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Abstract

This paper presents a new parallel volume rendering al-
gorithm and implementation, based on shear warp factor-
ization, for shined address space multiprocessors. Starting
from an existing parallel shear-warp renderer, we use in-
creasingly detailed performance measurements on real ma-
chines and simulators to understand performance bottle-
necks. This leads us to a new parallel implementation that
substantially outperforms and out-scales the old one on a
range of shared address space platforms, from bus-based cen-
tralized memory machine to hardware-coherent distributed
memory machines to networks of computers connected by
page-based shared virtual memory. The results demonstrate
that real time volume rendering is promising on general pur-
pose multiprocessors, and illustrate the utility of tool hi-
erarchies in conjunction with algorithmic and application
knowledge to understand memory system interactions and
improve paxallel algorithms.

1 Introduction

Many computer graphics applications are important can-
didates for multiprocessing, because they desire real time
rendering and animation which is difficult to achieve on
uniprocessors. However, graphics computations tend to have
highly irregular and unpredictable patterns of data access,
communication and synchronization. This makes them chal-
lenging for both parallel programming and performance, as
well as useful case studies in parallel algorithms and pro-
gramming. Volume rendering is one such application.

Volume rendering is an important tool in the graphical
visualization of three-dimensional (3D) data. In many ap-
plications, a sequence of frames from different viewpoints to
the volume is rendered, the goal being to render them in
real time (30 frames per second) or interactive time (10 or
15 frames per second). While much resewch has been done
in fast rendering algorithms, it is still not possible to ren-
der data sets of interesting size at interactive rates on serial
processors, and the costs grow quickly as data set sizes in-
crease. For example, an optimized ray-casting renderer was
measured to take about 5 seconds to render a single frame

for a 2563 data set on a 150 MHz SGI Indigo2 R4400 work-
station, and a recent shear-warp algorithm takes 0.8 seconds
to render the same frame on the same platform. The com-
putational complexity of both scales linearly with the size
of the volume data set.

The widespread availability of small to moderate scale
multiprocessors makes them viable platforms for speeding
up volume rendering. Successful parallel implementations
of ray casting renderers have been developed for both cen-
tralized and distributed shared memory multiprocessors [8].
Parallel implementations of the faster shear-warp method
have also been developed [4, 12], but these have not scaled
well beyond 8 to 12 processor systems, or performed well
on systems with physically distributed memory. We fist at-
tempt to understand why, studying the performance, scala-
bility and characteristics of the existing parallel shear-warp
renderer. We do this through detailed measurement using
performance tools and instrumentation on real systems, as
well as through simulation.

Based on the understanding obtained, we develop an im-
proved partitioning method that has much better communi-
cation and data locality properties for both centralized and
distributed shared memory machines, while still preserving
load balance. We show that this new method performs sub-
stantially better on five very different types of shared address
space platforms: a Silicon Graphics Challenge (a centralized
shared memory machine), a Stanford DASH (a distributed
shared memory machine), a simulated next-generation dis-
tributed shared memory machine, a Silicon Graphics Ori-
gin2000 (a modern, scalable distributed shared memory ma-
chine) and a system that supports a coherent shared address
space at page granularity using shared virtual memory. The
magnitude of the improvement increases as we move along
these types of systems, i.e. as more locality issues arise
and communication becomes relatively more expensive. We
present the detailed memory system interactions and local-
ity behavior of the different schemes, so that performance
can be better understood and extrapolated to other systems.

The use of performance debugging tools and simulators
was an interesting aspect of our experience. Going into suc-
cessively deeper details of locality and performance charac-
teristics ended up pointing us to a much higher level algo-
rithmic restructuring to obtain better performance. Coarse
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understanding of whether data access or load imbalance is
the major bottleneck were possible to glean on the real sys-
tems we used, but understanding the locality properties we
needed required either more detailed tools or simulation. All
levels of the “tool hierarchy” were useful, but the ultimate
solution took deeper algorithmic knowledge. Tools on real
machines that can monitor memory interactions and track
detailed interaction sources would have been very valuable,
and we hope that experiences such as this will guide us to
the design of tool hierarchies for real systems.

We begin by briefly describing the sequential shear-warp
algorithm. In section 3, we present detailed measurements
of the performance, scalability and memory system inter-
actions of the existing parallel method. The new parallel
partitioning technique is presented in section 4, and its per-
formance and system interactions are illustrated in section 5.
Finally, in section 6 we summarize and conclude the paper.

2 Serial Volume Rendering Algorithms

Volume rendering algorithms consist of three basic steps:
assigning a color and an opacity to each sample in a 3-
dimensional input array, projecting the sample onto an im-
age plane, and then blending the projected samples. The
algorithms can be divided into two types, image-order and
object-order, depending on whether the outer loop in ren-
dering a frame is over image pixels or object voxels (volume
elements). Volume rendering by ray casting [8] is an image-
order algorithm: the outer loop iterates over the pixels in
the two-dimensional image, and for each pixel fires a ray
(or set of rays) into the volume. The ray is sampled =
it proceeds through the volume, and a color and opacity
is computed for the pixel. On the other hand, the shear-
warp algorithm is an object-order algorithm containing two
phaaes: a compositing ph- and a warp phase. The right
side hand of Figure 1 illustrat= the two phases in a paral-
lel projection. The viewing transformation is factored into
a 3D shear space parallel to the volume slicw. The com-
positing phase first streams through the 3-D volume data
and projects the volume to form a distorted intermediate
(composite) image. The composite intermediate image
is then transformed into a final undistorted image by a 2D
warp during the warp phase. The sizes of the intermediate
and final images usually differ a lot due to the shear in the
compositing phase. The compositing phase is O(n3) for an
n-by-n-by-n voxel volume, and is the dominant phase in se
quential execution. A detailed description of this algorithm
can be found in [4].
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F@re 1: The serial shear-warp volume rendering algorithm.

