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ABSTRACT
“Irregular”algorithms using data structures like sparse graphs,
trees and sets prevail in the most emerging problems do-
mains such as social network analysis, machine learning,
data mining and computational science. The irregularity
of underlying data structures leads to unstructured paral-
lelism in these algorithms, consequently making it pretty
hard for users to write efficient parallel implementations on
distributed memory systems. Unified Parallel C language
provides convenience of a global address space with the lo-
cality control needed for high performance and scalability.
However, the Single Program Multiple Data execution model
with a statically fixed set of executing threads makes UPC
does not support applications with unstructured parallelism.
In this paper, we first put forward Shared Work List to UPC
and advocate a programming paradigm for writing applica-
tions with amorphous data parallelism on distributed mem-
ory systems. We also introduce user-assisted speculative ex-
ecution based on Active Message model to support specu-
lative execution on distributed memory systems. Efficient
mechanism of work dispatching and related optimizations
are presented as well. We preliminarily choose Breadth-first
Search as a case study to demonstrate the feasibility, pro-
grammability and performance benefits out of Shared Work
List.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel Programming ; D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Concurrent
programming structures

General Terms
Algorithms, Design, Languages, Performance
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1. INTRODUCTION
“Irregular”algorithms using data structures such as sparse

graphs, trees, and sets prevail in the most emerging problem
domains such as social network analysis, machine-learning,
data-mining, computational science. Due to the irregularity
of underlying data structures, parallel irregular algorithms
usually reveal unstructured parallelism. Thus, it is exceed-
ingly difficult and error-prone for users to write efficient ir-
regular applications with programming models mainly tai-
lored to “regular” algorithms that use dense arrays, such as
finite differences and FFTs. For example, two-sided message-
passing model (e.g. MPI) makes it hard for users to explicitly
manipulate the relationships among the computational units
in irregular algorithms.

Partitioned Global Address Space(PGAS) languages im-
prove ease of programming by providing a shared memory
abstraction on distributed memory systems. This abstrac-
tion offers a convenient programming style, especially for
programs with fine-grained data sharing that can be cum-
bersome in a message passing style. PGAS languages also
provide control of data layout and work distribution allow-
ing application developers to take advantage of data locality.
Unified Parallel C (UPC), a dialect of C (ISO C99), is one
of the most popular languages in the PGAS family. How-
ever, UPC uses a Single Program Multiple Data (SPMD)
model for parallelism in which a statically fixed set of ex-
ecuting threads run throughout the program execution. It
does not directly support applications that involve dynamic
unstructured parallelism, such as Delaunay Triangulation
Refinement [2].

Keshav Pingali et al. [23] put forward a data-centric for-
mulation of algorithms, called the operator formulation, in
which an algorithm is viewed in terms of its action on data
structures. As for graph algorithms, at each executing point,
some nodes or edges where computation might be performed
are called active elements. The computation operator ap-
plied to active elements is called activity. This formulation
speculatively consider all activities on each active node can
execute in parallel similar to conventional data-parallelism.
If two activities conflict with each other, some certain mech-
anisms are introduced to detect conflicts and rollback the
performed activities and related data. Under this abstrac-
tion of algorithms, amorphous data-parallelism is a general-

124



ization of the conventional data-parallelism in which (i) con-
current operations may conflict with each other, (ii) activi-
ties can be created dynamically, and (iii) activities may mod-
ify the underlying data structure. This formulation of algo-
rithms is data centric, similar to the MapReduce model [7],
and perfectly matches the PGAS model adopted by UPC.

A natural way to write algorithms with amorphous data-
parallelism is to use work lists to keep track of active nodes.
Regarding a graph, there are many active nodes and there
may be ordering constraints in processing these nodes. In
consequence, there are two kinds of work lists, ordered work
list and unordered work list. Respecting the orderings among
work items, for a algorithm of which the work list has no
work items executing in speculative mode, we argue that
all the work items and their orderings during the overall
execution actually form an identical graph of the task graph
generated by the Cilk-like task mechanism (e.g. Cilk [8],
PFunc [12], Intel Threading Building Blocks [22], OpenMP
3.0) for the same algorithm. In other words, if there are
no speculative work items in a work list, a work list is, in
essence, a topological order of tasks in in the task graph
out of a given algorithm. Thus, we think, programming in
work lists is identical to tasking programming meanwhile
in the view of conventional data-parallelism. Therefore, we
introduce Shared Work List into UPC to help users to write
applications with amorphous data parallelism in the same
view of shared memory programming.

Previous work [15] only demonstrated the feasibility of
this programming paradigm using work lists on shared mem-
ory systems . As amorphous data parallelism requires, the
runtime system should support speculative execution to al-
low operation conflicts to happen between work items. It
requires less efforts to implement speculative execution on
shared memory systems than that on distributed memory
systems due to high communication cost through networks.
There is some work on speculative parallelization on dis-
tributed systems with software transactional memory (STM)
[13]. In our case, we do not intend to automatically paral-
lelize users’ code as speculative parallelization does, thereby,
some light-weighted speculative execution support is on de-
mand rather than STM. Instead of purely automatic spec-
ulative execution as in Gaolis [15], we put forward a semi-
automatic user-assisted mechanism for speculative execution
to back up the execution of work items. This mechanism
asks users to decide which part of data should be considered
as the potential conflicting shared data, that is, the shared
neighborhoods of several active nodes, and to use necessary
language constructs to realize automatic detection of con-
flicts and rollback of data and computation. With user-
assisted speculative execution, by combining the data local-
ity control and partitioned global address space delivered by
UPC, we argue that using work lists to write both regular
and irregular applications is also a feasible and promising
alternative compared with Cilk-like task-based methods.

