of
using a complicated type system, or of reasoning in terms of a dual
semantics for message passing. Although a sound static analysis is
necessarily conservative, if it works for a large number of cases, it
may be justified by a sufficient performance improvement. We eval-
uate the effectiveness of our static analysis method by comparing
it with explicit annotations done by advanced undergraduate and
graduate student programmers.

We describe the design and implementation of a custom static
analysis algorithm for Actor programs written using the JVM based
frameworks. The algorithm employs a novel live variable anal-
ysis along with context-sensitive call graph creation and field-
sensitive points-to analysis. Note that the fastest known interpro-
cedural dataflow algorithm [21] does not scale for a small Actor
program, given the library calls and the size of the library code.
However, we are able to exploit the sparsity of message sending
sites (relative to the rest of computation) to design a custom inter-
procedural live variable analysis. Our analysis splits the expensive
interprocedural analysis into two phases of intraprocedural analy-
sis: a standard local live variable analysis followed by a forward
data-flow analysis. This enables the algorithm to scale to large Ac-
tor programs, albeit by trading some precision. We show that our
algorithm is sound, i.e. whenever our algorithm selects an object
to be sent by reference, it does not introduce a race between two
actors. We also show that the algorithm terminates.

Evaluating the effectiveness of our algorithm poses some dif-
ficulty. While there are many JVM-based Actor frameworks [10],
we do not have a large base of open source code in these frame-
works. However, we were able to use a variety of programs written
in ActorFoundry [2], a JVM-based Actor framework developed at
Illinois. These programs include examples from the ActorFoundry
distribution, benchmarks used in [12, 13], “hard” synthetic pro-
grams written to test our analysis, and programs written by ad-
vanced Computer Science students in the project-oriented Software
Engineering course at Illinois. While the programs we use are all
relatively small, each of the analyses includes the ActorFoundry
framework which is approximately 38.7K lines of code.

Experimental results suggest that our analysis is fast and suc-
cessfully identifies majority of the places where message contents

can be sent by reference. Interestingly, these include many places
which were missed by programmers who were providing manual
annotations. Therefore, it is a reasonable conjecture that the preci-
sion trade off of our proposed analysis is not a significant liability.
Experimental results also suggest that the transformation resulting
from our algorithm can improve performance of actor programs by
up to an order of magnitude in some cases.

We also adapted our implementation to analyze Scala actor
programs [8]. In Scala, message contents are sent by reference;
hence we adapted SOTER to check the safety of sending messages,
instead of using it to improve execution efficiency. Our tests result
in two important observations. First, SOTER is able to prove the
correctness for most message passing sites, and report warnings
for other sites. Second, we note that the bytecode generated for
Scala programs as well as for the Scala library itself tends to be
much larger, as much as 10x larger than that for ActorFoundry. The
results suggest that our algorithm scales linearly in the size of the
bytecode.

We believe that our results suggest that compiler writers should
focus on developing more effective inference mechanisms to opti-
mize message passing, and this may be sufficiently effective so that
programming language designers need not burden the programmer
with added complexity of type systems for the purpose of improv-
ing efficiency of message passing.

2. Illustrative Actor Language
We now describe the syntax and semantics of ActorFoundry, which
will be used to present the motivating examples for this study. Ac-
torFoundry is syntactically similar to Java and in fact is imple-
mented as a Java-based Actor library [2]. In the ActorFoundry, an
Actor behavior is defined using a class definition which extends
Actor. An Actor definition can include zero or more public meth-
ods annotated with @message, which specify the messages that an
actor instance can receive. The method body is executed when an
actor instance receives a corresponding message.

Upon receiving a message, an actor can create new actors (using
the create() method and passing the name of an Actor definition),
send messages to other actors (using the send() method) and up-
date its local state. Messages are sent asynchronously, i.e. the send-
ing actor does not wait for the message to arrive or be processed at
the destination. A send can take an arbitrary number of arguments,
which correspond to the arguments of the corresponding method
in the destination actor class. Message parameters and return types
should be serializable. Blocking messages can also be sent using
the call() method, which is syntactic sugar [3, 10].

2.1 Semantics
Consider an ActorFoundry program P. P includes a set of actor
definitions used to create actors. Note that there is no shared state
among these actors. An actor has a local state comprising of primi-
tives and objects. Each actor also has an unbounded queue in which
it receives its messages. We assume that at the beginning of ex-
ecution the message queue of every actor is empty. An actor and
one of its messages is selected as the program’s entry point (by the
programmer). The ActorFoundry runtime first creates an instance
of the initial actor, say a init, and then sends the initial message
msg init to it. This action appends the contents of the message
msg init to the message queue of actor a init.

Every actor initially tries to dequeue a message from its message
queue; if the message queue is empty, the actor blocks and waits
for the next message to arrive. If the queue is non-empty, the
actor non-deterministically removes a message from its own queue.
The non-determinism in picking a message models the asynchrony
associated with message passing in actors. Each actor executes
the following steps in a loop: remove a message from the queue,

82

’decode’ the message, execute the corresponding method (which
may update the actor’s local state, create new actors and send new
messages).

An actor executing a create method produces a new instance
of an actor. We assume that the new actor is assigned a fresh iden-
tifier. An actor communicates with other actors it knows about
by sending asynchronous messages using the send method (and
blocking messages using call). An actor may also throw an ex-
ception during the processing of a message. A program terminates
when there are no pending messages in the system.

3. Illustrative Example
We present a couple of examples to illustrate the problem of iden-
tifying messages that transfer ownership, as well as to motivate
the different techniques we use to solving the problem. Figure 1
presents a code fragment of a RefMessenger actor in Actor-
Foundry: a RefMessenger actor can receive two types of mes-
sages, store and transfer (lines 3 and 6); in response to mes-
sage transfer, it sends two messages compute to the actor that
is bound to relayActor by calling the method relayPrint (lines
8-9). We would like to check whether a RefMessenger actor
transfers the ownership of item to the relayActor at line 13,
which would make it safe to pass by reference the object data
to relayActor (through the call at line 8). In order to answer this
question, we perform a static points-to analysis; the analysis detects
all objects that may “escape” to relayActor through the message
at line 13. We also perform a static live variable analysis in order to
check whether, after sending the message at line 13, an “escaped”
object may be accessed by the RefMessenger actor. Both these
analyses are interprocedural and are performed on a call graph, a
directed graph that represents calling relationships between proce-
dures (subroutines) in a program. We address the particularities of
call graph construction in Section 3.3.

