
Synchronized-by-Default Concurrency
for Shared-Memory Systems

Martin Bättig

Department of Computer Science

ETH Zurich, Switzerland

Thomas R. Gross

Department of Computer Science

ETH Zurich, Switzerland

Abstract
We explore a programming approach for concurrency that

synchronizes all accesses to shared memory by default. Syn-

chronization takes place by ensuring that all program code

runs inside atomic sections even if the program code has ex-

ternal side effects. Threads are mapped to atomic sections

that a programmer must explicitly split to increase concur-

rency.

A naive implementation of this approach incurs a large

amount of overhead. We show how to reduce this overhead

to make the approach suitable for realistic application pro-

grams on existing hardware. We present an implementation

technique based on a special-purpose software transactional

memory system. To reduce the overhead, the technique ex-

ploits properties of managed, object-oriented programming

languages as well as intraprocedural static analyses and uses

field-level granularity locking in combination with transac-

tional I/O to provide good scaling properties.

We implemented the synchronized-by-default (SBD) ap-

proach for the Java language and evaluate its performance

for six programs from the DaCapo benchmark suite. The

evaluation shows that, compared to explicit synchronization,

the SBD approach has an overhead between 0.4% and 102%

depending on the benchmark and the number of threads,

with a mean (geom.) of 23.9%.

Categories and Subject Descriptors D1.3 [Concurrent
Programming]: Parallel programming

Keywords Atomic blocks, Concurrency, Parallel program-

ming, Synchronization, Transactional memory

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact

the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)

869-0481.

PPoPP ’17, February 04 - 08, 2017, Austin, TX, USA

Copyright c© 2017 held by owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-4493-7/17/02. . . $15.00

DOI: http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/3018743.3018747

1. Introduction
Explicit synchronization of threads using locks or atomic

blocks is error prone. Missing synchronization may lead

to data races or race conditions, while incorrect locking can

lead to deadlocks. In this paper, we explore the synchronized-

by-default (SBD) approach to concurrency: Instead of re-

quiring the programmer to insert synchronization explicitly,

the system synchronizes all shared memory accesses by de-

fault. Thus, increasing concurrency requires the programmer

to relax synchronization explicitly. To realize this behavior,

each thread executes all its instructions within atomic sec-

tions, even if the instructions have external side effects. By

default, there is a single atomic section per thread. These

atomic sections have transactional semantics and therefore

are free from concurrency bugs such as data races or race

conditions. Furthermore, they can be rolled back to resolve

deadlocks. To increase concurrency, a programmer can in-

sert instructions that split the atomic sections dynamically at

runtime.

The SBD approach has been explored before [16, 23, 25,

26], to deserve further attention, it must be able to compete

with explicit synchronization. The difficulty lies in imple-

menting the approach in a way that reduces the synchroniza-

tion overhead and supports scalability to the extent provided

by explicit synchronization.

Synchronization overhead. Executing all instructions

within atomic sections adds a large amount of synchroniza-

tion overhead. Since atomic sections have transactional se-

mantics, hardware transactional memory (HTM) [21] could

be a solution. However, suitable unbounded HTM is not

readily available [12], and using simulated HTM makes a

comparison against explicit synchronization difficult, as it

does not run on the same hardware. An alternative is to

use a software transactional memory (STM) [30] as it runs

on existing hardware. However, even fast STM implementa-

tions [8, 11, 29, 36] are optimized for language integration

using the atomic block model [19], i.e., only a fraction of the

memory accesses requires synchronization, thus such STMs

can tolerate a higher overhead than is acceptable by the SBD

approach.

C
on
sis
te

nt
* Complete *

W
ell D

ocum
ented*Easyto

Re
us
e
* *

Evaluated

*
Po
P
*

Ar
t ifact *

AEC

P
P

���

Scalability. The approach must provide the means that

allow a programmer to reduce the contention and eliminate

deadlocks between concurrently running atomic sections.

Programming effort. The approach should simplify con-

current programming. Thus, it should add only a reasonable

amount of additional language constructs over a language

using explicit synchronization. Additionally, the approach

should be self-contained in that all kinds of parallel program-

ming idioms can be expressed. If a programmer must revert

to explicit synchronization, e.g., to execute I/O operations,

this step adds additional complexity as the programmer must

deal with two concurrency models.

Our claim is that the SBD approach is practicable for re-

alistic application programs because: (i) synchronization be-

came cheaper [9], (ii) shared memory accesses make up only

a part of applications, (iii) we can simplify the comparison

against explicit synchronization by limiting the number of

new language constructs and by adapting and reusing thread-

ing constructs known from explicit synchronization, and (iv)

the approach can be implemented on existing hardware. The

key contributions of this paper are:

• It describes how this approach can be integrated in a re-

alistic, managed language like Java with only few ad-

ditional language constructs and discusses how to make

common concurrency constructs and operations with ex-

ternal side effects compatible with this approach.