In this work, we make following contributions:
1. We put forward Shared Work List (SWL) to UPC to
tackle amorphous data-parallelism and implemented it in
the UPC translator and runtime system.
2. We present a runtime system for SWL by introducing a
user-assisted speculative execution model and a communi-
cation optimized mechanism of dispatching work items.
3. To our best knowledge, it is the first try to take advan-
tage of Active Message to realize user-assisted speculative

execution on distributed memory systems.
4. We demonstrate that using our proposed programming
paradigm, for Breadth-first Search (BFS), users can easily
achieve comparable performance and scalability as MPI at
a low cost of programming efforts.

The rest of this paper is organized as follows. Section
2 reviews some related work on asynchronous execution in
UPC and speculative execution on distributed memory sys-
tems. We introduce Shared Work List (SWL) in Section
3 and present the implementation and optimization of it
in Section 4. We preliminarily choose Breadth-first Search
as a case study to demonstrate our proposed programming
paradigm in Section 5. The experimental results and con-
clusion are given in Section 6 and Section 7, respectively.

2. RELATED WORK

2.1 Asynchronous Execution in UPC
S. Olivier et al. [20] give Unbalanced Tree Search (UTS)

benchmark and demonstrate the performance of asynchronous
work-stealing of dynamic load imbalance in UPC. In [24],
Asynchronous Remote Methods is put forward and its per-
formance is demonstrated by a nested, tree based code —
MADNESS. Jithin Jose et al. propose UPC queues for graph
applications (i.e. BFS, UTS) [11]. Our Shared Work List
and its related operations are similar to the above two meth-
ods. In contrast, our approach is a unified programming
paradigm and its runtime supports speculative execution be-
sides asynchronous execution.

S.J Min et al. [18] put forward a task library named Hot-
SLAW, which extends the scalable locality-aware adaptive
work-stealing scheduler (SLAW) [9] on shared memory sys-
tems. Their work introduces a hardware topology-aware hi-
erarchical victim selection strategy and a hierarchical chunk
selection approach to optimize the performance of work-
stealing on distributed memory systems. They choose four
irregular applications, Fibonacci, N-Queens, Unbalanced Tree
Search (UTS) [19] and SparseLU to demonstrate the per-
formance of their proposed work scheduler on both shared
memory systems and distributed memory systems. Their
work shows competitive performance against OpenMP on
shared memory systems. But for distributed memory sys-
tems, as they only give the performance of their proposed
task scheduling trade-offs and most of the applications they
choose are not data-intensive, they do not prove the overall
performance benefits of Cilk-like tasking. Though they put
forward a hierarchical work stealing, the interfaces for dis-
patching tasks do not include any data-thread affinity hints,
which plays a critical role in the data-intensive applications,
such as BFS. Our proposed Shared Work List, in essence,
is equal to this tasking mechanism. Meanwhile, instead of
the passive mode in the Cilk-like tasking, we adopt an active
mode, that is, when a thread has no work to do, it waits until
other threads actively pass a task to it. As the data-thread
affinity information is given at the point of dispatching a
work item, a task can execute at the most appropriate place
taking data locality into account.

2.2 Irregular Applications in UPC
In [6] [5], a fast PGAS implementation of distributed graph

algorithms is presented, including connected components
and minimum spanning tree problems. Junchao Zhang et al.
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[25] give the Barnes Hut algorithm [3] in UPC and apply suc-
cessive optimization techniques to considerably improve per-
formance. The above work mainly focuses on data locality
optimization. Our SWL can automate part of their manual
optimization. C.M. Maynard [17] presents the performance
comparison of distributed implementations of hash table in
UPC and one-sided MPI. His work shows that the UPC im-
plementation of the distributed hash table runs faster than
MPI and scales better with the number of processing ele-
ments for both weak and strong scaling.

2.3 Speculative Execution on Distributed Mem-
ory Systems

Distributed software transactional memory systems (DSTM)
aim to support transaction execution on systems without
shared memory and in turn give support for speculative ex-
ecution. Distributed Multi-versioning (DMV) [16] modifies
a software distributed shared memory system (SDSM) to
support transactions. Cluster-STM [4] is an software trans-
actional memory system for large-scale clusters. DiSTM [14]
is a DSTM system which builds on Java Remote Method In-
vocation (RMI). DiSTM detects and resolves conflicts at ob-
ject granularity. Distributed Software Multithreaded Trans-
actional memory system (DSMTX) [13] extends the above
systems with Multi-threading Transactions (MTXs) to sup-
port Spec-DSWP [10]. All these systems expose a unified
virtual address space to programs. As for our Shared Work
List, we do not intend to build a system for speculative
parallelization from a sequential program. The speculative
execution is just a key component for exploiting more paral-
lelism in a already parallelized application. Hence, we choose
the light-weighted user-assisted speculative execution which
not only conforms to the original semantics of memory op-
erations in UPC but also gives users rights to control the
speculative behaviors of their applications.