1 public class RefMessenger extends Actor {
...

2 StringBuffer localName = null;
3 @message public void store(String name) {
4 localName = new StringBuffer(name);
5 }
6 @message public void transfer() {
7 StringBuffer data = new StringBuffer("Hi ");
8 relayPrint(data);
9 relayPrint(localName);
10 data.append(localName);
11 }
12 void relayPrint(StringBuffer item) {
13 send(relayActor, "compute", item);
14 }
15 }

Figure 1. A simplified version of RefMessenger example in Ac-
torFoundry.

3.1 Points-to Analysis
Points-to analysis establishes which pointers may point to which
memory locations. The points-to graph can tell that the two vari-
ables, data and item, point to the same StringBuffer object al-
located at line 7. This graph is a result of interprocedural points-to
analysis, where allocated objects are represented as nodes denoted
with si:T, where i shows the line number where the object is allo-
cated, and T represents its type.

Any object that may be pointed by variable item may escape
to relayActor through the message at line 13 (Figure 1). Thus,
performing an interprocedural points-to analysis enables detection
of the fact that the object s7:StringBuffer has escaped. But this
analysis is not sufficient to answer the question whether this object
is accessed by the RefMessenger actor after having escaped (sent)

to relayActor. We employ a live variable analysis in order to
answer the latter question.

3.2 Live Variable Analysis
A live variable analysis of a program is a dataflow analysis that cal-
culates the set of variables that may be read before being written to
in the program. An interprocedural live variable analysis performed
on the code fragment in Figure 12 detects that variable data is live
after the call to method relayPrint at line 8 completes, because
its value is read and modified at line 10. Although the scope of
the variable data is limited to the method transfer, and is not
visible inside the method relayPrint, the object it points to is
live throughout method relayPrint, including the program point
right after the message to actor relayActor is sent (line 13). We
require an interprocedural analysis to detect the escaping of the ob-
ject pointed to by variable data, because its intraprocedural coun-
terpart treats every method in isolation and misses the fact that the
object is live in method relayPrint.

In Section 3.1 we established that the variable data points
to the object s7:StringBuffer, and that this object escapes to
actor relayActor. Live variable analysis shows that this object is
live in actor RefMessenger after escaping to actor relayActor.
Consequently, we conclude that it is not safe to pass the variable
item by reference, because passing it by reference would result in
sharing the object s7:StringBuffer between the RefMessenger
actor and relayActor.

3.3 Call Graph Construction
The construction of a call graph has a significant impact on both the
precision and the speed of interprocedural analysis. Our approach
is based on the open systems design, i.e. we do not assume any
information about the outside world while analyzing a particular
actor. Thus we need to consider all possible messages that an actor
can receive from the outside world.

Consider the RefMessenger actor in Figure 1. The actor can re-
ceive two types of messages, store and transfer. The execution
of RefMessenger actor starts when it receive either one of them,
and hence the methods store and transfer serve as two separate
entry-points. Our analysis recognizes that they are received by the
same instance of RefMessenger. This enables us to handle code
such as that given in Figure 1 where the instance field localName
is initialized in one message handler (line 4) but escapes in an-
other one (line 13, through the call at line 9). Our analysis cor-
rectly detects that the object s4:StringBuffer escapes to actor
relayActor at line 13.

Context sensitivity plays an important role in call graph con-
struction. A context-insensitive analysis produces more imprecise
and smaller call graph compared to a context-sensitive analysis. In a
context-insensitive call graph, every invoked method, distinguished
by its signature, is represented with a single node regardless of the
context in which this method is invoked.

Consider the code example from Figure 2 and its context-
insensitive call graph. Were we use this call graph for our points-to
analysis, we would decide that linked list l1 has to be passed to ac-
tor myActor by value because there are objects that l1 transitively
points to that are live after the program point where l1 is passed
to actor myActor (line 7). Although this decision is safe (i.e., it
does not produce a data race), it is too conservative and misses an
opportunity for optimization.

2 Static analysis performed directly on Java source code serves only for the
demonstration purposes. SOTER performs both points-to and live variable
analises on a low-level intermediate representation (IR) in a static single
assignment (SSA) form.

83

1 public class TestActor extends Actor {
...

2 @message public void test(){
3 LinkedList<A> l1 = new LinkedList<A>();
4 LinkedList<A> l2 = new LinkedList<A>();
5 l1.add(new A(1));
6 l2.add(new A(2));
7 send(myActor, "process", l1);
8 l2.add(new A(3));
9 }
10 }

Figure 2. A code example, whose analysis is highly affected by
context-sensitivity of the call graph.

An example of a context-sensitive call graph is a graph that dis-
tinguishes invocations of the same method on different receiver in-
stances. Such a call graph would have many more nodes than its
context-insensitive counterpart. However it provides much better
precision. A receiver instance context call graph has two distinct
nodes for method add of class LinkedList<A>: one node rep-
resents invocations on the linked list l1, and another node repre-
sents invocations on the linked list l2. The corresponding points-to
graph shows that linked lists l1 and l2 transitively point to non-
intersecting sets of instances of class A, and, consequently, an anal-
ysis based on such points-to graph would correctly decide to pass
linked list l1 to actor myActor by reference (line 7 in Figure 2).

For our static analysis, we construct a receiver instance con-
text call graph in order to exploit the better precision such a call
graph offers. Although a context-sensitive call graph is much big-
ger, it is also considerably sparser than a context-insensitive call
graph. As a result, Andersen’s points-to analysis performed on a
context-sensitive call graph does not take much longer as demon-
strated in [22]. For the final step of our analysis, namely the live
variable analysis, we describe a custom interprocedural algorithm
that scales well for large programs.

4. Static Analysis Algorithm
We describe our static analysis using a simple, illustrative actor pro-
gram presented in Figure 3. The program consists of four classes,
the last two of which specify actor behavior:

1. Class MutableValue is a wrapper around an integer value. The
value is assigned when an instance of class MutableValue is
created and may be changed during the lifetime of this object.