The shear-warp algorithm is reported to be the fastest
volume rendering algorithm so far that does not compro-
mise quality on a serial workstation, almost 4-7 times faster
than a functionally “equivalent” efficient ray-casting algo-
rithm. It combines the linear volume traversal advantage of
object-order algorithms with the optimizations traditionally
performed by image-order algorithms. Let us see how.

For many types of volumes, particularly medical images,
70% to 95% of the voxels are found to be transparent. It is
therefore useful to avoid rendering these transparent voxels.
So called coherence-accelerated schemes employ spatial data
structures for this purpose, which encode the presence or
absence of high-opacity voxels in the volume. One such a
data structure is the run-length encoding that the shear-
warp aJgorithm uses for both the volume and image data [4].
(Ray casting algorithms use an octree representation of the
volume for this purpose, so interesting regions of the volume
can be easily found).

Another optimization ia to omit those regions of the vol-
ume that are not visible to the viewer because the rays that
reach them are already saturated with opacity. This is called
early ray termination (for example, ray casting algorithms
can terminate the traversal of a ray through the volume
when it haa accumulated too much opacity). In the shear-
warp algorithm, 2-D slices through the volume, parallel to
the intermediate image, are processed in front-to-back or-
der (see Figure 1). To facilitate early ray termination, if
the opacity of a pixel in the intermediate image exceeds a
threshold, the pixel is marked as opaque and will be skipped
when processing the rest of the slices.

Given a data set, shear-warp and ray-casting algorithms
use an almost identical number of actual compositing and
resampling operations. However, two data accessing prop-
erties make shear-warp out perform ray caating on a unipro-
cessor. First, in a ray caster the looping tim~which is
the time spent on control overhead and traversing coher-
ence data structures while searching for the next voxel to
process-dominates the total rendering time: It traverses
an octree data structure that represents the space once for
each ray, and haa to address each voxel along that ray. In
contrast, the shear-warper traverses the run-length coher-
ence data structures in scanline order for both the volume
and the intermediate image when compositing the latter.
The data structures are traversed only once, and the linear
traversal reduces addressing overhead. In addition, in a ray
caster the traversal order through voxels is not the same aa
their storage order in memory, so spatial locality is poor.
The shear-warper, however, traverses the data in the same
order as the storage order, so exploits spatial locality well
on both the object and image. Figure 2 demonstrates these
differences [4].

3 Analysis of Existing Parallel Algorithms

Parallel ray casting volume renderers have been shown to
perform well on cache-coherent systems [8]. Their spa-
tial and temporal locality properties have also been ana-
lyzed [3, 13]. While spatial locality on volume data is poor,
as discussed above, temporal locality across rays is high.
More recently, parallel versions of the shear-warp algorithm
have also been implemented on simhr systems [5, 12].
The parallel shear warper achieves interactive frame rates
on small-scale, centralized shared-memory multiprocessors
for moderate sized data sets (2563 voxels). However, its
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Figure 2: Breakdown of rendering time for the ray caster
(r-c) and the shear warper (s-w) on an SGI Indigo2 R4400
workstation for a 256 x 256 x 167 MRI brain.

scalability with increasing number of processors is not very
good, and nor ia its performance with physically distributed
rather than centralized memory. These issues limit parallel
performance and are not well understood.

In the rest of this section, we analyze the parallel shear
warper of [5, 12] in detail on cache-coherent shared address
space architectures. We examine its locality properties, spa-
tial and temporal, as well as its concurrency and load bal-
ance. We use a detailed simulator as a performance diagrw
sis tool to understand performance characteristics and bot-
tlenecks, which leads us to a more efficient parallel shear
warp algorithm. Let us begin by introducing the parallel
algorithm and the platforms we use.

3.1 Existing Parallel Implementation

It is natural to divide the parallel implementation into two
phases, compositing and warping, separated by a global bar-
rier. In the compositing phase, we can choose to partition
the object (volume data) or the intermediate image. If we
partitioned the slices of the volume among processors, dMer-
ent processors would have to write some of the same scan-
lines in the intermediate image, for two reasons. First, a
given scanline of the volume affects two scanlines of the im-
age, so two processors assigned adjacent volume scanlines
would write-share image scanlines. Second, due to the shear
of the volume with respect to the intermediate image, it
is quite likely that difTerent processors would be assigned
scanlines that are in the same plane perpendicular to the
intermediate image, but in diiTerent slices. This implies not
only writ-sharing of the image but also that synchroniza-
tion would be needed for mutual exclusion on these writes
(urdess we use event synchronization between slices, which
is too conservative).