3. SHARED WORK LIST
In this section, we first discuss the design requirements

for Shared Work List (SWL) in UPC and explain how these
can be satisfied in our proposed SWL.

3.1 Design Requirements
We expect that a design for Shared Work List in UPC

should satisfy the following requirements.
Programmability. Ease of programming is an impor-

tant reason for the growing popularity of PGAS languages
in general and UPC in particular. Ensuring this is im-
perative for the acceptance of any new extensions to the
UPC specification. Thus, we consider this first requirement
while proposing SWL in UPC. Shared Work List can im-
prove programmability for irregular applications with amor-
phous data parallelism by concise and intuitive algorithm
expression in global-view similar to programming on shared
memory systems.

Flexibility. On distributed memory systems, commu-
nication often takes a large proportion of the overhead of
parallelization. To exploit data locality, users should have
rights to control the behavior of adding a work item accord-
ing to the context of this operation. For example, if all the
data needed by the construction of a new work item is local
to the executing processor, the work item is best to be locally
built; if most of the data required is on the remote side, it
is reasonable to migrate the work constructor to the remote

typedef int Work_t;
typedef struct parameter Msg_t;

/*declare work lists with the type of a work item*/
shared worklist list1(Work_t);
shared worklist list2(Work_t);
shared [BLKSIZE] int data[BLKSIZE*THREADS];
/*user-defined work constructor to upc_worklist_add*/
Work_t usr_add(Msg_t msg){

handling msg
/*customize the behavior of adding a work item*/
Work_t res_work = ...
return res_work;

}
/*non-blocking operation*/
upc_worklist_foreach(Work_t w: list1)
{ /*enter work region*/

Msg_t msg;
processing work w

/*upc_worklist_add(worklist, affinity_expr,
work_constructor)*/
upc_worklist_add(list1, &data[i], usr_add(msg));

}/*finish work region*/
/*blocking operation*/
upc_worklist_until(Work_t w:list)
{ /*enter work region*/

Msg_t msg;
processing work w
upc_worklist_add(list, &data[i], usr_add(msg));

}/*leave work region*/

Figure 1: Code examples using Shared Work List

side and build the work remotely but locally to the remote
side. Moreover, there are some cases where users want to
customize the way in which a work item comes into a work
list as the algorithm requires. Our proposed Shared Work
List gives users interfaces to control the behavior of adding
a work item such as data-thread affinity, user-defined work
constructor, and it also supports algorithm-level optimiza-
tion such as manual elimination of redundant work items.

Speculative Execution. Speculative execution is a crit-
ical part for running applications with amorphous data par-
allelism. However, it may bring significant overhead due to
communication cost on distributed memory systems. Thus,
a light-weighted mechanism for speculative execution on dis-
tributed memory systems is on demand. Differing from the
traditional speculative parallelization from a sequential pro-
gram to a parallel one, speculative execution in the scenario
of work lists merely helps users to exploit more parallelism in
a parallel program. Not all irregular applications can reveal
more parallelism by running in the speculative way. Our
Shared Work List currently only introduces user-assisted
speculative execution, where users is in charge of specify-
ing the speculative behaviors of a work item and the under-
lying runtime gives execution support for these speculative
behaviors.

3.2 Language Constructs

3.2.1 Declaration of Shared Work Lists
We propose a language extension that can declare a SWL

with work items in the data type work item t, as follows:

shared worklist list_name(work_item_t);

, where worklist is a newly added key word to UPC. The
SWL declared is by default with a capacity of infinite work
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items. Users don not have to concern about the sizes of
SWL, as it can automatically adjusts the size with regard
to the dynamic usage at runtime. A declared SWL is, in
fact, treated as a shared distributed list. However, to hide
the complexity of manipulating the list, users can only or-
chestrate the SWL with our predefined operations in the
following section.

3.2.2 Manipulation of Work Items
There are two language constructs for users to add a work

item into a specified SWL, as follows:

upc_worklist_add (SWL identifier,
affinity expression, work constructor);

upc_worklist_add (SWL identifier,
affinity expression, work item);

Besides SWL identifier which specifies the target SWL, both
constructs require users to specify the data-thread affinity to
tell the runtime system where this work item will reside. On
distributed memory systems, it is critical to perform local
computation as fast as possible with minimum communica-
tion. Thus, the data-thread affinity information helps the
runtime system to distinguish the local and remote work
items and to dispatch each work item to the most appro-
priate UPC thread. Users have two options to add a work
item. If a work item is constructed locally, which may re-
quires little communication, the second upc worklist add is
recommended, as it just transfers the work item to the tar-
get SWL. If a work item is best to be constructed on the
remote side, perhaps, the construction of this work item re-
quires remote data, or, users want to place some actions
before it comes into the SWL, users may choose the first
upc worklist add by giving a function as a work constructor
with the type of work item as the return type. These two
options give users great flexibility to control the behavior of
adding a work item into a SWL. To support the amorphous
data parallelism, we supply the following two parallel work
item iterators to help users access each work item in the
functional programming style (i.e. MAP).

upc_worklist_foreach(work_item_t w: SWL){ ... }
upc_worklist_until(work_item_t w: SWL){ ... }

As our proposed SWL is an unordered work list, the two
iterators can access the contained work items in any order.
Note that, these two iterators work in the collective way.
That is, all processors must collectively start these two it-
erators after a global synchronization and leave these two
iterators with a global synchronization; if and only if when
there are no work items are available in the SWL, a proces-
sor can then leave the iterators. In order to support ordered
work lists, we design that the two work item iterators work
in different modes. upc worklist foreach works in a blocking
mode, that is, no new work items are allowed to be ap-
pended to the same SWL as the iterator works. In contrast,
upc worklist until allows new work items to be added to the
same working SWL in flight. The former one is useful when
it comes to the case of achieving ordered work lists. In this
case, users can build several SWLs, dispatch work items into
different SWLs, and add necessary synchronizations in order
to preserve the desire executing orderings among the work
items, as demonstrated by the level-synchronized Breadth-
first Search (BFS). The upc worklist until iterator greatly

helps asynchronous algorithms, such as the asynchronous
BFS based on the Single Source Shortest Path.