2. Class ValueHolder holds a MutableValue as a field and
provides method getMutableValue to access the encapsulated
object. Instances of class ValueHolder are passed between
actors. In ActorFoundry, objects between actors are passed by
copy, which is implemented using serialization/deserialization
of objects. Therefore, both ValueHolder and MutableValue
classes implement the java.io.Serializable interface.

3. Class SumActor specifies an actor that can receive message
sum with two arguments of type ValueHolder. This message
computes the sum of two integer values of MutableValue
fields of the arguments, stores this sum in the MutableValue
field of the second argument, and then prints it to the console.

4. Class ExecutorActor specifies an actor that can receive
message boot. The message handler creates an instance of
SumActor and several instances of MutableValue and
ValueHolder, and then sends two sum messages to the created
SumActor.

4.1 Call Graph Construction
In the first step of our analysis, we construct the program’s call
graph. It requires identifying all messages that actors of this pro-

public class MutableValue implements java.io.Serializable{
private int value;
public MutableValue(int value){

this.value = value;
}
public int getValue(){

return value;
}
public void setValue(int value){

this.value = value;
}

}

public class ValueHolder implements java.io.Serializable{
private MutableValue mv;
public ValueHolder(MutableValue mv){

this.mv = mv;
}
public MutableValue getMutableValue(){

return mv;
}

}

public class SumActor extends Actor{
@message public void sum(ValueHolder vh1, ValueHolder vh2){

int val = vh1.getMutableValue().getValue();
MutableValue mv = vh2.getMutableValue();
mv.setValue(mv.getValue() + val);
System.out.println("Sum:" + mv.getValue());

}
}

1 public class ExecutorActor extends Actor{
2 @message
3 public void boot(Integer val)
4 throws RemoteCodeException{
5 MutableValue mv = new MutableValue(val);
6 ValueHolder vh = new ValueHolder(mv);
7 execute(vh);
8 System.out.println("val:" + mv.getValue());
9 }
10 private void execute(ValueHolder vh)
11 throws RemoteCodeException{
12 ActorName sumActor = create(SumActor.class);
13 add(sumActor, vh);
14 }
15 private void add(ActorName sumActor, ValueHolder vh3){
16 MutableValue mv1 = new MutableValue(1);
17 MutableValue mv2 = new MutableValue(2);
18 ValueHolder vh1 = new ValueHolder(mv1);
19 ValueHolder vh2 = new ValueHolder(mv2);
20 send(sumActor, "sum", vh1, vh2);
21 send(sumActor, "sum", vh2, vh3);
22 }
23 }

Figure 3. A running example of an actor program. Import state-
ments are omitted due to space considerations.

gram can receive, since these serve as entry-points in the con-
structed call graph. The call graph for the program in Figure 3 has
two entry-points: one for message sum of SumActor and another
one for message boot of ExecutorActor.

Figure 4 shows a fragment of the constructed call graph that
starts from the entry-point for message boot. We have omitted the
part of the call graph that starts from the entry-point for message
sum: it does not present any interesting case for our analysis be-
cause the functionality of this message does not involve sending
messages to other actors. Moreover, we do not show calls to meth-
ods that are not defined within the code of class ExecutorActor
(e.g. framework calls that are inside the body of methods create
and send), and calls that construct the output String at line 8. The
omitted parts do not affect the analysis, and have been omitted in
order to simplify the presentation.

84

vh1

s16:MutableValue

vh2

s18:ValueHolder

s18.mv

vh3 vh

s19:ValueHolder s6:ValueHolder

s19.mv s6.mv

s17:MutableValue s5:MutableValue

mv1 mv2 mv

field field field

Figure 5. Filtered points-to graph for the code fragment from
Figure 3.

4.2 Points-to Analysis
We use a receiver instance context call graph to perform flow-
insensitive Andersen’s points-to analysis [4]. Figure 5 illustrates
a fragment of the resulting points-to graph for the code from Fig-
ure 3. This fragment is relevant to our analysis: it presents objects
that escape to the actor sumActor (lines 20 and 21) and pointers
that point to them directly or indirectly. Our points-to analysis is
field-sensitive, i.e. it distinguishes instance fields of different in-
stances of the same class. This allows us to distinguish instance
field mv of different instances of ValueHolder as shown in Fig-
ure 5, where every instance field mv is represented with a separate
pointer, whose name prefix corresponds to the name of the contain-
ing ValueHolder instance (s18.mv, s19.mv, s6.mv).

4.3 Live Variable Analysis
To detect objects that may be accessed after being passed to other
actors, we perform an interprocedural live variable analysis. Even
the fastest, polynomial time algorithms for this analysis that are
precise, for example the algorithm in [21], can effectively han-
dle only small size programs as shown in [23]. Because any actor
program is analyzed together with the ActorFoundry framework,
which is a relatively large 38.7KLOCs software, we cannot em-
ploy such algorithms (e.g. applying an implementation of the al-
gorithm from [21] we ran out of memory even for the smallest ac-
tor programs). In order to be able to handle programs of such a
large scale, we elaborate a custom algorithm which conservatively
assumes that every instance field is live as long as the containing
object is live. The key idea behind our approach is to split an inter-
procedural analysis into two intraprocedural phases. Our evaluation
(Section 5) shows that this algorithm scales well for large programs.

We first present an overview of our algorithm; in Section 4.4,
we describe its properties, including soundness and termination.
Figure 6 shows an overview of our algorithm. The algorithm takes
as input the receiver instance context call graph, callGraph, and
the results of points-to analysis, pointstoGraph, for a given pro-
gram. The output of the algorithm, passByValue, specifies for each
argument of every message passing site in the program, whether
it needs to be copied. For a particular argument arg of a call site
cs the value of passByValue[cs,arg] is true when arg needs to be
copied, and false when it is safe to pass arg by reference.

