
Kokkos Array Performance-Portable Manycore
Programming Model

H. Carter Edwards
hcedwar.sandia.gov

Daniel Sunderland
dsunder.sandia.gov

Sandia National Laboratories
∗

P.O. Box 5800
Albuquerque, NM 87109

ABSTRACT
Large, complex scientific and engineering application code
have a significant investment in computational kernels which
implement their mathematical models. Porting these com-
putational kernels to multicore-CPU and manycore-accel-
erator (e.g., NVIDIAR© GPU) devices is a major challenge
given the diverse programming models, application program-
ming interfaces (APIs), and performance requirements. The
Kokkos Array programming model provides library-based
approach for implementing computational kernels that are
performance-portable to multicore-CPU and manycore-accel-
erator devices. This programming model is based upon three
fundamental concepts: (1) manycore compute devices each
with its own memory space, (2) data parallel computational
kernels, and (3) multidimensional arrays. Performance-por-
tability is achieved by decoupling computational kernels from
device-specific data access performance requirements (e.g.,
NVIDIA coalesced memory access) through an intuitive mul-
tidimensional array API. The Kokkos Array API uses C++
template meta-programming to, at compile time, transpar-
ently insert device-optimal data access maps into compu-
tational kernels. With this programming model computa-
tional kernels can be written once and, without modifica-
tion, performance-portably compiled to multicore-CPU and
manycore-accelerator devices.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming

∗Sandia National Laboratories is a multi-program labora-
tory managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the
U.S. Department of Energy’s National Nuclear Security Ad-
ministration under contract DE-AC04-94AL85000. This pa-
per is cross-referenced at Sandia National Laboratories as
SAND2011-9311C.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PMAM’12 February 26, 2012, New Orleans, LA, USA
Copyright 2012 ACM 978-1-4503-1211-0/12/02 ...$10.00.

General Terms
performance

Keywords
multicore, manycore, GPU, multidimensional array, mini-
application

1. INTRODUCTION
Multicore-CPU and manycore-accelerator devices promise

improvements in both runtime performance and energy con-
sumption. Porting large, complex scientific and engineer-
ing applications to these devices is a significant challenge
in that (1) a multi-level parallel programming model is re-
quired to manage both distributed and on-device parallelism
and (2) these devices have critical and device-specific per-
formance considerations. For example, kernels executing on
NVIDIA devices must use coalesced memory access and ker-
nels executing on non-uniform memory access (NUMA) de-
vices must manage thread/memory placement.

Many projects have successfully addressed these challenges
by writing distinct versions of their codes that are special-
ized for particular compute devices (e.g., see the “cudazone”
[8]). However, this approach incurs the cost of developing,
verifying, and maintaining a special version of the code for
each class of compute device. For large complex applications
this can be an unacceptable cost.

Programming Model. The Kokkos Array program-
ming model uses a library-based (versus compiler-based)
approach to support implementation of computational ker-
nels that are performance-portable to multicore-CPU and
manycore-accelerator devices. The programming model is
similar to the Thrust library [10] in that it provides par-
allel for and parallel reduce operations, manages allocation
and deallocation of data on the manycore device, and uses
standard C++ as opposed to a new language or pragma
extensions. Kokkos Array is unique in that it provides an
intuitive multidimensional array API for applications to ag-
gregate data, and it allows multiple devices to be used within
a single application. In the Thrust programming model ar-
rays are strictly one-dimensional and only a single, non-host
device may be used within the application.

Performance Portability. Performance-portability in-
cludes source code portability of a kernel’s code and per-
formance that is commensurate with a device-specific im-
plementation of that kernel. Memory access has become a
dominant performance consideration for many kernels; e.g.,

1

coalesced memory access on NVIDIA and thread/memory
placement on NUMA devices. The Kokkos Array API de-
fines a separation of concerns between an application’s need
to aggregate data and a device’s specific data access per-
formance requirements. The Kokkos Array implementation
uses C++ template meta-programming [1] to, at compile-
time, transparently insert device-optimal data access maps
into the application’s multidimensional arrays. Thus compu-
tational kernels can be written once in the standard C++
language and, without modification, performance-portably
compiled to multicore-CPU and manycore-accelerator de-
vices.

Trilinos. The Kokkos Array library is available through
Sandia National Laboratories’ Trilinos[11] project. Avail-
able compute devices use CUDA v4 [8] and pthreads [6] with
NUMA locality control via the hardware locality (HWLOC)
library [9]. A collection of performance tests and mini-
applications are used to investigate the performance and
usability of the programming model, API, and implemen-
tations.

2. PROGRAMMING MODEL
The Kokkos Array programming model is based upon

three fundamental concepts: (1) manycore compute device
which has memory separate from the host main memory,
(2) multidimensional arrays of data mapped into the mem-
ory of a compute device, and (3) data parallel computational
kernels applied to these multidimensional arrays.

2.1 Multidimensional Array
Multidimensional arrays are historically intrinsic to sci-

entific and engineering application codes, and intrinsic to
languages commonly used by these codes. For example,
the following two statements declare the same double pre-
cision multidimensional array X in the FORTRAN and C
languages’ syntax.

REAL*8 X(1000,24,8,3) ; FORTRAN
double X[3][8][24][1000]; // C

These two declarations specify the type of the array’s data
(double precision) and the array’s dimensions. The seman-
tics of the FORTRAN and C languages define the mapping
of the array into memory; i.e., the striding of the array in-
dices. Neither the declarations nor the language semantics
specify (1) into which memory space the array is mapped
and (2) how the array would be accessed by parallel compu-
tations.