There are constraints on synchronizations within the scope
of the executing body of each work item. Collectives oper-
ations (e.g. upc barrier, memory allocations on the shared
data space), fine-grained synchronization operations like locks
are prohibited. I/O operations are not allowed at present to
simplify speculative execution. Besides, asynchronous mem-
ory operations are required to be finished before leaving the
scope. Even though these two iterators look like the tra-
ditional for and while loops, only continue is allowed to
terminate the current work item while other operations like
break and goto are forbidden.

In order to help users to achieve ordered work lists by
using unordered work lists, the following collective operation
is introduced to exchange two given SWLs. This operation is
used in the level-synchronized BFS which will be presented
in Section 5.3.2.

upc_worklist_exchange(SWL identifier1,
SWL identifier2);

3.2.3 User-assisted Speculative Execution
Speculative execution is an essential part for amorphous

data parallelism, which allows conflicts between operations
to happen within different work items. We put forward some
language constructs to support semi-automatic user-assisted
speculative execution, in which the users are in charge of
specifying the speculative behaviors of a work item and the
runtime system takes the responsibility of detection of con-
flicts and rollback of data and computation. We will discuss
the role of cooperations between users and runtime system
more in detail in Section 4.2.

In UPC, shared data between processors can be accessed
either by a reference of a shared array or by a shared pointer
of a specific data type. Within a certain processor, though
work items belonging to this processor share the data lo-
cal to this processor, the sequential executing ordering of
these work items ensures that no operation conflicts will oc-
cur. Thus, we assume that only operations on shared data
structure can conflict with others from different work items.
When a work item speculatively operates on a shared data
item, it first has to obtain the ownership of the desired data
before conducting any computations on it. Then, after the
computation, the work item release the ownership back to
the original owner. If two work items are trying to get the
ownership of the same shared data, a conflict happens and
the runtime system detects this conflict and rollbacks the
computation and data of a chosen work item according to a
predefined rule. Note that, not all the shared data should be
necessarily accessed in speculative state. We could aggres-
sively treat all the references of shared data in speculative
state, but doing this would lead to a large amount of unnec-
essary overhead of manipulating speculative data due to the
high communication cost on distributed memory systems.
Thus, to distinguish the shared data accesses in speculative
state from the unprotected ones, we supply the following
constructs, speculative assistant operations, to achieve user-
assisted speculative execution:

upc_spec_get(void * restrict dst,
shared const void * restrict src, size_t n);

upc_cmt_put(shared void * restrict dst,
const void * restrict src, size_t n);
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upc spec get is used to obtain the ownership of desire shared
data. Besides the semantics of the upc memget(), it imposes
a fine-grained lock upon the shared data. When two work
items are trying to lock the same shared data simultane-
ously, a conflict happens. To enable future rollback of data
in case of conflicts, this construct makes a shadow local copy
of the original shared data. No matter how this copy of data
will be accessed, read, write, or both, once conflicts are de-
tected, the runtime system can just rollback this work item
by releasing the ownerships of shared data it has obtained
and discarding all the local copies directly. It is users’ re-
sponsibility to specify which data is assumed to be operated
in speculation prior to the execution.

upc cmt put gives users control to commit the data in the
speculative state. Only if all the upc spec get operations
before the this operation finish successfully, we can say that
this work item wins in the race of speculative computation
and is able to conduct the remainder computation. When all
the computation completes, a winer work would commit the
shadow copy to the corresponding shared data and return
the ownerships of the shared data it has acquired. Other
work items which fail in the race of speculative computation
may then restart the work as the winer does.

4. IMPLEMENTATION
In this section, we first give the description of the execu-

tion model for Shared Work List. More detailed discussions
and implementing strategies on user-assisted speculative ex-
ecution and Active Message-based mechanism of work dis-
patching are also presented. We implement our proposed
Shared Work List in the Berkeley UPC translator and run-
time 2.14.

4.1 Execution Model of Shared Work List
Differing from the master-slave execution model for work

lists in Galois, the execution of Shared Work List (SWL) em-
ploys the Single Program Multiple Data (SPMD) style like
upc forall. The execution model of the SWL in the case of
upc worklist until operation is shown in Figure 2. Before the
start of a SWL iterator, all processors, that is, UPC Threads,
have to collectively enter the work region indicated by the
body of the iterator. Once all threads have been in the work
region, each thread initiates its state as executing. All the
work items belonging the local part of a SWL in a processor
execute sequentially whereas different work items belonging
to different processors proceed in parallel. The user-assisted
speculative execution is designed for work items working in
parallel, more details are in Section 4.2. When a work item is
being deposed from a SWL, new work items can be spawned
within that work to a target SWL either synchronously or
asynchronous. Coalescing is an option for users to optimize
the performance of communication. When a thread empties
its local part of the given SWL, it changes its state into idle
and enters work termination detection by detecting whether
there are still any work items in the global SWL. If there are
no available work items, the thread leaves the work region;
otherwise, it waits for new work items to come into the local
part of the SWL, or the empty of the global SWL.