The initialization of our algorithm (lines 1-14 in Figure 6) com-
putes the set of all message passing sites in a program, passing-
CallSites, and the set of all call graph nodes, passingNodes, that
contain at least one message passing site. Also, it initializes all en-
tries of passByValue to false. The algorithm visits each call site
of every call graph node. For every visited call site cs, the proce-
dure isMessagePassingCallSite(cs) returns true if cs involves send-
ing a message to another actor (and thus, may escape objects), and
false in the contrary case. If a call site cs may send messages, it
is added to passingCallSites (line 8) and its containing call graph
node is added to passingNodes (line 7). In ActorFoundry call sites

input: callGraph, pointstoGraph
output: passByValue
1 passingNodes = �;
2 passingCallSites = �;
3 foreach (Node n: callGraph){
4 callSites = getContainedCallSites(n);
5 foreach (CallSite cs: callSites){
6 if (isMessagePassingCallSite(cs)){
7 passingNodes = passingNodes ∪ n;
8 passingCallSites = passingCallSites ∪ cs;
9 foreach (Argument arg: cs){
10 passByValue[cs,arg] = false;
11 }
12 }
13 }
14 }
15 reachingNodes =

transitiveClosure(callGraph, passingNodes);
16 callSiteLiveVariables =

computeLiveVariables(reachingNodes);
17 nodeLiveVariables =

propagateLiveVariables(reachingNodes,
callSiteLiveVariables);

18 foreach (CallSite cs: passingCallSites){
19 Node n = getContainingNode(cs);
20 liveObjects = �;
21 liveVariables =

callSiteLiveVariables[cs] ∪ nodeLiveVariables[n];
22 foreach (LiveVariable var: liveVariables){
23 liveObjects = liveObjects ∪

getPointedObjects(pointstoGraph, var);
24 }
25 foreach (Argument arg: cs.getArguments()){
26 escapedObjects =

getPointedObjects(pointstoGraph, arg);
27 if ((escapedObjects ∩ liveObjects) 6= �){
28 passByValue[cs,arg] = true;
29 }
30 }
31 }

Figure 6. Overview of our algorithm for interprocedural live vari-
able analysis.

that may send messages to other actors are calls to methods send,
call, and create of class Actor. For the program in Figure 3 the
set passingCallSites contains call sites at lines 12, 20, and 21. And
the set passingNodes includes call graph nodes that contain these
call sites. In Figure 4 these are executorActor.add node for call
sites at lines 20 and 21, and executorActor.execute node for
call site at line 12.

The algorithm then computes reachingNodes (line 15 in Fig-
ure 6) - the set of all call graph nodes that can reach passingN-
odes. The reachingNodes is computed by the procedure transitive-
Closure, which takes the callGraph and the passingNodes as ar-
guments. Figure 7 shows the procedure transitiveClosure, which
computes all reaching nodes, reachingNodes, that can reach the
initial set of nodes, initNodes, as a transitive closure of initNodes
in a particular call graph callGraph. The nodes in reachingNodes
are the only nodes in the call graph, from which the control flow
may reach message passing call sites. So, reachingNodes contains
all call graph nodes that are relevant to our analysis. For our ex-
ample program reachingNodes includes the following nodes from
Figure 4: executorActor.add, executorActor.execute, and
executorActor.boot.

85

ex
ec

ut
or

A
ct

or
.b

oo
t(

In
te

ge
r) mv.init(I)

ex
ec

ut
or

A
ct

or
.e

xe
cu

te
(V

al
ue

H
ol

de
r)

vh.init(MutableValue)

mv.getValue()

System.out.println(String)

executorActor.create(Class, Serializable[])

executorActor.add(ActorName, ValueHolder)

mv1.init(I) mv2.init(I)

vh1.init(MutableValue) vh2.init(MutableValue)

executorActor.send(ActorName, String, Serializable[])

Figure 4. Filtered call graph for the code fragment from Figure 3.

procedure transitiveClosure
input: callGraph, initNodes
output: reachingNodes
1 reachingNodes = �;
2 foreach (Node n: initNodes){
3 workList = {n};
4 while (workList 6= �){
5 workNode = pop(workList);
6 if (workNode /∈ reachingNodes){
7 reachingNodes = reachingNodes ∪ workNode
8 callers = getCallers(callGraph, workNode);
9 append(workList, callers);
10 }
11 }
12 }
13 return reachingNodes;

Figure 7. Collecting all call graph nodes that reach initNodes.

Next, our algorithm applies a standard intraprocedural live vari-
able analysis to collect local variables that are live just after the
relevant call sites (line 16 in Figure 6). A call site is relevant to our
analysis if it is either a message passing call site or is represented as
a node in the set reachingNodes. Figure 8 presents procedure com-
puteLiveVariables that takes as input reachingNodes and returns
callSiteLiveVariables which specifies the set of live variables at the
program point just after a relevant call site.

For every node n from reachingNodes, procedure computeLiv-
eVariables performs a standard local live variable analysis (line 2)
that calculates the set of live variables for every program point in
the analyzed node n. In order to reduce the memory consumption,
we keep the results only for the program points that are relevant to
our analysis, i.e. those program points that are just after relevant
call sites (lines 4-9). Relevant call sites and the corresponding sets
of live variables for the example program shown in Figure 3 are as
follows: line 7 - {mv}; line 12 - {sumActor, vh}; line 13 - {}; line
20 - {sumActor, vh2, vh3}; line 21 - {}.

As we demonstrated in Section 3.2, if a variable var is live at the
program point just after a call site that represents a call of some call
graph node n, then it is live in node n as well. We call such variable
var a node live variable for node n, because it is live at every
program point inside node n. If node n contains other call sites,
which represent calls of other call graph nodes, then variable var is
live in those nodes too and so on. This propagation of variable var is
a forward data-flow problem defined on the nodes of the underlying
call graph. Our algorithm uses procedure propagateLiveVariables
to compute node live variables for every node from reachingNodes
(line 17 in Figure 6).

Figure 9 shows procedure propagateLiveVariables that prop-
agates live variables forward in the call graph. It takes as input

procedure computeLiveVariables
input: reachingNodes
output: callSiteLiveVariables
1 foreach (Node n: reachingNodes){
2 OUT = performLocalLiveVariableAnalysis(n);
3 callSites = getContainedCallSites(n);
4 foreach (CallSite cs: callSites){
5 if (isMessagePassingCallSite(cs) OR
6 (getCalledNode(cs) ∈ reachingNodes)){
7 callSiteLiveVariables[cs] = OUT[cs];
8 }
9 }
10 }
11 return callSiteLiveVariables;

Figure 8. Performing local live variable analysis for reachingN-
odes and storing its relevant part in callSiteLiveVariables.

reachingNodes and the sets of live variables for all relevant call
sites, callSiteLiveVariables. The output of this procedure is node-
LiveVariables, which specifies for every node from reachingNodes
the set of node live variables. The initialization part of the proce-
dure (lines 1-8) defines for every node n from reachingNodes ini-
tial values for sets IN[n] and OUT[n], which represent correspond-
ingly the set of node live variables at the entry and at the exit of
node n. Both initial entry and exit sets are a union of all live vari-
ables from all call sites that call node n (lines 2-7). The computa-
tion part of the procedure (lines 9-17) is a fixed-point algorithm for
a forward data-flow problem, where the transfer function is iden-
tity (line 15), and the meet operator is union (line 13). Procedure
getPredecessors (line 11) returns a set of call graph nodes that im-
mediately precede the given node. For reachingNodes and callSite-
LiveVariables shown previously for our code example in Figure 3,
procedure propagateLiveVariables computes the following node-
LiveVariables: executorActor.boot - {},
executorActor.execute - {mv}, executorActor.add - {mv}.