The alternative is to partition the scardines of the inter-
mediate image among processors, and have the processors
read-share the volume scanlines that they need to update
their assigned image scaulines. Thk is better since it avoids
write-sharing and synchronization. To preserve the good
spatial locality of the uniprocessor shear-warp algorithm,
and to simplify programming in the presence of run-length
encoding, the original parallel implementation chooses as
a task a set or “chunk” of complete scanlines. For load
balance, chunks of scanlines are initially assigned in an in-
terleaved manner to processors, and task stealing is used
when a processor becomes idle while other processors still

have work to do. The size of each task, i.e. the number of

scanlines in a chunk, is a combination between spatial local-
ity and load imbalance, and is determined empirically for a
given data set, number of processors, and platform.

In the warp phase too, we would like only one process to
write a given pixel, for similar reasons, so the algorithm par-
titions the final image rather than the intermediate image
among processors (here too, each pixel of the intermediate
image ai%cts more than one pixel of the final image). Due
to the change in orientation during the warp (see Figure 1),
at the granularity of small chunks of scanlines, there is lit-
tle relationship or overlap between a chunk read aud that
written in the warp. Contiguity of partitions is important
for locality, but making chunks larger would cause load bal-
ance to be a problem. There is little computation in the
warp phtse, so task stealing for load balancing may not be
worthwhile either. The original parallel algorithm chooses
to compromise by dividing the final image into fixed-size
square tiles, and assigning tiles in a round-robin interleaved
manner to processors, thus allowing load balance without
task stealing. The warp is illustrated in Figure 3.

phase (a unit I /1
of stealing)

a processor’s
partition

in warping

phase

WSKP phase

Figure 3: Partitions and tasks of the original parallel shear
warp algorithm, assuming 4 processors.

3.2 Experimental Environment

In this subsection, we describe the three platforms we used
to analyze the original parallel program. The SGI Ori-
gin2000 and the shared virtual memory system we used later
will be described in section 5.5.

DASH The Stanford DASH prototype [2] we use is a 32-
processor, distributed shared-memory system with a 2-D
mesh network. Each node in the mesh is a four-processor
bus-based multiprocessor, with four, now-dated 33 Mhz
R3000 processors. Each processor has separate 64KB first-
level instruction and data caches, and a unified 256KB
second-level cache. The cache line size is small, M-bytes,
even in the second-level cache, and the maximum nod~t~
network communication bandwidth is 120MB/see. Proces-
sor caches wit hin a node are kept coherent by a snoopy bus
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protocol, and across nodes by a distributed directory proto-
col.

Challenge The SGI Challenge is a bus-based symmetric
shared-memory multiprocessor. The machine we use has
sixteen 150 Mhz processors, each with separate 16KB first-
level instruction and data caches and a unified lMB second-
level cache. The second-level cache line size is 128 bytes,
and the bus bandwidth is 1.2GB/sec.

Simulator This simulates a more “pure” and modern
cache-coherent shared address space multiprocessor, with
physically distributed memory and one processor per node.
Every processor has a single-level cache, and caches are kept
coherent by a dkitributed directory protocol similar to that
of DASH. To represent a modern high-performance multi-
processor, we set the uncontended coat of a locally satisfied
cache miss to 70 cycles, and that of a remotely satisfied
miss to 210 or 280 cycles, depending on whether the miss
led to two protocol hops or three [2]. The default settings
are lMbyte cache size, 64 byte line size, 4way set associ~
tivity. Peak nods+t~network communication bandwidth is
400MB/sec. The simulator interfaces with the Tango-Lite
reference generator [6], and models buffering and content ion
in detail everywhere except in the network links and routers.

3.3 input Data Sets

The primary volume data used as inputs to analyze the algo-
rithms are a set of MR.I scans of a human brain with different
resolutions: 128 x 128 x 128 voxels, 256 x 256 x 167 voxels,
and 511 x 511 x 333 voxels. The so-called 1283 and 2563 sets
are common in volume rendering today. The 5123 data set
is larger, but Iikely to be common in the near future.

In order to explore different algorithms more broadly,
we also used a higher resolution of the above data set at
640 x 640 x 417 voxels, as well as a set of CT scans of a
human head at resolutiona of 1283 voxels, 2563 voxels and
511s voxels w supplementary inputs. To generate the 5123
and 6403 data sets, we used a resampling tool to up-sample
the 2563 raw data along each dimension.

3.4 Performance Analysis

The parallel efficiency of the renderer is strongly dependent
on task size. We therefore empirically determine aud use
the optimal task size for each configuration in our measure-
ments.

3.4.1 Speedups

While the shear warper is very fastest sequentially, it does
not obtain nearly as good self-relative speedup on multipro-

L
cessors as a ray caster 12]. The speedups for the parallel
shear warper on the 512 data set are shown in Figure 4 for
the different platforms.

To understand why speedups fall off with increasing pro-
cessor count, we used performance tools to obtain coarse
breakdowns of execution time. On real machines, we used
the Pixie program to profile execution time by basic-block
counting. ThB gives us, on a per-processor basis, the num-
ber of cycles that would have been spent executing instruc-
tions had there been no cache misses. The per-processor
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waiting time at synchronization events was measured sepa-
rately by executing the program with manually inserted tim-
ing calls before and after each synchronization event. Fkom
these and the execution time of the parallel program (with-
out Pixie or synchronization timing instrumentation), the
time spent stalled on the memory system can be easily com-
puted. Figure 5 shows the results for the 5123 data set.
It is clearly the time spent stalled on the memory system
that dominates the decline in parallel performance. About
50% of the execution time is spent in the memory system on
DASH with 32 processors, compared with 18% on a single
processor. The memory stall &action is a little smaller on
the other systems, but is still the major reason for perfor-
mance decline in parallel execution.