Definitions. A multidimensional array is a homogeneous
collection of data members which are identified by multi-
indices from a multi-index space and which reside in the
memory of a computational device. A multi-index is simply
an ordered list of integers denoted by (i0, i1, i2, · · ·). The rank
of a multi-index is the number of indices; e.g., (1, 3, 5) and
(7, 5, 3, 1) are rank-3 and rank-4 multi-indices. A Kokkos Ar-
ray multi-index space is a Cartesian project of integer ranges
[0..N0)× [0..N1)× [0..N2) · · · , denoted by (N0, N1, N2, · · ·). The
cardinality (or size) of a multi-index space is the product of
its dimensions, N0 ∗N1 ∗N2 ∗ · · · .

Multidimensional Array Map. A multidimensional
array maps its multi-index space to its data members with
a one-to-one mapping. Traditionally, these data members
reside in a contiguous span of memory on a compute de-
vice. The map for such a multidimensional array X can

be expressed by a base location in memory and a bijective
function between the multi-index space and an offset. For
example, FORTRAN and C multidimensional array index
spaces and offset maps are as follows.

FORTRAN multi-index space and offset map:

space: [1 .. N0]× [1 .. N1]× [1 .. N2]× · · ·
offset: (i0 − 1) + N0 ∗ ((i1 − 1) + N1 ∗ ((i2 − 1) + N2 ∗ · · ·))

C multi-index space and offset map:

space: [0 .. N0)× [0 .. N1)× [0 .. N2)× · · ·
offset: ((((i0) ∗N1 + i1) ∗N2 + i2) ∗ · · ·)

Key Concepts. (1) There are many valid multidimen-
sional array maps. (2) Memory access patterns are defined
by the map. (3) Different devices require different mem-
ory access patterns for optimal performance. For example,
computations on an NVIDIA device must use a coalesced
global memory access pattern. (4) Computational kernels
and multidimensional array maps can be decoupled. (5)
An optimal map for a given device can be inserted into a
computational kernel at compile-time through C++ tem-
plate meta-programming. For example, the map inserted
for an NVIDIA device provides the performance-critical coa-
lesced global memory access to multidimensional array data.
Compile-time in-line insertion is critical for optimization of
the heavily used multi-index mapping.

2.2 Data Parallel Operations
In data parallel computations multidimensional arrays are

partitioned among the threads of a manycore device, and
each thread applies one or more computational kernels to
its designated subset of these arrays. Currently, Kokkos Ar-
ray partitions a multidimensional array along exactly one
dimension of the multi-index space. The left-most dimen-
sion was chosen for parallel partitioning by a consensus of
computational kernel developers participating in a Kokkos
Array software design review.

Parallel Partitioning. Parallel partitioning identifies
NP “atomic” units of parallel work for an array dimensioned
(NP , N1, N2, · · ·). A thread calls a computational kernel to
perform the iP unit of work, where iP ∈ [0..NP). To avoid
thread-parallel race conditions and inter-thread locking a
kernel must: only update array data members that are asso-
ciated with that index (iP , ∗, ∗, · · ·) and not query array data
members that are potentially updated by another thread ap-
plying the same kernel to a different unit of work.

Parallel Operations. Kokkos Array applies computa-
tional kernels through parallel for and parallel reduce oper-
ations. A parallel for operation is trivially parallel in that
the computational kernel’s work is fully disjoint. In a paral-
lel reduce each application of the computational kernel gen-
erates data that must be reduced among all work items; e.g.,
an inner product kernel generates NP values which must be
summed to a single value.

A parallel for kernel is a function that inputs a col-
lection of kernel-defined parameters and partitioned arrays,
and updates a collection of partitioned arrays. A parallel for
function f is formally defined as follows.

f : ({α} , {X}) → {Y }

8<: {α} ≡ input parameters

{X} ≡ input arrays

{Y } ≡ output arrays

A parallel reduce kernel is also a function that inputs
a collection of parameters and partitioned arrays, and up-
dates a collection of partitioned arrays. However, the func-

2

tion f also outputs an common (not partitioned) collection
of parameters. Each application of the function to a unit of
parallel work generates a contribution to these output pa-
rameters. Generated contributions are reduced by a math-
ematically commutative and associative reduction function
fΘ. An implementation fΘ may be non-associative due to
round-off in its floating point operations. A parallel reduce
function f and its associated reduction function fΘ are for-
mally defined as follows.

f : ({α} , {X}) → ({β} , {Y })

8>><>>:
{α} ≡ input parameters

{X} ≡ input arrays

{β} ≡ output parameters

{Y } ≡ output arrays

f ({α} , {X (iP , · · ·)}) → ({β [iP]} , {Y (iP , · · ·)}) ∀ iP
and then

fΘ ({β [iP] ∀ iP }) → {β}

2.3 Manycore Device
A manycore device owns memory which is separate from

the host main memory and supports many concurrent threads
of execution which share this memory. This conceptual
model may reflect a physical separation of memory of the
compute device (e.g., NVIDIA GPU) or merely be a logical
view of the same physical memory (e.g., multicore CPU).
Computations performed by the device only access and up-
date data which are in the device’s memory. As such data
residing in host memory must be copied to the device before
a computation can be performed by the device on that data.

A device implements parallel for and parallel reduce oper-
ations to call a kernel NP times from the device’s concurrent
threads. If the device has NP threads then all calls may be
concurrent; otherwise a thread will call the kernel multiple
times until the NP required calls are completed.