In the end (lines 18-31 in Figure 6), our algorithm computes for
every call site cs from passingCallSites the set of all live variables,
liveVariables, as a union of local live variables for call site cs and
node live variables of the call graph node that contains call site cs
(line 21). Next, we use pointstoGraph to compute the set of all live
objects (lines 22-24). Then, for every argument arg of call site cs
we compute all objects that arg points to, which is the set of objects
that may escape to other actors (line 26). Finally, if the intersection
of the objects that are live after call site cs, liveObjects, and the
objects that may escape, escapedObjects, is not empty, we mark
that arg should be passed by value (lines 27-29).

For the example program in Figure 3, our algorithm establishes
that: call site at line 20 – argument vh1 can be passed by reference,
argument vh2 should be passed by value; call site at line 21 –
argument vh2 can be passed by reference, argument vh3 should

86

procedure propagateLiveVariables
input: reachingNodes, callSiteLiveVariables
output: nodeLiveVariables
1 foreach (Node n: reachingNodes){
2 IN[n] = �;
3 callSites = getCallingCallSites(n);
4 foreach (CallSite cs: callSites){
5 IN[n] = IN[n] ∪ callSiteLiveVariables[cs];
6 }
7 OUT[n] = IN[n];
8 }
9 do{
10 foreach (Node n: reachingNodes){
11 predecessors = getPredecessors(n);
12 foreach (Node pred: predecessors){
13 IN[n] = IN[n] ∪ OUT[pred];
14 }
15 OUT[n] = IN[n];
16 }
17 } while (changes to any OUT occur);
18 foreach (Node n: reachingNodes){
19 nodeLiveVariables[n] = OUT[n];
20 }
21 return nodeLiveVariables;

Figure 9. Propagating live variables through reachingNodes.

be passed by value. Argument vh2 of the call site at line 20 should
be passed by value, because variable vh2 is live at the program
point right after the call site at line 20. Argument vh3 of the call
site at line 21 should be passed by value, because according to
the points-to graph in Figure 5, it transitively points to the object
s5:MutableValue, which is live, as it is the same object node live
variable mv of node executorActor.add points to.

4.4 Discussion
Our interprocedural live variable analysis consists of two related
but distinct phases. In the first phase, we perform a standard in-
traprocedural live variable analysis for a subset of call graph nodes.
Specifically, as shown above, we consider only those nodes of the
call graph that are relevant to our analysis. Program statements of
a call graph node are translated into an intermediate representation
(IR) in a static single assignment (SSA) form, where every variable
is assigned exactly once. Such representation significantly reduces
both the time and the complexity of intraprocedural live variable
analysis. In the second phase, we solve a forward data-flow prob-
lem defined on the nodes of the constructed call graph. For this
problem we do not consider the internal control flow of the call
graph nodes. As a result, this analysis is just like a regular intrapro-
cedural analysis, except that we use call graph nodes instead of
basic blocks and call edges instead of control flow edges.

Figure 10 illustrates our two-phase approach. In the first phase
(marked with number 1) we perform intraprocedural live variable
analysis on the control flow graphs of individual call graph nodes.
In the second phase (marked with number 2) we propagate live vari-
ables forward in the call graph, disregarding the internal control
flow of the call graph nodes. Splitting an interprocedural analysis
into two phases, both of which are intraprocedural by nature, makes
our algorithm fast and scalable for large programs as demonstrated
in Section 5. The trade off is the reduced precision of our analysis.
Although our analysis conservatively assumes that every instance
field is live as long as the containing object is live, the evaluation
results presented in Section 5 show that it is able to detect the ma-
jority of optimization opportunities for a variety of actor programs.
Complexity. Our algorithm consists of a standard Andersen’s
points-to analysis, followed by a standard intraprocedural live vari-

2

1 1 1

Figure 10. Two phases of our live variable analysis. In the first
phase (marked with number 1) we consider internal control flow
graphs of individual call graph nodes for the classical intraprocedu-
ral live variable analysis. In the second phase (marked with number
2) we propagate live variables forward in the call graph, disregard-
ing the internal control flow of the call graph nodes.

able analysis for a subset of call graph nodes n, and a forward data
flow problem for live variable propagation. The last two phases
are intraprocedural by nature and have a comparable complexity.
Hence, the complexity of our algorithm is O(complexity of An-
dersen’s points-to analysis +(n + 1)∗ complexity of the intrapro-
cedural live variable analysis).
Soundness. An argument arg of a message passing call site cs
in a call graph node n is marked by our algorithm to be passed
by value, if arg transitively points to at least one object o that is
live after message passing call site cs (lines 18-31 in Figure 6).
Considering that the employed Andersen’s points-to analysis is
sound, it is sufficient to demonstrate that our interprocedural live
variable algorithm does not miss any objects that are live after some
message passing call site. If there is a live object o then there should
be at least one live variable var that transitively points to o. There
are three kinds of variables that can be live after some message
passing call site cs in a call graph node n:

• Variable var is a local variable in the call graph node n. Such
variable is detected as live at the program point right after the
message passing call site cs in the first phase of our algorithm,
where we perform a standard intraprocedural live variable anal-
ysis.
• Variable var is a local variable in an immediate or a transitive

caller node of the call graph node n. The second phase of our
algorithm propagates such variable to the call graph node n, and
variable var becomes a node live variable for node n.
• Variable var is an instance field of the class whose method is

represented with the call graph node n. Our algorithm conser-
vatively assumes that every instance field is live as long as the
containing object is live. In this case, the containing object for
variable var is object this in the method represented with the
node n. Object this is always live in any instance method, and
so var is live as well.