To investigate the memory system overhead further, we
examine how the execution time breakdown changes with
data set size. Figure 6 shows the speedup curves for the
three MRI data sets on dtierent machines. Speedups on
the distributed-memory DASH are in all cases considerably
smaller than on the centralized-memory Challenge. More-
over, the speedup on DASH is best for the intermediate 2563
data set and degrades for the smaller and larger ones. Con-
currency grows with data set size and task stealiig is used,
so the reason for this ought not to be load imbalance. The
problem is likely to be memory system interactions caused
by communication and lack of data locality. Here, the per-
formance debugging tools on the real systems we use run
out of steam. With some manual effort, they are able to tell
us that memory overhead grows with processors in both the
compositing and warp phases. However, they are not able to
tell us exactly where or why, or even whether the overhead is
due to high miss rates (local or remote), or contention (large
miss costs on some misses). We cannot determine whether
the misses are due to inherent (or false) sharing of data or
due to capacity, conflict or cold misses, or even whether it
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Figure 6: Speedups of parallel shear warper for different data sets on different architectures

is spatial or temporal locality that is causing problems 1 To
understand the memory system interact ions, our next level
of exploration is to study the communication and locality
behavior through sirrdation.

3.4.2 Cache Miss Breakdown

Figure 7: Breakdown of the memory overhead vs. number
of processors of the parallel shear warper with the 511 x
511 x 333 voxel data set on the simulator.

Our first step is to see how the miss rate changes with the
number of processors and problem size, and particularly
what types of misses are substantially affected. Omitting
cold misses, Figure 7 shows the detailed breakdown of the
types of cache misses suffered for the 5123 data set on the
simulator, using the memory system configuration described
in section 3.2 and the classification of misses exactly as de-
scribed in [13].

Most of the cache misses are due to replacements and
true sharing of data. (A true sharing miss is one that oc-
curs because the word being referenced haa been written
by another processor since it was last referenced.) As the
number of processors increases, true sharing misses domi-
nate, indicating a rapid increase in inherent interprocessor

communication: Capacity misses decrease, due to larger ag-
gregate cache space for the same data set. Interestingly,
the net result is that the overall miss rate does not increase
very quickly with the number of processors. However, the
simulator shows that a much larger fraction of the misses
are remote (not satisfied locally), and the misses undergo
significantly greater contention.

The compositing phase itself should not have much true
communication, since the volume data are read-only and the

1More recentproces80r/cache 8ystems provide a few performance
counters that can count the number of misses during the execution on
a real machine (e.8. SGI 0rigin2000), as we shall discuss in section
5.5.1.

image data are not actually shared. After more detailed in-
strument ation and examination of the algorithm, obtaining
the above information for different phases, it turns out the
major source of inherent communication is at the interface
between the compositing and wmp phases.

Even with tiles m tasks, a processor in the warp phase
is likely to not use the intermediate image scanhes that
it wrote and hence brought into its cache during the com-
positing phase, but rather to read data that other processors
wrote in their caches (see Figure 3), leading to true shar-
ing. The mismatch and communicantion grows aa the number
of processors increases and as tasks we made smaller, and
is more expensive relative to processor speed and local ac-
cess on machines with distributed memory. Also, while the
capacity miss rate decreases, more of the capacity misses
are satisfied remotely on these machines as the number of
processors increases, increasing their cost (owing to the un-
predictability of the viewing position, and the fact that it
changes across frames, it is very difficult to place data ap-
propriately in local memories, so pages of data are initially
dktributed round-robin across memories). This helps ex-
plain all our results so far, except for two: the speedup be-
ing best with the intermediate, 2563 data set on DASH, and
the speedups on the simulator being better than on DASH
despite the faster processors modeled by the simulator. To
understand these, let us look at the application’s spatial and
temporaJ locality properties.

3.4.3 Spatial Locality

cacheUrld24 (lrYte8)

Figure 8: Breakdown of the memory overhead vs. the size
of the cache line of the parallel shear warper with the 511 x
511 x 333 voxel data set on the simulator with 32 processors.

Figure 8 shows that the parallel shear-warp program retains
the good spatial locality of the sequential program. The
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true sharing miss rate as well as the cold and capacity miss
rates drop quickly with increasing line size, at least up to
256 bytes, and false sharing does not become a particularly
major issue. (A false sharing miss is one that occurs because
a dfierent word that happens to fall on the same cache line
as the word being referenced has been written by another
processor since this word wsa last referenced.) The cache
line size on DASH is much smaller than on the Challenge or
the simulated machine, and this is one re~on why DASH
experiences a much higher miss rate than those systems in
both uniprocessor and multiprocessor executions. The com-
bination of small cache line size and distributed memory
(non-local misses) makes the memory overhead higher on
DASH than on the Challenge, particularly as the number
of processors grows. While the simulated machine also has
distributed memory, its longer cache lines and hence lower
miss rates help it compared to DASH in thu regard. What
remains is to understand why the intermediate data set per-
forms best on DASH. This is probably due to a tradeoff
between capacity and communication, so we examine tem-
poral locality and working sets of the program.