Heterogeneous Parallelism. An application may use
both distributed memory and thread parallelism. Distrib-
uted memory parallelism, as implemented with the Mes-
sage Passing Interface (MPI), defines multiple processes each
with their own MPI rank and memory space. Kokkos Ar-
ray assumes that each of these distributed memory parallel
processes will use at most one device. This assumption is
made to avoid introducing complexity associated with man-
aging multiple devices within the same process. However,
the abstraction for a single manycore device could aggre-
gate multiple hardware devices into a single, logical device.

NUMA Thread Pool. The Kokkos Array manycore-
CPU device is implemented using the thread pool strategy
where a pool of threads (e.g., pthreads [6]) is spawned once
and work is dispatched to these threads. The HWLOC li-
brary is used to detect the number of NUMA nodes and
the number of cores in each NUMA nodes. One thread is
spawned per core, less the core already in use by the main
thread, and the threads are explicitly pinned to NUMA
nodes. Threads with adjacent ranks are assigned to work
on adjacent partitions of an array as illustrated in Figure 1.
These partitions are assigned to threads, and thus NUMA
regions, through the NUMA“first touch” operation. By pin-
ning adjacent rank threads to NUMA nodes the associated
adjacent partitions of an array are also assigned to the same
NUMA region, which reduces the number of inter-NUMA
region boundaries in the array.

Thread 0 Thread 1 Thread 2 Thread 3 Thread ...

NUMA Partition of Array NUMA Partition of Array …

Figure 1: Explicit assignment of adjacent rank
threads to adjacent partitions of an array, resulting
in adjacent partitions being assigned to the same
NUMA region.

3. KOKKOS ARRAY API
Kokkos Array defines C++ classes for general multidi-

mensional arrays, multi-vectors, and values. A multi-vector
is a restricted form of multidimensional array – a collection
of one dimensional vectors all of the same length. A multi-
vector is a simpler abstraction: it is at most rank-two (vector
length and vector count) and has a single multi-index space
mapping. A value is used to create and manage persistent
parameters on the device which are typically shared by all
calls to a computational kernel. For example, the {β} pa-
rameters of a parallel reduce kernel defined in Section 2.2
can be maintained in the device’s memory as a value ob-
ject. For brevity details of the simpler multi-vector and
value APIs are not included here.

3.1 Index Space and Data Access
The first portion of the multidimensional array API given

in Figure 2 identifies the data type of the members, device
in which the data members are allocated, rank and dimen-
sions of the multi-index space, cardinality of the array, and
mapping from a multi-index to a data member. The data
type (given by value_type in Figure 2) is restricted to be a
simple intrinsic numerical type. This restriction is imposed
so that data members can be simply and optimally mapped
onto compute devices with performance-sensitive memory
access patterns, such as NVIDIA GPU.

namespace Kokkos {
template < typename ValueType , class DeviceType >
class MDArray {
public:
typedef ValueType value_type ;
typedef DeviceType device_type ;
typedef ... size_type ;

size_type rank() const ;
size_type dimension(irank) const ;
size_type size() const ; // Cardinality

// Map multi-index to associated data member
value_type & operator()(iP , i1 , ...) const ;

};
}

Figure 2: Multidimensional array API identifying
the multi-index space and accessing data members
via multi-index mapping.

The heavily use and performance-critical operator()
maps multi-indices to data members. As such a device-
optimal and in-lined implementation of this function is crit-
ical. A device-optimal implementation is selected through
the DeviceType template parameter, which identifies a
particular compute device. This device is specified at compile-
time via a template parameter (as opposed to a runtime ob-

3

ject) so that the device-optimal multi-index mapping can be
in-lined by the compiler. This API design avoids potential
run-time overhead associated with C++ virtual functions or
other run-time polymorphism strategies.

3.2 Shared Ownership Semantics
A given MDArray object is a view to array data, it does

not exclusively own that data. All MDArray objects that
view the same array data equally share ownership of that
array data. The MDArrayView constructors, assignment
operator, destructor, and allocation function given in Fig-
ure 3 implement shared ownership semantics.

namespace Kokkos {
template < typename ValueType , class DeviceType >
class MDArray {
public:
MDArray(); // A NULL view.
// New view of the same data viewed by RHS:
MDArray(const MDArray & RHS);
// Clear this view: if this is the last view
// to an array then deallocate the array:
~MDArray();
// Clear this view and then assign it to
// view the same data viewed by RHS:
MDArray & operator = (const MDArray & RHS);
// Query if ’this’ is a non-NULL view:
operator bool() const ;
// Query if a view to the same data
bool operator == (const MDArray & RHS) const ;

};

// Allocate data on the device and return a
// multidimensional array view to that data
template< class MDArrayType >
MDArrayType create_mdarray(nP , n1 , n2, ...);
}

Figure 3: Kokkos Array API for shared ownership
and allocation semantics.

The MDArraycopy constructor and assignment operator
perform a shallow copy – they set the current MDArray ob-
ject to be a view of same data viewed by the input object
(RHS in Figure 3). A shallow copy only copies the minimal
information required to view and access the array data, the
data itself is not copied. In contrast the copy constructor
and assignment operator of a container would perform a
deep copy – they allocate their own array data as needed
and then copy each data member from the input container.