4.2 User-assisted Speculative Execution
Figure 3 gives an example of user-assisted speculative ex-

ecution. In this example, the shared data are distributed
over three threads and all these threads are dealing with

list1(0)             list1(1)               list1(2)               list1(3)

data(0)              data(1)               data(2)               data(3)
Process Process

Pthreads

UTH0 UTH1 UTH2 UTH3
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2. Execute work items in a SWL 

3. Work Termination Dectection

(Async) Add

(Async) Add

(Async) Add

W
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k 
Re

gi
on

Msg Agg. Msg Agg. Msg Agg.Msg Agg.

(Async) Add

Figure 2: The work region of a upc worklist until
iterator

work items in the given SWL in the speculative mode. Here,
we assume that operations (in thread 0) on shared data d2
conflict with the operations (in thread 2) on d3.

4.2.1 Translator
Identification of Speculative Behavior. As specu-

lative execution requires support from runtime system for
detection of conflicts and rollback of data and computa-
tion, it is unwise to assume our proposed SWL iterators
always work in the speculative way. Thus, the translator
first checks whether there are any speculative assistant op-
erations (upc spec get or upc cmt put) within the scope of a
given SWL iterator. If yes, the translator gives a hint to the
runtime such that this SWL iterator will work in speculative
mode. Otherwise, this SWL iterator works like traditional
parallel forall loops. Since there may be function calls within
the scope of a given SWL iterator, inter-procedural analy-
sis is applied to detect the existence of speculative assistant
operations for the work item iterator to decide work either
in speculative mode or non-speculative mode.

Fine-grained Atomic Protection. To enable acquisi-
tion of ownerships of shared data to be operated in specu-
lative mode, it is intuitive to use the high-level UPC shared
lock and its related operations. However, it is not wise to
use this shared lock to achieve atomic protection in the case
of speculative execution. On one side, for fine-grained data
accesses, it is inefficient to allocate as many shared locks
as the number of the data items as this would waste the
space of the shared data among processors. What is more,
unlike traditional lock and its operations on shared mem-
ory systems (e.g. Pthreads), operations on a shared lock are
actually message communications between processors which
will inevitably increase the overhead of speculative execu-
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Figure 3: An example of user-assisted speculative
execution

tion. Instead of the shared lock, we employ a fine-grained
synchronization mechanism of Full/Empty Bits (FEB) to
achieve atomic protection. The translator first collects all
the data references of upc spec get() operations and allo-
cates a bitmap array for each shared array accordingly. The
operations on these bitmap-based locks are achieved through
Active Message. When a work item executes a upc spec get()
operation, for example, the runtime system first sends a AM
message to the target processor as indicated by the data-
thread affinity of the shared array references. When the

target processor receives this message, it checks the status
of the bit in the bitmap array for this shared array refer-
ence. If this bit is empty, that is 0, the target processor sets
it to 1, and replies a success message to the sender proces-
sor. Then, the following construction of local shadow copies
of the shared data can proceed. Otherwise, the target pro-
cessor directly reply a failure message to the sender proces-
sor. When this message arrives at the sender, the runtime
treats this message as a hint of conflicts. As a result, the
runtime system rollbacks the “dirty” data and speculatively
completed operations. The operations on bitmap arrays are
local to a certain processor, thereby, the bitmap array can be
just locally allocated without taking any space in the shared
data space.

Correctness Checking. When a SWL iterator works
in the speculative mode, each work item executes as if it
was protected by a critical section. The first upc spec get()
occurring in the scope of a work item indicates the start of
a critical section, and the last upc cmt put() operation ends
the critical section. To avoid deadlock, all upc spec get() op-
erations must come before upc cmt put() operations. That
is, these two kinds of operations cannot interleave with each
other. Furthermore, each upc spec get() operation should
be matched by a upc cmt put() operation with the same re-
gion of shared data as the lock() and unlock() operations
do. The translator statically checks this two constraints for
users. If there are any violations to these rules, the transla-
tor treat these as compilation errors. Note that, predicated
data flow analysis and inter-procedural analysis is a neces-
sity for checking the validity for speculative execution.

Optimizing Local Shadow Copies. There are possi-
bly some cases in which some work items are only trying to
modify the shared data without reading the original data
or to load the original data without changing it in the end.
But according to our proposed user-assisted speculative exe-
cution, users still have to use the upc spec get() operation to
create a local shadow copy of the shared data by transferring
the desired data from target processor in order to acquire the
ownership of the data. In fact, the runtime can just allocate
a local temporary data item as the local shadow copy for
the local read without writing back or further write opera-
tions without loading the data. Unnecessary data transfers
would incur the waste of network bandwidth and increase
the overhead of speculative execution. The translator con-
servatively optimizes these operations with the help of the
def-use chain obtained from both intra-and inter- procedu-
ral data-flow analysis. If there are no reaching uses from a
created local shadow copy, then the unnecessary data trans-
fers can be eliminated and the upc spec get() operations just
work for the acquisition of ownerships of the desired data.
Since a local shadow copy may be accessed through pointers,
data-flow analysis may involve pointer-analysis, which may
not be precise enough and lead to the limited applicability
of this optimization .