3.4.4 Temporal Locality and Working sets

We measure the size and scaling of the algorithm’s working
sets, and compare them with those of the ray caster. For
a fixed problem size and number of processors, we measure
working sets by running the parallel program on the sim-
ulator with different per-processor cache sizes, varying the
cache sizes in powers of two between lKB and lMB. The
cache sizes at which kneea occur in the miss rate vs. cache
size curve represent well-defied working sets, fitting which
in the cache can make a big difference to performance [3].

- 12SX1213X122

+ 236%23M61
- 511X311X333

o~
1 2 4 8 1632 6412323651210M

ca&stW(Ka)

Figure 9: Miss rate vs cache size for different data sets on
the simulator with 32 processors.

Figure 9 shows the results for different data sets. The
cache organization assumed in this experiment is a 64byte
line size and 4way aasociativity. This approaches the in-
herent working sets of the algorithm (beat measured with
fully-associative caches and a one-word line size) but is still
realistic [13]. The results show that the size of the important
working set of the parallel shear warp program is quite in-
dependent of the number of processors used, but grows with
the size of the data set. Cache with smaller associativity, as
on the machines we use, would have to be significantly larger
to hold the working set than the sizes shown in Figure 9.

While the shear warper’s working set is much larger than
a ray caster’s for the same volume [12], the total storage it
uses for a given data set is much smaller since the data set
is run-length encoded and greatly compressed. The larger
working set is thus due to the algorithm itself. The parallel

shear warper streams through the run-length encoded vol-
ume (or the portion of it that a procar touches) once in
a frame, and therefore does not exploit much macro-scale
temporal locality like the ray caster does across consecutive
rays. The working set turns out to be roughly proportional

to, the size of a plane through the volume data perpendic-
ular to the intermediate image, since there ia some reuse
of neighboring voxels across such plane when moving from
compositing one scanline of the intermediate image to the
next. It is thus proportional to nz, where n is the number
of voxels along one edge of the volume. The fact that the
intermediate image data a processor writea in the composit-
ing phase are mostly not read by it in the warp phase causes
a loss of reuse and data locality as well as increasing com-
municantion. In contrast, the size of the important working
set in a ray caster depends on the height of the octree that
represents the volume and the length of a ray, so it grows
proportionally to log n with a larger constant and propor-
tionally to n with a smaller constant, a much smaller growth
rate overall.

This explains why the parallel shear warper speeds up
best for the intermediate data set size (2563) on DASH.
Inherent communication and load imbalance drop with in-
creasing data set size, but capacity misses increase, caus-
ing artifactual inter-node communication to increase. On
the centralized-memory Challenge, the dilhence in cost be-
tween communication and capacity (including local) misses
is very small, so the differences across data set sizes are
smaller as well.

4 A New Parallel Shear-warp Algorithm

Given this understanding, our major goals are to reduce
true-sharing communication at the interface of the composit-
ing and warp phases, and to try to reduce capacity misses,
yet not to compromise load balance. We now describe a
different partitioning method for the shear-warp algorithm
that does this.

4.1 Approach

We would like that a processor in the warp phase read the
same intermediate image scanlines that it wrote in the com-
positing phase, one way to do this by partitioning the in-
termediate rather than the final image in the warp phase as
well, in exactly the same way as done in the compoeiting
phase, and having processors write-share the relevant por-
tions of the final image. Whiie this reduces intermediate
image communication, it would cause subst antial problems
with write-sharing and synchronization on the final image at
the borders between processors that own adjacent chunks of
the intermediate image. This is especially true with the
current partitioning of the intermediate image into small
interleaved chunks of scanlines. So this is not a good so-
lution. Furthermore, while the current interleaved chunk
assignment reduces initial load imbalance in the composit-
ing phase, it increases both read-sharing of volume data as
well as false write-sharing on the intermediate image in that
phase itself. With long cache lines and high compression of
data through run-length encoding, there is potential for false
sharing at every boundary between scanline chunks that are
assigned to different processors.

Ideally, we would like a partitioning scheme in which pro-
cessors are assigned not interleaved chunks of scanlines but
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rather entirely contiguous partitions of the intermediate im-
age scanlines in the compositing phase, and then they use
the same partitions in the warp phase, i.e. a processor reads
its assigned intermediate image scanlines and writes them to
the appropriate portions of the final image. This has many
advantages in the compositing phase, both read-sharing of
the volume and write false-sharing of the intermediate im-
age are minimized since a processor’s assigned portion of
the intermediate image now has only two borders with other
processors, rather than two per chunk it is assigned. In the
warp phase, a processor reads the same lines of the inter-
mediate image that it wrote, increasing reuse and reducing
communication. Spatial locality is enhanced since contigu-
ous partitions are bigger. And write-sharing and synchro-
nization on the final image are also small, since the warp
transposes a contiguous portion of the intermediate image
to a still contiguous portion of the final image: With the
bilinear interpolation used in the algorithm, the only write
sharing on the iimd image is at the scanline-wide bound-
aries between the contiguous partitions that processors end
up writing, i.e. the scardines that adjacent processor parti-
tions share, instead of at the boundary of every small chunk.
This synchronization and write-sharing can now in fact be
eliminated, as we shall see.