Views are not Containers. Shared ownership seman-
tics are fundamentally different from container semantics.
A container has exclusive ownership of its data, versus a
view which shares ownership of data with other views. The
standard C++ container classes [5] implement container se-
mantics where copy constructors and assignment operators
perform a deep copy of all data owned by the container.
The recent C++ shared pointer [2] class implements shared
ownership semantics where multiple objects view the same
data, and the last view to be destroyed is responsible for
deallocating the viewed data.

Why View Semantics. In large complex applications
arrays are allocated on the device by “driver” functions,
passed among driver functions, passed from driver functions
to computational kernels, passed from one computational
kernel to another, and at some point should be deallocated
to reclaim memory on the device. Managing the complexity

of numerous references to many allocated arrays requires a
high degree of software design and implementation discipline
to prevent memory management errors of (1) deallocation of
a still used array or (2) neglecting to deallocate an array no
longer in use. Thus there is a significant risk that a team
of application developers will lose track of when to, or not
to, deallocate an array, and as a result will introduce one of
the two memory management errors. This risk is mitigated
by using view or shared ownership semantics for allocated
Kokkos arrays. Under the shared ownership semantics mul-
tiple view to the same allocated data may exist and the last
view to be cleared (see Figure 3) deallocates the allocated
data.

Only Views. The Kokkos Array public API only pro-
vides views to array data – a container interface is intention-
ally omitted. This design decision simplifies the interface by
providing a single, simple, and safe interface to allocated
array data.

3.3 Copying Data
The data viewed by an MDArray object resides in the

memory space of the device specified by the DeviceType
template argument and has a device-specific mapping from
the index space into that memory. This memory space may
be separate from the host’s memory space (e.g., an NVIDIA
device) or may be the same memory space (e.g., a pthread
device). Thus array data may, or may not, be directly ac-
cessible to code executing on the host process, and a deep
copy of data between memory spaces may be required for
the host to access data. The mirroring and deep-copying
array data is given in Figure 4.

namespace Kokkos {
template < typename ValueType , class DeviceType >
class MDArray {
public:
// Compatible MDArray in the host memory
typedef ... HostMirror ;

};

// Create a compatible array in the host memory
template< MDArrayType >
typename MDArrayType::HostMirror
create_mirror(const MDArrayType &);

// Deep copy data between arrays
// with compatible type and dimension
template< typename ValueType , class DeviceDest ,

class DeviceSource >
void deep_copy(
const MDArray<ValueType,DeviceDest> & dest ,
const MDArray<ValueType,DeviceSource> & source);

}

Figure 4: Kokkos Array API for deep-copying and
mirroring data between host and device memory.

The MDArray::HostMirror type defines a multidimen-
sional array type that (1) has data in the host memory
space and (2) maps array data according to the original
MDArray index space to data mapping. Thus the type de-
fines an exact “mirror” of the device-resident multidimen-
sional array data. Such a mirror allows direct, memory-to-
memory, deep copy of data without requiring a potentially
time consuming remapping of data between the device’s op-
timal multi-index map and the host’s optimal multi-index

4

map. The create_mirror function simply creates a mul-
tidimensional array of the HostMirror type with the same
dimensions as the input array.

The deep_copy function copies data between two com-
patible arrays. For the deep copy function “compatible” is
loosely defined as either (1) having the same type (same
device and same map), (2) having different devices and the
same map, or (3) using the“host”device with different maps.

An example of using the mirror and deep copy capabilities
are given in Figure 5.

typedef MDArray< double, Device > array_type ;

array_type x = create_mdarray< array_type >(nP , nX);
array_type y = create_mdarray< array_type >(nP , nY);

array_type::HostMirror xh = create_mirror(x);
array_type::HostMirror yh = create_mirror(y);

// read data into ’xh’ on the host process
deep_copy(x , xh);

// perform computations on the device
// inputting ’x’ and outputting ’y’
parallel_for(nP , SomeFunction(x , y));

deep_copy(yh , y);
// write data from ’yh’ on the host process

Figure 5: Example of creating mirrors and deep
copying array data between host and device mem-
ory.

If MDArray::HostMirror and MDArray are the same
type it is not necessary to create a mirror and deep copy to
and from that mirror. In this special case, the create_mir-
ror function can be instructed with a compile-time option
to simply return a new view of the input array as opposed to
allocating a compatible array. When the deep_copy func-
tion is given two views to the same data a deep copy of that
data is unnecessary, and the function immediately returns.
This allows, via a compile-time option, unnecessary data al-
locations and deep copy operations to be omitted from the
code. In Figure 5 “xh” and “yh” would become views of
the original “x” and “y”, and the deep copy functions would
discover that the arguments are views of the same data and
return immediately.

4. COMPUTATIONAL KERNEL
A computational kernel is implemented as a functor for

execution by a parallel for or parallel reduce operation. A
functor is a C++ class that composes the computation, its
parameters, and views to data to which the computation
is applied (recall Section 2.2). Functor semantics are com-
mon to several programming models; e.g., the C++ Stan-
dard Template Library (STL) algorithms [5], Intel Thread-
ing Building Blocks [7], and Thrust [10]. A functor is created
on the host process, copied to the compute device, and then
run thread-parallel on the compute device.

4.1 Parallel For Functor Interface
Interface requirements for a parallel for functor are sum-

marized in Figure 6. For performance-portability to different
manycore devices a functor must

template< class Device /* REQUIRED template parameter */>
class MyParallelForFunctor {
public:
typedef Device device_type ; // REQUIRED typedef

KOKKOS_MACRO_DEVICE_FUNCTION // REQUIRED qualifier
void operator()(int iP) const; // REQUIRED operator

// Functor members include input parameters,
// views to input arrays, and views to output arrays.