Thus, if variable var is live after some message passing call
site, our algorithm detects this regardless of the kind of var. Con-
sequently, all objects variable var points to are detected as live,
including object o.
Termination. Observe that the first phase of our algorithm per-
forms a standard intraprocedural live variable analysis for a subset
of call graph nodes, reachingNodes. An intraprocedural live vari-
able analysis for a call graph node terminates, and the number of
nodes in a call graph is finite. Thus, the first phase terminates. In the
second phase of our algorithm, we solve a data-flow problem using
a fixed-point algorithm (lines 9-17 in Figure 9). For every node n
from the set of nodes reachingNodes the set OUT[n] of node live
variables never shrinks. Considering that the number of variables
in a program is finite and the number of call graph nodes is finite,
the fixed-point algorithm eventually reaches a point, when OUT[n]
does not change for any node n ∈ reachingNodes, and terminates.

87

Thus, the second phase terminates. Both phases of our algorithm
terminate and so, our algorithm terminates.

5. Implementation and Evaluation
SOTER is a Java implementation of the static analysis described
in Section 4. SOTER uses IBM T. J. Watson Libraries for Anal-
ysis (WALA) framework [25] that provides a flow-insensitive
Andersen’s points-to analysis and an infrastructure for imple-
menting data-flow analysis. Our analysis algorithm is language-
independent. The current implementation takes Java bytecode as
input, and thus can be easily extended to handle programs in
any language or framework that compiles to Java bytecode (e.g.
Kilim, Jetlang, SALSA). We initially implemented support for Ac-
torFoundry [2]. Later, we extended SOTER to support Scala [8]
programs, which took only a couple of weeks of part-time effort.
SOTER’s source code as well as ActorFoundry and Scala subject
programs can be found at http://osl.cs.uiuc.edu/soter

We performed all experiments on a 4-core 2.4GHz, 3GB RAM
machine. Any ActorFoundry actor program is analyzed together
with ActorFoundry framework, a relatively large software, whose
bytecode size is 726KB. Any Scala program is analyzed together
with Scala library, whose bytecode size is 13MB. In the worst case
our analysis took around 78 seconds.

The goal of the evaluation is to assess the effectiveness and
usefulness of SOTER. To achieve this goal, we applied SOTER on
a variety of ActorFoundry and Scala actor programs.

5.1 ActorFoundry
For ActorFoundry actor programs, we would like to answer two
questions:

• Effectiveness: How many opportunities to safely pass a mes-
sage contents by reference are detected by SOTER in compari-
son to the total number of such opportunities and to what fairly
sophisticated programmers can manually achieve?
• Usefulness: What is the performance improvement achieved by

SOTER?

Table 1 presents results that assess the effectiveness of SOTER.
Each row displays data for a particular actor program, whose name
appears in the second column. The first column reflects the general
category of an actor program.

These categories include programs from the ActorFoundry dis-
tribution, ’Benchmarks’ refers to the programs used in an ear-
lier study [12, 13], ’Synthetic’ category is attributed to actor pro-
grams written specifically to test our analysis, and ’Real world’
programs are those written by advanced students in the Software
Engineering course in Computer Science at Illinois. All presented
actor programs except those from Synthetic category were writ-
ten without the knowledge of a tool such as ours. The third column,
LOC, shows the number of lines of code in the program (not count-
ing comments and blank lines). The fourth column, Bytecode size,
displays the size of the analyzed bytecode for every program. Al-
though the size of the programs may seem relatively small, they
represent a wide variety of programmers and purpose. Moreover,
these programs are written on top of an Actor library. A library en-
capsulates much of the functionality required to express an actor
program, and therefore the actor code itself has a smaller size than
it would have without a library-based approach.

The fifth column, Passed arguments, represents the total num-
ber of message passing call site arguments present in the code of an
actor program. The following two columns show correspondingly
the number of arguments that could be safely passed by reference,

having an ideal understanding of the analyzed program3, and the
number of arguments that SOTER reports as safe to be passed by
reference. The next column, Human misses, presents the number
of arguments that are safe to be passed by reference, which are
missed by developers (advanced CS students at Illinois), who man-
ually optimized the program. N/A in this column means that the
program is not manually optimized. The following column displays
the effectiveness of SOTER, i.e. the ratio of detected opportunities
to safely pass arguments by reference to the total number of such
opportunities.

SOTER is quite effective: on average it is able to detect around
71% of available optimization opportunities. Also, it detects some
opportunities missed by developers. The last column shows how
long it takes SOTER to analyze the corresponding actor program.
Our analysis is quite fast: for ActorFoundry actor programs it does
not exceed 24 seconds.

Table 2 shows the performance improvement achieved by
SOTER by comparing the execution time of actor programs be-
fore and after application of SOTER. We exclude actor programs
whose execution time is too small to base our evaluation on. For
the majority of actor programs evaluated, SOTER speeds up the
execution more than twice, and for two of them, by more than an
order of magnitude. The last column reflects the execution time of
actor programs, where all arguments that could be safely passed
by reference having an ideal understanding of the actor program
are indeed passed by reference. Note that for the majority of actor
programs, the ideal execution time and the execution time after ap-
plying SOTER are very close. However, for some actor programs,
there is still considerable room for improvement even after ap-
plying SOTER, which is mainly due to the conservatism of our
static analysis. We discuss possible extensions of our analysis in
Section 7.

5.2 Scala
For Scala actor programs, we assess effectiveness of SOTER in the
same way as for ActorFoundry (Section 5.1), and present our re-
sults in Table 3. We divided our Scala subject programs into two
categories: those that are manually annotated for Scala message
passing safety according to a type system proposed by Haller et
al. [7] (annotated), and the rest (unannotated). Column Total by
ref. reflects both the total number of message passing call site ar-
guments present in the code of an actor program and the number
of message arguments passed by reference, because in Scala all
messages are sent by reference. Table 3 shows that SOTER au-
tomatically proves safety of passing by reference of a significant
part of annotated message arguments, as well as completely checks
the correctness of 3 unannotated programs. Overall effectiveness of
SOTER is around 84%.