The problem, of course, is obtaining a contiguous assign-
ment of intermediate image scanlines that is load balanced
or nearly load balanced. We could start from any contigu-
ous assignment and then steal small chunks of scanlines, but
stealing will violate all the nice properties above so it is im-
portant that we minimize the need for stealing. Instead, we
appeal to application-level insights to develop a neaxly load
balanced, contiguous initial assignment, and then augment
it with task stealing. We focus on balancing the compositing
phase, since it is by far the more tim~consuming (particu-
larly when the communication problem between phases is
solved). It turns out that a load balanced assignment for
the compositing phase is good enough for the warp phase as
well, in that even without stealing, the resulting load imbal-
ance in warp does not hurt overall performance much.

Our approach takes advantage of the observation that
most often volume rendering is done as an animation; that
is, by rendering many successive frames from different view-
points along a progression. The angle between successive
viewpoints is typically small, to give the illusion of continu-
ity. This means that the relative work associated with an
intermediate image scanline in one frame is a good predic-
tor of the relative work eciated with it in the next frame.
We can therefore dynamically profile the work done for each
scardine during the compositing phase for the current frame,
and use the profiles to construct contiguous, predictively bal-
anced initial assignments for the next frame. In the rest of
this sections we will describe how we do the profiling, how
we compute the initial assignment for a frame based on the
profiles, how we steal, and finally how we manage parallelism
in the warp phase.

4.2 Profiling the Computation

It is important that the profiling be very inexpensive com-
pared to the computation itse~ otherwise, the overhead of
profiling might outweigh any benefits obtained from better
load balancing.

We insert profiling code in the application to count the
instructions executed for compositing each scardine. In par-
ticular, we insert profiling instructions at every statically

identified basic block. As a first optimization, the profiles

show that several scanlines at the top and bottom of the
intermediate image plaae are almost always not worth pro-
cessing since the portion of the volume that overlaps with
them is empty (see Figure 10). While the existing paral-
lel shear-warper blindly composites the intermediate image
from the very beginning to the end, we first determine the
region of the written intermediate image plane to compos-
ite, eliminating the unnecessary computation and avoiding
profiliig overhead for the empty portions.

Figure 10: Profiling for rendering a frame of the
256x256x167 voxel MRI brain. The intermediate image size
is 326 x 326 in the sheared space.

Even with our optimizations in inserting profiling code,
profiling adda 10% to 15% overhead to the compositing time
for a frame. However, experiments show that the profiles do
not change very much until the viewpoint changes quite a
bit. We therefore do not profile every frame but every k
frames. The choice of k is a tradeoff between the cost of
profiling and the predictive accuracy of the profiles; for our
data sets, we found it appropriate to choose k such that
profiles are computed once every 15 degrees of rotation.

4.3 Computing a Balanced Assignment

Particularly since the costs are very nonuniform across scan-
lines, simply recording the relative cost of a scanline is not
enough to allow processors to compute their assignments ef-
ficiently. The problem is that a processor does not know
where its partition should begin until the partition for the
previous processor has been determined, so computing the
partitions becomes a completely serial process. (In fact do-
ing this increases the original compositing time by 50% com-
pared with the old shear warper.)

A profile distribution like Figure 10 can be viewed as
circumscribing a curve, the area under which is equal to
the cumulative profiled cost for all the scanliiea. The task
partitioning problem is a problem of partitioning the area
under the curve. Based on th~ observation, we construct
a cumulative profile in which the entry for a scanline con-
tains the cumulative profile cost of all the scanlines before
it (including itself), using a parallel pre6x operation. The
relationshlp between the old and new profile distributions is
shown in Figure 11.

Task partitioning can then be done as follows: According
to the number of processors used, the partition boundaries
in the cumulative cost curve can be computed by dividing
the value of the lsst entry in the new profile into equal parts.
The partition boundaries in the intermediate image are set
to the scardines whose cumulative profile costs are the closest
to the boundary values assigned to this processor. Finding
these boundary scanlines can be done using a fast search
algorithm into the cumulative profile array. The larger and
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Figure 11: Partition ttsks in parallel with the profiling in-
formation ofprevious frame. (assuming 4proce550rs).

more condensed the data set, the better the load balance
obtained by thk partitioning approach.

4.4 Dynamic Stealing

To account for possible imbalances in work load, we allow
dynamic tssk stealiig when processors become idle. Since
each processor has only one contiguous partition-there are
no chunks in the initial assignment-we initially set the unit
of task stealing to a single acanline. However, this resulted in
a synchronization overhead for task stealing about 10 times
h~gherthau that in the original parallel algorithm. We there-
fore steal chunks of acardiies instead of one, like in the old
parallel algorithm. The difkrence is that the stealiig chunk
size has nothing to do with initial assignment; it is deter-
mined by the size of the data set, the number of processors,
and the size of the cache lines.

4.5 Parallelizing the Warp Phase

As discussed earlier, the warp phase uses the same interme-
diate image partition as the compositing phwe; each proces-
sor reada the acanlines in its partition (which it just compe
ited) and writes the relevant pixels in the final image. Two
processors may wish to write the same final image pixels only
at the boundary of their partitions, so the two scanlines of
the intermediate image at each boundary are assigned to
one processor (the one which is issigned fewer lines) thus
eliminating writ~sharing and synchronization. There is no
stealing in this phase, which would complicate this write-
sharing solution.