// Constructor typically copies input parameters
// and shallow-copies input/output views from
// constructor arguments into members of this class.
MyParalleForFunctor(...);

};
// Construct, copy to device memory, and
// call this functor nP times on the device
parallel_for(nP , MyParallelForFunctor(...));

Figure 6: Interface requirements for a parallel for
functor.

• have the device as a template parameter and declare
the devices via typedef device_type,

• declare all array view class-members using that device
parameter,

• access array data through the array API, and

• implement the operator() with a simple subset of
C++ (i.e., the CUDA v4 subset).

A functor’s operator()(iP) function is called nP times,
where nP is the value passed to the parallel_for oper-
ator. Each call to the functor is passed a unique index iP
in the range [0..nP) which the functor must use to access
array data as per Section 2.2.

4.2 Fundamental Performance Considerations
Fundamental performance tests were applied in the early

stages of Kokkos Array development [3], including compari-
son to hand-coded CUDA kernels. Results from these tests
led to the following fundamental performance considerations.

Minimize global memory reads and writes. A global
memory read or write of array data must (1) map a multi-
index to a global memory location and (2) fetch data from
or push data to that location. As such data that is used
more than once in call to the functor’s operator()(iP)
should be read from global memory into a local variable
which is typically cache-resident. Similarly computations
should update local variables and then write these variables
once to global memory. These techniques reduce use of, and
multi-thread contention for, off-chip global memory access
bandwidth.

Compile-time knowledge of dimensions. The map-
ping of a multi-index to a global memory location can be
performed, in part, at compile-time if the dimensions of the
index space are known at compile-time. However, the cur-
rent MDArray API has runtime, not compile-time, knowl-
edge of the index space. As such an enhancement of the
MDArray API is planned to allow compile-time declaration
of dimensions as follows.

template < typename ValueType , class Device ,
unsigned N1 , unsigned N2 , unsigned N3 , ... >

class MDArray ;

5

In this proposed API only the parallel work dimension is
declared at runtime, and all other dimensions declared at
compile-time. Such an enhancement will allow a compiler
to pre-compute the multi-index mapping from the template-
specified dimensions.

Overlap global memory access and computations.
Contention for access to global memory can be further re-
duced by overlapping accesses to global memory and compu-
tations among concurrent threads of execution. A compu-
tational kernel may be able to facilitate this overlap if each
unit of work (1) accesses a relatively large amount of global
memory and (2) has a relatively large computational inten-
sity (ratio of operations to global memory accesses). This
concept is illustrated by the left and right execution pro-
files in Figure 7. In the left execution profile every thread
performs all of its global memory reads “up front.” During
this read-phase threads which share access to global memory
are in contention and their global memory accesses can be-
come serialized. In the right execution profile global memory
reads are dispersed throughout the computation. This re-
duces contention and allows improved overlapping of global
memory access and computations among threads.

Thread execution for
interleaved global memory

reads resulting in overlapped
reads and computations

Thread execution for
up-front global memory reads

computations

Exe
cu

tio
n

 tim
e

in
 co

n
te

n
tio

n

Reduced
execution

time

global
memory

reads

global
memory

writes

Figure 7: Conceptualization of overlapping global
memory access and computations for threads shar-
ing access to global memory.

NUMA Thread / Memory Management. For mul-
tisocket and multicore NUMA devices a core and the thread
executing on that core will be associated with a particu-
lar memory controller and corresponding partition of global
memory. That thread will have more direct, and thus faster,
access to global memory within its corresponding partition
as compared to memory outside of its partition. Further-
more, when threads access global memory outside of their
designated partition they utilize both their own memory
controller as well as the memory controller corresponding to
the accessed memory. Such “out of partition” memory ac-
cesses increase multi-threaded contention for memory band-
width and can further impact performance.

A Kokkos Array manycore-CPU device and multi-index
mapping has been implemented to manage correlated place-
ment of threads and array data to cores and global memory.
During parallel execution each thread is assigned units of
work with array data residing in that thread’s correspond-
ing partition of global memory. This correlated placement is
intended to reduce cross-NUMA region memory traffic and
associated demands on the memory subsystem.

4.3 Parallel Reduce Functor Interface
A parallel reduce functor implements both the parallel

kernel f and reduction function fΘ defined in Section 2.2.
Interface requirements for a parallel reduce functor are sum-
marized in Figure 8.

template< class Device /* REQUIRED template parameter */>
class MyReduceFunctor {
public:
typedef Device device_type ; // REQUIRED typedef
typedef ... value_type ; // REQUIRED typedef
// REQUIRED qualified operator and functions:
KOKKOS_MACRO_DEVICE_FUNCTION
void operator()(int iP , value_type & update) const ;
KOKKOS_MACRO_DEVICE_FUNCTION
static void join(volatile value_type & update ,

volatile const value_type & input);
// example summation ’join’: { update += input ; }

KOKKOS_MACRO_DEVICE_FUNCTION
static void init(value_type & output);
// example summation ’init’: { output = 0 ; }

MyReduceFunctor(...);
};
// Call this functor nP times on the device.
// Return the reduction result.
template< class ReductionFunctor >
typename ReductionFunctor::value_type
parallel_reduce(size_t NP ,

const ReductionFunctor & functor);
// Output the reduction result.
template< class ReductionFunctor >
void parallel_reduce(size_t NP ,
const ReductionFunctor & functor ,
typename ReductionFunctor::value_type & result);

Figure 8: Interface requirements for a paral-
lel reduce functor.