Since in Scala all messages are sent by reference, SOTER can
not improve performance any further. Instead, the usefulness of
SOTER for Scala actor programs is to check automatically whether
it is indeed safe to pass message arguments by reference.

According to Table 3, SOTER is able to prove the correctness of
passing message arguments by reference in the majority of cases.
This strongly suggests that ownership transfer is a common idiom,
and SOTER is able to infer it automatically in most cases. In the
rest of cases, SOTER generates a warning for the programmer to
check the correctness manually. We also note that the size of Scala
programs and library is almost an order of magnitude larger than
those of ActorFoundry, and the results suggest that SOTER scales
almost linearly for Scala programs.

3 Note that complete knowledge of the semantics of the analyzed program
yields far better results than any possible static analysis.

88

Table 1. The effectiveness of SOTER on different ActorFoundry actor programs. Size of ActorFoundry library, AFL=726KB.
Category Program LOC Bytecode Passed Ideal SOTER Human SOTER/Ideal Analysis

size (KB) arguments by ref. by ref. misses ratio time (sec)

ActorFoundry
distribution

threadring 43 4.0 + AFL 7 7 7 1 100% 3.4
concurrent 204 11.3 + AFL 12 12 7 N/A 58% 3.8

copymessages 80 8.4 + AFL 19 18 10 5 56% 12.5
performance 126 12.6 + AFL 14 14 12 N/A 86% 3.6

pingpong 62 6.4 + AFL 9 9 8 N/A 89% 3.5
refmessages 20 3.3 + AFL 3 3 2 2 67% 3.3

rpcping 65 7.7 + AFL 9 9 9 N/A 100% 3.4
sor 320 22.7 + AFL 36 36 18 10 50% 3.8

Benchmarks

chameneos 187 13.6 + AFL 12 12 4 1 33% 3.5
fibonacci 53 8.8 + AFL 28 28 24 N/A 86% 3.5

leader 81 7.0 + AFL 12 12 2 N/A 17% 3.4
philosophers 77 9.5 + AFL 6 6 6 N/A 100% 3.3

pi 73 8.4 + AFL 6 6 4 N/A 67% 3.4
shortestpath 126 7.4 + AFL 59 59 52 N/A 88% 3.5

Synthetic quicksortCopy 76 5.3 + AFL 3 3 3 N/A 100% 12.5
quicksortCopy2 92 5.3 + AFL 8 8 6 N/A 75% 12.4

Real world

clownfish 700 48.8 + AFL 87 87 59 N/A 68% 24.0
rainbow fish 591 47.7 + AFL 68 68 67 N/A 99% 3.6

swordfish 615 37.1 + AFL 83 83 13 N/A 16% 4.1
threadfin 471 27.8 + AFL 101 101 98 N/A 97% 12.8

Table 2. The performance improvement achieved by SOTER.

Program Parameters Execution time (ms) Improvement Speed up Ideal execution
Before After time (ms)

threadring 504 actors, 1 mil passes 25870 1880 92.7% 13.76 1880
concurrent 601 actors 187510 15990 91.5% 11.73 1390

copymessages 31810 actors, 10000 elements 7730 3710 52.0% 2.08 610
sor 6402 actors, 80 x 80 matrix 76960 61620 19.9% 1.25 5890

chameneos 14 actors, 100000 rendezvous 56890 36640 35.6% 1.55 1620
leader 30001 actors 14050 8190 41.7% 1.72 7380

philosophers 60001 actors, 30000 philosophers 9550 1380 85.5% 6.92 1380
pi 3002 actors, 30000 intervals 4210 3890 7.6% 1.08 3880

quicksortCopy 200002 actors, 100000 elements 24660 4530 81.6% 5.44 4530
quicksortCopy2 200002 actors, 100000 elements 16320 4870 70.2% 3.35 3580

Table 3. The effectiveness of SOTER on different Scala actor programs. Size of Scala library, SL=13MB.
Category Program LOC Bytecode Total SOTER SOTER/Total Analysis

size (KB) by ref. by ref. ratio time (sec)

annotated RayTracer 693 247.1 + SL 3 2 67% 77.9
RayTracer2 688 253.3 + SL 3 2 67% 75.7

unannotated

Leader 91 35.1 + SL 10 10 100% 21.2
ShortestPath 99 32.6 + SL 3 2 67% 25.7

Fibonacci 69 30.2 + SL 4 4 100% 21.1
QuickSortCopy 83 40.0 + SL 4 2 50% 22.3

DiningPhilosophers 78 56.4 + SL 5 5 100% 21.7

6. Related Work
The problem of safe yet efficient message passing has attracted
much interest among researchers recently. Erlang, which has been
around for more than 20 years, uses only immutable types in mes-
sages. However, immutable objects can have a severe performance
penalty as every update to the object involves copying data values
or pointers. This increases space and time complexity of imple-
menting immutable types, specially for large data structures. We
discuss more recent proposals based on type systems below.

6.1 Type Systems
Various type systems have been proposed to control aliasing in
ways which makes it safe and efficient to share objects. These in-
clude variants of Linear types, Ownership types and recently Uni-
verse Types [19]. A detailed summary and comparison has been

presented in [7]. We briefly mention three systems which are pro-
posed specifically for message passing. The Singularity Operating
System is architected essentially using actors [9]. Messages are not
allowed to have internal aliasing, but are exchanged using a spe-
cial exchange heap [5]. Kilim [24] proposes a variant of Linear
Types combined with an interprocedural shape analysis. The type
system is quite restrictive in terms of shapes of message objects
(tree shaped) and may not be easily understandable by program-
mers. Recently a type system based on uniqueness and capabilities
has been proposed for Scala Actors [7]. This system allows richer
message structures and the examples in the paper show that it re-
quires fewer annotations.

An inherent difficulty with type systems is that programmers
have to annotate their code and this puts varying degree of over-
head on them. However, the type systems do provide guidance on

89

what properties to analyze and infer in order to guarantee other
properties like ownership.

6.2 Inferring Ownership and other Types
In order to ease this burden, mechanisms have been proposed to
infer some of the aforementioned types. Specifically, techniques
to infer Universe Types have been proposed in [11, 20]. These
techniques are based on a static analysis and a SAT solving step.
The techniques are augmented with a dynamic analysis in [6].
In [18], a static analysis based on Andersen’s points-to analysis is
proposed to infer the ownership of heap objects.