4.2.2 Runtime
Rollback of Data and Computation. Since users have

given hints to the runtime system about which shared data
should be protected and operated in the speculative state,
the runtime system maintains an operation table and logs all
the speculative assistant operations in the user defined or-
der for each processor. Note that, the manipulation of tables
for speculative assistant operations runs in the Single Pro-
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gram Multiple Data way instead of master-slave mode which
may constrain the scalability on distributed memory sys-
tems. When a upc spec get() operation fails, which means
a conflict happens, the runtime system is triggered to roll-
back the data and computation by just doing corresponding
upc cmt put() operations but without any data transfers for
the already created local shadow copies resulted from all the
operations already logged in the table. In other words, the
runtime system just discards the local shadow copies of the
protected shared data and releases the ownerships of these
data items.

4.3 Distributed Work Dispatching
As a Shared Work List is actually a distributed list over

processors, adding a work item into a portion of the list
belonging to a specific processor requires communication
through network. In addition, two work items may con-
currently compete with each other to get into the same list,
therefore, a synchronization mechanism is needed to achieve
the mutual exclusion of these operations of adding work
items. UPC standard only supplies shared locks for users to
achieve mutual exclusion. However, locks on shared-memory
systems are infamous for contention and come with consider-
able overhead on distributed memory systems, thereby, they
are not scalable. We observe that two messages arriving at
the same processor cannot be real concurrent due to the seri-
alization of messages out of the network port. UPC runtime
relies on Active Message supplied by the GASNet interface
to realize communications and remote memory operations.
We utilize Active Message to implement distributed work
dispatching and related optimizations.

AM-based Distributed Work Dispatching. Active
Message is basically a mechanism of remote procedure call,
where each message contains at its head the address of a
user-level handler and the arguments in its message body,
and the the function will be executed on message arrival. Us-
ing this mechanism, more control can be given to the user on
how to build and push a work item into a SWL. As stated in
Section 3.2.2, there are two candidate operations for adding
a work item into a SWL. One of them allows users to give
a user-defined work constructor function. When a function
call is given in the work adding operation, the translator first
checks whether this function has the same return type as a
work item defined in the declaration of the enclosed SWL. If
this function is qualified as a work constructor, the transla-
tor registers it in the customized handler id table. When an
AM comes with this handler id, the receiver will execute the
right handler function according to the handler id, and pro-
duce a work item. To build a work item at the remote side
or transfer an available work item, we use the GASNet Ac-
tive Message interface gasnet AMRequestMedium(...), which
carries payload along with the handler id and arguments.

Coalescing Work Items. Coalescing avoids the com-
munication cost for each work adding operation. Multiple
work items destined for the same remote thread are aggre-
gated and are sent as a single active message. In order to
support coalescing, separate work item buffers are kept for
each of the remote UPC threads. As only one work item
buffer is necessary for each remote thread, the memory con-
sumption of these buffers is not considerable. These buffers
are created when all threads collectives enter the work re-
gion of a given SWL iterator with a coalescing size specified.
User can change the coalescing size only through an environ-

UPC App

UPC Runtime

GASNet

upc_worklist_add(list, TH1, w) upc_worklist_until(Wort_t w : list)

UPC Thread0

work item buffers

UPC Thread1

(1)

(2)

(3)

Figure 4: Active Message-based work adding oper-
ations

mental variable GASNET WORKLIST COALESCE.
As shown in Figure 4, within a work region of a SWL iter-

ator, a work item is put into the work item buffer designated
for the destination thread. The work item is sent out, when
the buffer is full, or when a thread is trying to leave the work
region. If the work adding operations are invoked without
coalescing, the work item is sent out immediately.

Asynchronous Work Dispatching. When a work item
is attempting to spawn a new work item into a given SWL,
the corresponding working thread has to be waiting until this
work item is actually in the target SWL, which may signif-
icantly bring down the throughout of disposing work items
in the SWL. Like asynchronous upc memput() operations,
when a work adding operation has been encapsulated into a
message and successfully injected into the network, we can
deem this operation has finished. To ensure that the work
item asynchronously dispatched is eventually added into the
target SWL, the runtime maintains a table for these work
adding operations. When a work adding operation is trig-
gered, the runtime keeps a record for it. Afterwards, the
runtime checks the status of these operations and waits un-
til all the operations checked are finished when the logging
table is full or when all threads are trying to leave the work
region. Asynchronous work dispatching helps overlap com-
munication with computation, and in turn further reduces
the overhead of work dispatching on distributed memory
system on top of work item coalescing.

5. A CASE STUDY: BREADTH-FIRST
SEARCH (BFS)

To demonstrate the feasibility and performance of our pro-
posed Shared Work List (SWL), we initially choose Breadth-
first Search (BFS) as a case study, of which different imple-
mentations require different types of work item iterators on
SWLs.