The reduction parameters are defined by the value_type
typedef. This type can be any “plain old data” type (e.g.,
no pointers, byte-wise copyable) so that the parallel reduce
operation can safely and efficiently create and use tempo-
rary values of this type. The value_type can be a simple
aggregate (e.g., a C++ struct) so a collection of scalar pa-
rameters can be reduced by a single reduction function. The
init member function is used to initialize temporary values
to the identity value of the reduction function; i.e., the iden-
tity value of a summation is zero.

The join member function reduces the input value from
one thread into the update value from a different thread.
The arguments are declared volatile to prevent aggres-
sive compiler optimization from assuming the input value
is unchanged and “optimizing away” the reduction imple-
mentation. Each call to the operator() member function
contributes to the reduction through the update argument.
The join and operator() must be compatible such that if
operator() output its contribution then application of the
join function to the update and contribution values would
produce the same result. The operator() contributes via
update, as opposed to an output followed by a join, to avoid
copying potentially large value_type parameters.

Serial Finalization. The reduced value may be serially
post-processed to complete the computational kernel. For
example the 2-norm computation,

pP
Xi ∗ Yi, performs a

parallel summation followed by a serial square root. The
result of a parallel reduce operation can be output to the
host for post-processing, or can be serially post-processed
on the device. Serial post-processing on the device has the

6

performance benefit of avoiding the necessity of copying the
reduction result from the device to the host, post-processing
on the host, and then copying the post-processed values back
to the device.

Three versions of the parallel reduce are provided. The
first two versions (Figure 8) apply the functor and output
the reduction value to the host. The third version given in
Figure 9 does not output the reduction value – instead it
calls an application provided reduction finalization functor
to perform a final, serial post-processing operation on the
reduction value.

template< class ReductionFunctor ,
class FinalizeFunctor >

void parallel_reduce(size_t NP ,
const ReductionFunctor & functor ,
const FinalizeFunctor & finalize);

template< class Device >
class MyFinalizeSqrt {
public:
typedef Device device_type ;
typedef double value_type ;
Value< value_type , Device > result ;
KOKKOS_MACRO_DEVICE_FUNCTION
void operator()(const value_type & input) const

{ *result = sqrt(input); }
MyFinalizeSqrt(const Value<double,Device> & arg)

: result(arg) {}
};

Figure 9: Parallel reduce operation using finaliza-
tion functor, and example finalization functor which
stores the square root of a parallel reduction on the
device.

5. MINI-APPLICATIONS
Performance-portability and usability of Kokkos Array

are evaluated with two simple finite element mini-applica-
tions: an implicit thermal conduction mini-application and
an explicit dynamics mini-application. The implicit thermal
conduction mini-application computes and solves a sparse
linear system on the device. The explicit dynamics mini-
applications computes forces and integrates mesh motion.
The mini-application’s flow of computations and data be-
tween the host and manycore device are summarized in Fig-
ure 10.

Data Structures. Multidimensional arrays are used to
efficiently represent the simple unstructured finite element
mesh consisting of nodes (i.e., vertices), elements (i.e., vol-
umes), traditional element → node connectivity, and the
converse node → element connectivity. The node → element
connectivity arrays are used to (1) efficiently generate the
sparse linear system graph, (2) map element contributions to
the linear system, and (3) perform thread-safe, lock-free par-
allel assembly of element contributions to the linear system.
Multi-vectors are used to efficiently represent a compress
row storage (CRS) sparse linear system

Element Computations. Both mini-applications per-
form parallel element computations via parallel for. The
implicit thermal element computations output contributions
for the sparse linear system into multidimensional arrays
with a per-element parallel dimension. The explicit dy-
namics element computations output contributions to nodal

Explicit Dynamics Mini-Application
Serial on Host copy Parallel on Device
Generate finite element
mesh

⇒

Define boundary condi-
tions.

⇒

Compute element mass
Compute nodal mass

Drive time step loop:
Compute element forces
Reduce stable time step
Assemble element forces
and integrate mesh motion

⇐ Output every N-th step

Implicit Thermal Conduction Mini-Application
Serial on Host copy Parallel on Device
Generate finite element
mesh

⇒

Define boundary condi-
tions

⇒

Generate linear system
graph

⇒

Map graph → element ⇒
Compute element contribu-
tions
Assemble element contribu-
tions
Apply boundary conditions

⇐ Solve linear system

Figure 10: Finite element mini-applications’ compu-
tations and data movement between the Host and
Device

forces into a similar multidimensional array with a per-ele-
ment parallel dimension.

Implicit thermal element computation output arrays:
ElementMatrix(#E , #NPE , #NPE)
ElementVector(#E , #NPE)

Explicit dynamics element computation output arrays:
ElementVector(#E , #NPE , #D)

where:
#E = number of elements
#NPE = number of nodes connected to an element
#D = spatial dimension

Assembly. The output per-element array data are as-
sembled into the sparse linear system or nodal arrays. These
assembly operations are the recommended parallel gather
assemble algorithm for GPUs [4]. In these functions each
sparse linear system row or node is defined to be an atomic
unit of work with exclusive “ownership” of that row or node.
A call to the assemble functor gathers all element data for
that row or node and assembles that data into the sparse
linear system or nodal arrays. These gather assemble oper-
ations use pre-generated graph → element and node → ele-
ment maps to improve performance of this gather-assemble
operation.