Note that these methods only infer ownership but do not deal
with transfer of ownership. Actors on the other hand have the
ownership of their state by construction, and we are interested in
cases when the ownership is transferred to other actors.

7. Discussion and Future Work
Our preliminary results suggest that an inexpensive but conserva-
tive static analysis method can infer ownership transfer so that it
may identify most places where messages can be sent efficiently by
passing pointers instead of making a deep copy. The results suggest
that much of the efficiency of message passing programs executed
on shared memory multicores may be regained without requiring
programmers to deal with the complexity of type annotations or to
reason about a dual message passing semantics. In fact, our exper-
imental results suggest that programmers may often be able to do
no better.

SOTER currently does not identify safe read-read sharing. In
cases where the entire program is available (closed systems), iden-
tifying such sharing would enable further optimizations. Our anal-
ysis also does not extend to cases of false sharing where different
segments of a large data structure are accessed by different actors,
possibly at different times. In this case, our static analysis may im-
prove the efficiency of a dynamic analysis framework which checks
the safety of such sharing. However, we believe that as languages
and frameworks evolve to be more Actor-oriented, data structures
themselves will be designed and implemented as collections of ac-
tors, thus avoiding problems created by passing large data struc-
tures. Such actor collections will enable concurrency while enforc-
ing the consistency required by the abstract data type defined by
the collection.

Acknowledgments
The authors would like to thank the anonymous reviewers for their
detailed and useful feedback, and members of the development
teams of the Axum and Orleans projects at Microsoft for useful
discussions leading to this work. We would like to acknowledge
the assistance of Philipp Haller in obtaining Scala programs, and
Samira Tasharofi, Steven Lauterburg, and others for providing actor
programs.

References
[1] Panel on A single programming model for clusters and multiprocessor

nodes: Dream, nightmare, reality, or vision at UIUC, 2009.

[2] ActorFoundry. ActorFoundry homepage. http://osl.cs.uiuc.edu/af,
1998-2010.

[3] G. Agha, I. A. Mason, S. Smith, and C. Talcott. A Foundation for
Actor Computation. Journal of Functional Programming, 7(01):1–72,
1997.

[4] L. O. Andersen. Program Analysis and Specialization for the C
Programming Language. PhD thesis, University of Copenhagen,
DIKU, 1994.

[5] M. Fähndrich, M. Aiken, C. Hawblitzel, O. Hodson, G. Hunt, J. R.
Larus, and S. Levi. Language support for fast and reliable message-
based communication in singularity os. SIGOPS Oper. Syst. Rev., 40
(4):177–190, 2006.

[6] A. Fuerer. Combining run-time and static universe type inference.
Master’s thesis, ETH Zurich, 2007.

[7] P. Haller and M. Odersky. Capabilities for Uniqueness and Borrowing.
In Proceedings of the European Conference on Object Oriented
Programming (ECOOP), 2010.

[8] P. Haller and M. Odersky. Actors that unify threads and events. In
COORDINATION, 2007.

[9] G. C. Hunt and J. R. Larus. Singularity: Rethinking the soft-
ware stack. SIGOPS Oper. Syst. Rev., 41(2):37–49, 2007. doi:
http://doi.acm.org/10.1145/1243418.1243424.

[10] R. K. Karmani, A. Shali, and G. Agha. Actor frameworks for
the JVM platform: A comparative analysis. In Proceedings of
the 7th International Conference on the Principles and Practice of
Programming in Java, 2009.

[11] N. Kelleberger. Static universe type inference. Master’s thesis, ETH
Zurich, 2005.

[12] S. Lauterburg, M. Dotta, D. Marinov, and G. Agha. A framework
for state-space exploration of Java-based actor programs. In
24th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2009. IEEE, 2009.

[13] S. Lauterburg, R. K. Karmani, D. Marinov, and G. Agha. Evaluating
ordering heuristics for dynamic partial-order reduction techniques.
In Fundamental Approaches to Software Engineering (FASE) with
ETAPS, 2010.

[14] E. A. Lee. The problem with threads. Computer, 39(5):33–42, 2006.
doi: http://doi.ieeecomputersociety.org/10.1109/MC.2006.180.

[15] Microsoft Corporation. Best Practices in the Asynchronous
Agents Library - Do Not Pass Large Message Payloads by Value.
http://msdn.microsoft.com/en-us/library/ff601928.aspx, 2010.

[16] Microsoft Corporation. Asynchronous Agents Library Walkthrough:
Creating an Agent-Based Application. http://msdn.microsoft.com/en-
us/library/dd504791.aspx, 2010.

[17] Microsoft Corporation. Asynchronous Agents Library Walk-
through: Creating a Dataflow Agent. http://msdn.microsoft.com/en-
us/library/dd504791.aspx, 2010.

[18] A. Milanova. Static Inference of Universe Types. In Intl. Work-
shop on Aliasing, Confinement and Ownership in Object-Oriented
Programming, 2008.

[19] P. Müller and A. Rudich. Ownership transfer in universe types. In
OOPSLA ’07: Proceedings of the 22nd annual ACM SIGPLAN con-
ference on Object-oriented programming systems and applications,
pages 461–478, 2007.

[20] M. Niklaus. Static universe type inference using a SAT-solver.
Master’s thesis, ETH Zurich, 2006.

[21] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow
analysis via graph reachability. In POPL ’95: Proceedings of the 22nd
ACM Symposium on Principles of Programming Languages, pages
49–61, 1995.

[22] M. Sridharan and S. J. Fink. The complexity of Andersen’s analysis in
practice. In SAS ’09: Proceedings of the 16th International Symposium
on Static Analysis, pages 205–221, Berlin, Heidelberg, 2009. Springer-
Verlag.

[23] M. Sridharan, S. J. Fink, and R. Bodik. Thin slicing. In PLDI ’07:
Proceedings of the 2007 ACM SIGPLAN conference on Programming
language design and implementation, pages 112–122, New York, NY,
USA, 2007. ACM. doi: http://doi.acm.org/10.1145/1250734.1250748.

[24] S. Srinivasan and A. Mycroft. Kilim: Isolation typed actors for
Java. In Proceedings of the European Conference on Object Oriented
Programming (ECOOP), 2008.

[25] WALA. WALA Static Analysis Library. http://wala.sourceforge.net/.

90