5 Performance of the New Parallel Program

Results comparing the new shear warper with the old one
are provided below. In addition to the data sets we used in
previous sections, we ran the two parallel shear warpers on
more data sets as well, to investigate the executions of the
new algorithm broadly. These data sets include the 640 x
640 x 417 MRI scan voxels, and the computed tomography
(CT) scans mentioned in section 3.3. We also use two new
platforms in section 5.5.
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Figure 15: Speedup comparison of both the old and new
parallel shear warpers with 511 x 511 x 510 voxel CT head
data sets on distributed.
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Figure 17 Comparison of the spatial locality between the
two parallel shear warpers with the 511 x 511 x 333 voxel
Mill brain on the simulator.

5.1 SPeedU13S

The comparative speedup curves for the two parallel shear
warpers for the MRl brain data seta are ahown in Figure 12
and Figure 13 on DASH and the simulator respectively. The
new algorithm’s speedups are better, and especially so for
larger data seta and larger number of processors. Figure 14
compares the new and the old parallel algorithms (figure (a)
and (c) are actually copies from F~e 5). It showa that mw
jor difference between the old and new parallel programs is
in data access stall, whkh no longer dominates the overhead,
not only for the simulated architecture with its larger cache
lines but also for DASH. At the same time, load balance ia
preserved in the new parallel shear warper as well.

Figures 15 shows that the results are similar to the CT
human head data sets aa well. Let us quickly examine the
communication and locality characteristics of the new algo-
rithm and compare with the old one.

5.2 Cache Miss Breakdown

Figure 16 shows that the new algorithm greatly decreases
the sharing misses, particularly true sharing misses. This in-

dicates that the approach achieves the goal of reducing com-
munication between the compoaiting and warping phases.
False sharing misses are also reduced somewhat, since the
large contiguous partitions lead to fewer intermediate image
borders being shared by processors.
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Figure 13: Speedup comparison of both the old and new parallel shear warpers with MRI brain data sets on the simulator.
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Figure 14: Breakdown of the cumulative rendering time of both the old and new parallel shear warper with the 511x 511x 333
vo~el MR3 brain on distributed shared-memory &hitectures. Figure (a) and (c) are for the old p-mallel program, and Figure
(b) and (d) are for the new parallel program.
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Figure 16: Breakdown of memory overhead of both the old and the new parallel shear warpers with the 511 x 511x 333 vozcel
MRI brain on the simulator. Figure (a) is for the old parallel program, which is identical to Figure 5, and Figure (b) is for
the new parallel program.
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5.3 Spatial Locality

Figure 17 shows the new algorithm benefits even more from

even longer cache lines, because a processor processes more

contiguous scanlines of the intermediate image.

5.4 Temporal Locality and Working Set

Figure 14 showed that the new program reduces not only
communication but also capacity misses. And Figure 15
showed that unlike the old program, this program speeds
up better on DASH for bigger data sets. These results sug-
gest that the new program has tighter working sets than
the old program. Figure 18 illustrates this, particularly by
comparison with Figure 9.

Let us examine how the working set scales. Figure 18(a)
shows that unlike in the old program, the working set of the
new program decreases (slowly) with increasing number of
processors. There is reuse of intermediate image data across
phases and more reuse of volume data as well. Since the size
of a processor’s assigned block of scanlines contracts when
the number of processors incre~es, less cache is needed to
maintain enough temporal Iocalit y and the working set is
smaller. For example, Figure 18(b) shows the working sets
for the MFLIbrain data sets for the new algorithm on the
simulator with 32 processors. Even for the data set as big
as 5123 voxels, the working set is as small as 64K bytes.

5.5 Performance on Other Platforms

We have also ported the parallel programs to other plat-
forms. In this subsection, we present the results on two of
these: a hardware coherent SGI 0rigin2000 machine, and a
software-coherent shared virtual memory platform that pro-
vides coherence at page granularity.

5.5.1 SGI 0rigin2000

The SGI 0rigin2000 is a recent scalable, ca.cbcoherent
shared address space multiprocessor with physically dis-
tributed memory. It can be expanded to connect up to
128 195Mhz R1OOOOprocessors by a hypercube (or fat-
cube, beyond a point). We use a 16-processor system with
four routers connected by the CrayLink interconnect. Each
router holds two nodes. Each node has two processors, and
each processor has separate 32KB first-level instruction and
data caches and a unified 4MB second-level cache. The sec-
ond level cache is 2-way set associative with a cache line size
of 128 bytes. The raw memory bandwidth on a node board
is 780MB/sec, and the CrayLink interconnect provides a raw
nodeto-network brmdwidth of 780MB/see in each direction
as well. Processor caches are kept coherent by a distributed
dmectory-based protocol [7].

Figure 19 shows the performance of the old and new par-
allel programs on the 0rigin2000. The results validate those
we have seen so far on other systems and on the simulator.
The new algorithm outperforms the old one significantly.
The 0rigin2000 provides performance debugging tools that
use the hardware performance counters on the MIPS R1OOOO
microprocessor [11]. These tools help characterize the dy-
namic behavior of the multi-level cache hierarchy, by sam-
pling the frequencies of specified events such as cache misses
at each level. They were able to tell us that a large amount
of execution time was spent on cache misses for the original
parallel program. However, they couldn’t provide more de-
tailed information; for instance, whether these cache misses
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Figure 19: Speedups of both the old and new parallel shear
warpers with the 511 x 511 x 333 voxel MRI brain data sets
on SGI 0rigin2000.

are due to capacity misses or conflict misses, and whether
the high cache miss overheads are due to high miss rates or
contention. The tools can help understand miss rates at a
per-procedure level, which is very useful, but they do not
provide further insights.