Boundary Conditions. Boundary conditions are ap-
plied through similar parallel operations over the rows or
nodes. In the implicit thermal mini-application boundary
conditions are applied by directly modifying sparse linear
system data. In the explicit dynamic mini-application bound-
ary conditions are applied by replacing a computed nodal ac-
celeration with a value which enforces the specified boundary
condition.

7

Solve Sparse Linear System. There is an ample body
of previous and ongoing research and development (R&D)
for manycore device accelerated solution strategies and al-
gorithms for sparse linear systems. As such this R&D is not
addressed within the scope of Kokkos Array programming
model project.

6. PERFORMANCE
Finite element mini-applications’ performance is evalu-

ated on Intel Westmere, AMD Magny-Cours, and NVIDIA
C2070 devices. Element computations and gather assemble
(sparse linear system fill and nodal displacement update)
operations are timed over a range of problem sizes. Perfor-
mance results measure element throughput : the total time
required for the given operation divided by the number of
elements in the problem. This measure reflects the scalabil-
ity of computation, Kokkos Array API and implementation,
and manycore accelerator. The unmodified computational
kernels are compiled for, and run on, the three devices.

Intel Westmere:
Intel Xeon X5670 at 2.93 GHz
Linux Kernel v2.6.18-194.el5
24 pthreads on 2 cpus × 12 cores × 2 hyperthreads
compiled with Intel v11 using -O3 optimization

AMD Magny-Cours:
AMD Opteron 6136 at 2.4 GHz
Linux Kernel v2.6.18-194.el5
16 pthreads on 2 cpus × 8 cores
compiled with Intel v11 using -O3 optimization

NVIDIA C2070:
NVIDIA C2070 at 1.2 GHz ; 448 cores
compiled with CUDA v4 using -O3 -arch=sm 20

Results. Performance results from single precision and
double precision instantiations of the explicit dynamics mini-
application (Figure 11) and implicit thermal conduction mini-
application (Figure 12) are compared for the three devices.
These results demonstrate performance-portability of the
mini-applications: that the same application code can be
compiled and run on multicore-CPU and manycore-accel-
erator devices and achieve performance which is commensu-
rate with the capabilities of the device.

The explicit dynamics mini-application has a high com-
putational intensity (ratio of computations to global mem-
ory accesses). As such performance is dominated by the
computational capability of the device. Given a sufficiently
large problem, the single precision instantiation yields no-
tably better performance with NVIDIA C2070 device versus
the 24-thread Westmere and 16-thread Magny-Cours due to
its higher single precision computational capability.

The sparse linear system fill operation has notably bet-
ter performance for small problems where the gathered ele-
ment contribution array can be cache resident; e.g., for the
10,000 element problem the entire single precision element-
matrix array requires only 2.56 Mbytes of storage. As this
array is randomly queried by the gather-assemble operation
it can remain cache-resident resulting in improved memory
access performance. Note that the gather-assemble opera-
tion’s queries are not truly random due to the elements and
nodes having a similar ordering – yielding some temporal
locality for element and node loop iterations. Historically,
similar cache utilization improvements have been obtained
by intentionally ordering finite element and node data for
temporal locality.

Explicit Dynamics Mini-Application
in single precision:

4

6

8

10

12

14

16

1,000 10,000 100,000 1,000,000

M
ill

io
n

 E
le

m
en

ts
 P

er
 S

ec
o

n
d

Number of Elements

Element Computation Performance

NVIDIA Westmere-24 Magny-Cours-16

10

30

50

70

90

110

130

150

170

190

210

1,000 10,000 100,000 1,000,000

M
ill

io
n

 E
le

m
e

n
ts

 P
e

r
Se

co
n

d

Number of Elements

Node Update Performance

NVIDIA Westmere-24 Magny-Cours-16

Explicit Dynamics Mini-Application
in double precision:

0

1

2

3

4

5

6

7

8

9

10

1,000 10,000 100,000 1,000,000

M
ill

io
n

 E
le

m
en

ts
 P

e
r

Se
co

n
d

Number of Elements

Element Computation Performance

Westmere-24 NVIDIA Magny-Cours-16

0

20

40

60

80

100

120

140

1,000 10,000 100,000 1,000,000

M
ill

io
n

 E
le

m
e

n
ts

 P
er

 S
ec

o
n

d

Number of Elements

Node Update Performance

NVIDIA Westmere-24 Magny-Cours-16

Figure 11: Explicit dynamics mini-application per-
formance results for element and node update oper-
ations over a range of problem sizes.

8

Implicit Thermal Conduction Mini-Application
in single precision:

3

4

5

6

7

8

9

10

11

1,000 10,000 100,000 1,000,000 10,000,000

M
ill

io
n

 E
le

m
en

ts
 P

er
 S

ec
o

n
d

Number of Elements

Element Computation Performance

Westmere-24 NVIDIA Magny-Cours-16

5

10

15

20

25

30

35

1,000 10,000 100,000 1,000,000 10,000,000

M
ill

io
n

 E
le

m
en

ts
 P

er
 S

ec
o

n
d

Number of Elements

Sparse Linear System Fill Performance

Westmere-24 Magny-Cours-16 NVIDIA

Implicit Thermal Conduction Mini-Application
in double precision:

0

1

2

3

4

5

6

7

8

9

10

1,000 10,000 100,000 1,000,000 10,000,000

M
ill

io
n

 E
le

m
e

n
ts

 P
e

r
Se

co
n

d

Number of Elements

Element Computation Performance

Westmere-24 Magny-Cours-16 NVIDIA

0

5

10

15

20

25

30

1,000 10,000 100,000 1,000,000 10,000,000

M
ill

io
n

 E
le

m
en

ts
 P

er
 S

ec
o

n
d

Number of Elements

Sparse Linear System Fill Performance

Westmere-24 Magny-Cours-16 NVIDIA

Figure 12: Implicit thermal conduction mini-
application performance results for element and
sparse linear system fill operations over a range of
problem sizes.