5.1 Selection of BFS algorithms
Level-synchronized Style. Breadth-first Search of undi-

rected graph starts from a root, and explores all the neigh-
bors of this node before exploring their neighbors, etc. Hence,
it is natural to implement BFS in a level-synchronized way.
Within a single computation level, the work items produced
from the previous level are dispatched among all UPC threads
and new items are generated for the next level. When there
is no more new work items available, the whole BFS ter-
minates. Synchronizations are required between two suc-
cessive computation levels to ensure the correctness of this
algorithm.

Asynchronous Style. Roger Pearce et al. [21] put for-
ward an asynchronous BFS based on the asynchronous Sin-
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gle Source Shortest Path (SSSP) on shared memory systems.
The main idea of their asynchronous approach is to allow
multiple SSSP algorithms to execute in parallel with the
help of prioritized visitor queues. Like Bellman-Ford, their
approach relies on label-correcting to compute the traver-
sal, and completes when all corrections are complete. Like
Dijkstra’s SSSP, their approach traverses paths in a prior-
itized manner, visiting the shortest path possible at each
visit. Their approach does not introduce synchronizations
between steps at the costs of multiple visits per vertex. BFS
can be computed by applying their asynchronous SSSP al-
gorithm with all edge weight equal to 1.

5.2 Graph 500
Graph 500 Benchmark Specification [1] is proposed to di-

rect design of a new set of benchmarks that can evaluat-
ing the performance of supercomputers in the context of
data-intensive applications. Graph 500 benchmark consists
of three comprehensive benchmarks to address application
kernels: Search (Concurrent Search), Optimization (Single
Source Shortest Path), and Edge Oriented (Maximal In-
dependent Set). Concurrent search benchmark consists of
three phases (termed as kernels in benchmark specification).
The first is “Graph Construction”, which generates edges.
The “Kronecker Generator” algorithm is used in the refer-
ence implementation. From the edge list, a graph is con-
tracted in Compressed Sparse Row (CSR) format or Com-
pressed Sparse Column (CSC) format. The second kernel is
the actual “Breadth-first Search” with 64 search keys ran-
domly sampled from the vertices in the graph. For each
search key, BFS traversals are made one by one. The vali-
dation kernel, the final kernel, ensures the correctness of the
64 BFS traversals.

The Graph 500 benchmark package from its official web-
site contains several versions of referenced implementation in
MPI, including MPI one sided, MPI simple, and MPI replicat-
ed versions. All these versions are in the level-synchronized
style but with different implementation strategies for queue
operations. The MPI one sided uses a three-color scheme to
present queue and utilizes one-sided communication deliv-
ered in MPI 2 to achieve queue operations at the cost of
redundant computation. The MPI simple implements a dis-
tributed queue-based BFS with message aggregation. This
version is the most similar to the sequential BFS. In the
MPI replicated, every thread has a copy of global queue.
Moreover, within a phase, each thread makes contributions
to the global queue through collective operations, which pro-
hibits overlapping communication with computation.

5.3 Implementations in UPC
In this work, we focus on the second kernel of Graph 500.

As it does not give any referenced code in UPC, we first
rewrite the Graph 500 in UPC. For simplicity, we keep the
the generation of edge lists, transformation from edge lists to
CSR data format, and validation in MPI. Each UPC thread
locally keeps the adjacent list information of vertices that it
owns as the MPI does. The key data structures for the al-
gorithm shared by all the processors (e.g. Pred) are declared
as the UPC shared arrays . As stated in Section 5.1, we can
have different versions of BFS in UPC.

5.3.1 Global-view BFS
We give the first two implementations of BFS referring

to the MPI one sided version in the referenced Graph 500
code. These two versions are written in the global-view with
upc forall. Compared with MPI one sided version, when writ-
ing global-view applications in UPC, users do not have to
orchestrate the communication buffers, which are required
by the one-sided operations on MPI Window in MPI. Note
that, UPC language only supports for fine-grained accesses
to shared data. There are no operations like MPI Accmulate
in UPC, which not only access to the shared data, but also
carry necessary arguments to conduct a specific computation
(e.g. ADD, MAX, MIN) at the same time. Achieving the
same operation in UPC results in extra communication over-
head introduced by the redundant data transfers, as shown
in Figure 5. We consider adding this kind of accumulating
operations to UPC as our future work to better UPC for
global-view applications.

(a) MPI One-sided Operations

MPI_Win_create(pred2, …., &pred2_win); /*comm. buffers*/
MPI_Accumulate(&local_vertices[v_local], …., MPI_MIN, pred2_win);

shared […] long  pred2[…]; /*implicit comm. buffers*/
pred2[pos] = long_min(pred2[pos] , local_vertices[i]); /*redundant comm.*/

(b) UPC

Figure 5: Comparison of one-sided operations

Both UPC Global and UPC Global Bitmap adopt the level-
synchronized algorithm and a three-color scheme to imple-
ment queue operations. For each computation level, redun-
dant computations are introduced to get the current input
nodes produced from last level. Bitmap is added with the
intent of reducing these redundant computation. However,
as the experimental results in the Section 6.2 show, the in-
troduction of bitmap degrades the performance of BFS as it
nearly doubles the communication.

5.3.2 Level-synchronized BFS in SWL
We also give a level-synchronized BFS , SYNC SWL, in the

SWL referring to the MPI Simple version. As our proposed
SWL only designed for unordered work lists, two SWLs are
needed to preserve the orderings between different compu-
tation levels.