5.5.2 Shared Virtual Memory

Our second platform is a pag~based shared virtual memory
(SVM) [9] system. While the performance of SVM on real
applications is not well understood, it is allows us to support
shared address space in software on networks of PCs and
workstations without hardware support.

We use a simulated SVM platform that implements an
all-software home-based lazy release consistency (HLRC)
protocol [10]. It models an architecture of SMP nodes con-
nected by a commodity Myrinet-like interconnection. Each
node has 4 processors, and one 1/0 bus network interface
on the 1/0 bus. It assumes 200MHz 1 CPI processors,
400MB/sec memory buses and 100MB/see 1/0 buses. The
width of the memory and 1/0 buses are 8 bytes and 4 bytes
respectively. The page size is 4KB. The data cache hierarchy
consists of a 8KB first-level direct mapped, write-through
cache and a 512KB second-level 2-way set-associative cache,
each with a line size of 32 bytes. Contention is modeled at
all levels except the network links. More information about
this platform can be found in another paper in these pro-
ceedings [1].
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old
new

Numberofprocessors Numberofprocessors

(a) 256x256x167 (b) 51 1x51 1x333

Figure 20: Speedups of the two parallel shear warpers on
the SVM platform with the MRI brain data sets.

Figure 20 demonstrates that the new algorithm substan-
tially outperforms the old one on the SVM platform. Fig-
ure 21 reveals that on SVM platform, the old parallel pro-
gram has extremely high data and barrier wait time. Data
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Fimre 21: Breakdown of the execution time of the old parallel shear warper on the SVM platform with 511x511x333 voxel
MM brain.

wait time is the time spent waiting for data to arrive at
remote page faults, i.e. the time spent waiting for com-
munication. Barrier wait time is the time spent waiting at
barriers including the wait time and the overhead of the
synchronization event.

With SVM’s coherence and communication granularity
being a page, interleaved chunks that are smaller than pages
artificially introduce more communication traflic, due to
false sharing amd fragmentation of communication, in ad-
dition to the inherent communication between phases. The
barrier between the compositing and warp phases is very
expensive, not due to the barrier operation itself and or the
computational load imbalance, but due to the contention
induced by communication. Detailed investigation through
the simulator shows that this contention causes the mem-
ory bus in a node to delay delivery of the synchronization
messages of the barrier, further increasing its overhead.

In addition to reducing inherent communication, the new
parallel algorithm makes a processor’s access patterns much
more coarse grained. This is much more important here with
the larger granularity of coherence and communication and
the higher cost of communication. Also, the identical parti-
tioning of the intermediate image for both the compositing
and warp phases eliminates the barrier between them.

Figure 22 verifies that the new parallel shear warper
greatly reduces communication and contention, resulting in
less data and barrier wait time. Even though the lock over-
head is a bit higher, resulting from the possibly smaller
chunks of stealing, the overall performance on SVM is im-
proved significantly.

6 Conclusion

We have presented a new parallel volume rendering algo-
rithm based on shear warp factorization. It assigns a con-
tiguous block of scanlines of the intermediate image to each
processor, addressing the load balance problem through a
combination of profiling and task stealing. This same parti-
tioning scheme is applied across both the compositing and
warp phases, so that data locality is improved and inherent
interprocessor communication is greatly reduced. The na-
ture of the new partitioning also reduces the working set,
further reducing non-inherent communication.

By substantially improving communication and data lo-
cality, our parallel algorithm achieves good speedups and
fast rendering times on a range of very different shared ad-
dress space multiprocessors, includlng bus-baaed and dis-
tributed hardware cache-coherent machnes, and vastly im-
proved speedups on software page-b~ed shared virtual
memory platforms. The new algorithm outperforms the
old one, with the magnitude of improvement increasing as
more locality issues arise on the platform and communi-
cation becomes more expensive. We used a hierarchy of
increasingly detailed performance diagnosis experiments on
real machines and simulators to obtain a systematic under-
standing of performance issues. This helped us identify the
causea of the performance bottlenecks in the existing parallel
program and led to the design of the new version. The per-
formance diagnosis tools we used either gave us very coarse-
grained data on real machines or were slow simulators that
don’t model real machines exactly. Nevertheless, each gave
us useful information of a different type, and we were able
to use them efficiently in conjunction with algorithmic and
application knowledge.

Although simulators do not model any particular system
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exactly and can lead to dfierent interleaving of accesses,
the types of detailed characteristics they can measure were
extremely useful (e.g. that it was true sharing rather than
false sharing or other mimes that dominated, whether it was
miss rates or contention that dominated, and where in the
code the problems were encountered). Better integrated and
easy-to-use tool hierarchies on real systems would be very
useful, even if some of them perturb the execution signifi-
cantly since many of the key characteristic are not affected
very much by perturbation. More efficient support for user-
level runtime profling of iine-grained computations, without
inserting too many extrainstructions, would have been use-
ful as well, to support profil-baaed dynamic load balancing.

This resulting parallel shear warp algorithm demon-
strates that real time volume rendering is promising on
generaI-purpoae shared address space multiprocessors. We
would like to examine how it scales to even larger data sets
and systems, as well as how to develop performance diag-
nosis tool hierarchies-hardwaxe and software-for real ma-
chines that would have helped us come to the desired in-
sights and improvements more rapidly.
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