NUMA Thread Pinning. The mini-applications are
run on an Intel Westmere device with and without pthread
placement and pinning via the HWLOC library. In both sce-
narios all array memory is NUMA first touched by threads
associated with the array’s partitions. Performance results
presented Figure 13 show that for both mini-applications
element throughput is dramatically improved by pinning
threads to NUMA regions. In contrast NUMA thread pin-
ning had no effect on performance results from the Magny-
Cours device. More detailed performance testing and anal-
ysis is pending to identify root-cause(s) of these NUMA re-
sults.

7. CONCLUSION
The Kokkos Array performance-portable library provides

a classical multidimensional array abstraction and API for
computational kernels to organize and access computational
data. Performance-portability is achieved using C++ tem-
plate meta-programming to insert at compile-time the multi-
index space mapping that is optimal for the specified many-
core device.

A non-traditional shared-ownership view memory man-
agement abstraction is used, as opposed to the traditional
exclusive-ownership container abstraction. A view abstrac-
tion is used to mitigate risks of memory management errors
in large complex libraries and applications. A view abstrac-
tion is exclusively used in the programming model, as op-
posed to mixing container and view abstraction, to simplify
the programming model and API.

Kokkos Array has been implemented on several devices
and its performance is evaluated with finite element mini-
applications. Performance-portability is demonstrated on
Intel Westmere, AMD Magny-Cours, and NVIDIA C2070
devices: the exact same mini-application code is compiled
and run on these devices and achieves performance commen-
surate with these devices’ capabilities. A significant perfor-
mance gain was demonstrated on the Westmere by pinning
threads NUMA nodes and performing a correlated NUMA
first touch on these arrays to place memory in associated
NUMA regions. In contrast Magny-Cours performance was
not effected by thread pinning.

Evaluation of the usability of the programming model and
API is pending use and feedback from an “alpha user” com-
munity. Kokkos Array is available in the public domain for
such an evaluation at http://trilinos.sandia.gov.

8. REFERENCES
[1] D. Abrahams and A. Gurtovoy. C++ Template

Metaprogramming: Concepts, Tools, and Techniques
from Boost and Beyond. Addison-Wesley, first edition,
2005.

[2] Draft Technical Report on C++ Library Extensions.
http://www.openstd.org
/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf, June
2005.

[3] H. C. Edwards, D. Sunderland, C. Amsler, and
S. Mish. Multicore/gpgpu portable computational
kernels via multidimensional arrays. In Cluster
Computing, 2011 IEEE Conference on Cluster
Computing, pages 363–370. IEEE Computer Society,
Sept. 2011.

9

Explicit Dynamics Mini-Application

3

4

5

6

7

8

9

1,000 10,000 100,000 1,000,000

M
ill

io
n

 E
le

m
en

ts
 P

er
 S

ec
o

n
d

Number of Elements

Element Computation Performance

With HWLOC : float With HWLOC : double

NO HWLOC : float NO HWLOC : double

20

30

40

50

60

70

80

90

100

110

120

1,000 10,000 100,000 1,000,000

M
ill

io
n

 E
le

m
en

ts
 P

e
r

Se
co

n
d

Number of Elements

Node Update Performance

With HWLOC : float With HWLOC : double

NO HWLOC : float NO HWLOC : double

Implicit Thermal Conduction Mini-Application

4

5

6

7

8

9

10

11

1,000 10,000 100,000 1,000,000

M
ill

io
n

 E
le

m
en

ts
 P

er
 S

ec
o

n
d

Number of Elements

Element Computation Performance

With HWLOC : float With HWLOC : double

NO HWLOC : float NO HWLOC : double

10

15

20

25

30

35

1,000 10,000 100,000 1,000,000

M
ill

io
n

 E
le

m
e

n
ts

 P
e

r
Se

co
n

d

Number of Elements

Sparse Linear System Fill Performance

With HWLOC : float With HWLOC : double

NO HWLOC : float NO HWLOC : double

Figure 13: Intel Westmere performance results with
and without thread pinning via HWLOC for mini-
applications over a range of problem sizes.

[4] W.-M. W. Hwu, editor. GPU Computing Gems Jade
Edition. Elsevier, 225 Wynn Street, Waltham, MA
02451, USA, first edition, 2012.

[5] Information Technology Industry Council.
Programming Languages — C++, International
Standard ISO/IEC 14882. American National
Standards Institute, 11 West 42nd Street, New York,
New York 10036, first edition, 1998.

[6] IEEE Std 1003.1, 2004 Edition, <pthread.h>, 2004.

[7] J. Reinders. Intel Threading Building Blocks. O’Reilly,
July 2007.

[8] NVIDIA CUDA home page.
http://www.nvidia.com/object/cuda home.html, Feb.
2011.

[9] Hardware Locality library home page.
http://www.open-mpi.org/projects/hwloc/, Dec. 2011.

[10] Thrust home page. http://code.google.com/p/thrust/,
May 2011.

[11] Trilinos website. http://trilinos.sandia.gov/, Aug.
2011.

10