Writing level-synchronized BFS in SWL helps to achieve
optimal work construction by migrating the construction of
a work item for the next computation level to the most ap-
propriate UPC thread taking into account the communi-
cation overhead. Moreover, user-defined work constructors
realize the monotonicity of updates to the nodes due to the
serialization of messages through network. The monotonic-
ity of the updates also achieves the atomicity of the updates
to the same node and eliminates the necessity of high-cost
user-assisted speculative execution. In addition, as stated in
Section 4.3, the runtime system can achieve automatic mes-
sage aggression for applications in SWL. Compared with the
explicit and complex optimization done in the MPI Simple
version by hand, writing applications in SWL can helps users
to achieve nearly the same optimization while at a low cost
of programmability.

5.3.3 Asynchronous BFS in SWL
The asynchronous BFS in SWL adopts the aforementioned

asynchronous BFS based on the asynchronous SSSP. Dif-
fering from the SYNC SWL, only one SWL is enough for
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the overall computation. Similar to the SYNC SWL, we use
user-defined work constructor to build work items locally.
Besides, in order to cut off the infeasible SSSP paths as early
as possible and to prevent the explosion of the work list, we
introduces two optimizations in the work constructor: 1) in-
stead of directly creating a new work item and pushing it
into the work list, we first check whether it is necessary to
create a work item according to the current path from the
source vertex carried by the constructor’s argument; 2) we
introduce a bitmap array to record whether there is already
a work item for a vertex in the work list. If the answer
is positive, when creating a new work item, we compare
the two work items, and replace the existing one with the
best one in the work list. Otherwise, the new created work
item is directly pushed into the work list. The ASYNC SWL
also benefits from the automatic message aggression and the
elimination of user-assisted speculative execution thanks to
the monotonicity of the updates to the vertices.

6. EXPERIMENTAL RESULTS

6.1 Experimental Platform
We used an Intel cluster for our experiments. This clus-

ter consists of 16 computing nodes with 8 Intel Xeon X7550
8-core processors, operating at 2.0 GHz,. Each node has
256GB of memory and is equipped with MT26428 QDR
Connect X HCAs (40Gbps data rate) with PCI-Ex Gen2
interfaces. The nodes are interconnected using 36-port Mel-
lanox QDR switch. The operating system used is CentOS re-
lease 5.3, with kernel version Linux 2.6.18-128.el5 and Open-
Fabrics version 1.5.

6.2 Graph 500 Benchmark Performance
We tested the benchmark for an input graph with 1 million

vertices and 16 million edges, for varying number of systems
sizes, 64, 128, 256, 512 UPC-threads. We conducted this
experiment with the InfiniBand GASNet conduit for our al-
tered UPC runtime with support for SWL.
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Figure 6: Performance of BFS (Strong Scaling, 1
Million Vertices)

Performance results of Graph 500 benchmark are pre-
sented in Figure 6. To demonstrate the performance ben-
efits of our proposed SWL, we only compared the perfor-
mance of our implemented BFSs with the MPI Simple. As
stated in Section 5.3.1, UPC Global Bitmap considerably de-
grades the performance of the UPC Global due to the extra
communication for the operations on bitmap arrays. The

SYNC SWL versions nearly have the same performance and
scalability as the MPI Simple. Different sizes for coalescing
work items hardly make any differences in the the perfor-
mance of the SYNC SWL on a small scale of UPC threads.
When it comes to 512 UPC threads, the SYNC SWL with
coalescing size 128 performed better than the one with coa-
lescing size 64. These results demonstrate that writing level-
synchronized BFS in SWL can help users to achieve nearly
the same performance and scalability as MPI while at a low
cost of programmability. As for the ASYNC SWL, the per-
formance of it highly relies on the structure of the underlying
graph. The ASYNC SWL performed a little worse than the
SYNC SWL version on a small scale of UPC threads. This
is possibly because that the redundant computation intro-
duced by multiple speculative SSSP algorithms takes more
time than the time of synchronization in the SYNC SWL.
Surprisingly, the ASYNC SWL greatly outperformed both
the MPI Simple and the SYNC SWL on the 512 UPC threads.
The reason for this is perhaps that the critical path of com-
putation steps in the asynchronous BFS is smaller than that
of the level-synchronized BFS, and the synchronization over-
head increases as the computing processors scale.

7. CONCLUSION
This paper proposes Shared Work List to tackle amor-

phous data-parallelism in UPC. It naturally augments the
work distribution constructs (i.e. upc forall) in UPC and
gives users a global-view programming paradigm like pro-
gramming on shared memory systems. The two work item
iterators proposed can help users to write different types of
applications requiring either unordered work list or ordered
work list. The Active Message model based semi-automatic
user-assisted speculative execution allows the occurrence of
operation conflicts and accordingly it plays a critical role in
supporting applications with amorphous data parallelism.
To our best knowledge, it is first time to introduce Active
Message-based speculative execution in a PGAS language.
Moreover, the Active-Message based work dispatching mech-
anism not only gives users great flexibility to control the be-
havior and location of adding a work item, but also achieves
the automation of manual optimization on communication,
such as asynchronous data transfers and message aggrega-
tion.

As the preliminary experimental results from a case study
of Breadth-first Search show, writing applications with Shared
Work List can help users to achieve satisfactory performance
while at the ease of programming. In the future, we will
explore more applications with amorphous data parallelism
and demonstrate the performance benefits of our proposed
solution.
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