• It shows how a special-purpose STM can be combined

with compiler optimizations to reduce the synchroniza-

tion overhead of the SBD approach to enable scalable

applications.

• It compares a version of Java adapted for the SBD ap-

proach against regular Java with explicit synchronization

using locks for six benchmarks from the DaCapo bench-

mark suite [2]. We made the evaluation in terms of se-

quential overhead, scalability, programming effort, and

memory overhead.

2. Background
The SBD approach is based on previous work [16, 23, 25]:

it executes all instructions of a program within atomic sec-

tions and uses the concept of splitting atomic sections. Un-

like previous approaches, we focus on integrating these two

concepts into a managed, object-oriented language using

threads. We do this by combining them with the following

additional concepts:

• Specific semantics for memory accesses.

• All instructions executed within atomic sections, even

those with external side effects, such as I/O.

• Reusing and adapting existing thread control operations.

• Refinement of atomic sections: No nesting, and no split-

ting within constructors (to reduce overhead).

2.1 Atomic Sections
We describe the additional concepts in Section 3. In this sec-

tion, we discuss the atomic sections and their integration.

An atomic section is opaque [15], i.e., an atomic section

S′ cannot see any kind of modification (shared memory or

I/O) made by a concurrently running atomic section S′′ until

S′′ ends. Thus, atomic sections have transactional seman-

tics, and the system can abort them and undo their modifi-

cations. In contrast to atomic blocks [19], a common form

of STM language integration, atomic sections do not have

a fixed start or end in the program code. Each thread T has

a currently active atomic section SA. Upon start of T , the

system creates a new atomic section S and assigns it to T :

SA ← S. Thread T executes all its instructions within its

SA. Further, thread T can execute a split operation. Split-

ting ends SA, and creates an atomic section S′ that becomes

the new active atomic section: SA ← S′. Upon the end of

thread T , its atomic section SA ends as well. The main us-

age of splitting an atomic section S is to increase the con-

currency by releasing resources that S acquired to ensure its

transactional execution, and to make modifications as well

as external side effects visible.

1 class Worker extends Thread {
2 static int processed;
3 void canSplit run() { // atomic section begin
4 for(Request req : getRequests()) {
5 processRequest(req);
6 ++processed;
7 split; // (explicit) atomic section end
8 // new atomic section begin
9 }

10 } // atomic section end
11 // in main:
12 Thread a = new Worker().start();
13 Thread b = new Worker().start();
14 }

Figure 1: Example of implicit and explicit atomic sections.

Figure 1 shows a small example of two threads that pro-

cess requests. Without the split operation in line 7, the

modification of shared field processed in line 6 would

serialize the execution of threads a and b. The split in-

struction in line 7 ensures that resources that protect field

processed are freed in each loop iteration, and conse-

quently both threads can process requests concurrently (as-

suming eager conflict detection [28]).

The concurrency provided by SBD approach has the fol-

lowing properties:

Conflict resolution enforced. Simply dividing the work

between multiple threads is not necessarily sufficient to en-

able parallelism. As Figure 1 shows, a programmer is forced

to deal with frequently occurring conflicts that limit paral-

lelism.

���

Asymmetric. The system resolves infrequent conflicts

(e.g., program initialization, or configuration changes at run-

time) automatically, while frequent conflicts may be more

complicated to deal with. Thus, programmer effort with re-

gard to concurrency is asymmetric in SBD compared to ex-

plicit locking, where every possible conflict must be found

and dealt with.

Incremental. The approach allows to add concurrency

incrementally: Missing split instructions lead to serial-

ization, but never to data races or race conditions, unlike ex-

plicit synchronization, where missing or incorrect synchro-

nization eventually results in a concurrency bug.

Explicit. While concurrency bugs like data races or race

conditions can occur nevertheless, splits are the only instruc-

tions that can cause them. Splits are visible in the source

code, thus, one can check what memory locations are used

across a split at places where they should not be used. There-

fore, pinpointing the cause of a concurrency bug is more ex-

plicit with SBD than with explicit synchronization.

2.2 Preventing unexpected split operations
The presented SBD approach does not allow the nesting of

atomic sections. If a method A is in atomic section S′ while

invoking method B, and B executes a split operation, this

operation ends atomic section S′ and starts section S′′. An

example is atomic section B1 shown in Figure 3 that starts

in method run and ends in method processPosition.

Therefore, it is necessary to prevent methods, e.g., in a li-

brary, from issuing unexpected split operations, as such op-

erations can introduce concurrency bugs.

Modifier canSplit. Only designated methods, which are

identified by the method modifier canSplit in their sig-

nature, may issue a split operation either directly, or by

invoking a method having the canSplit property. Thus,

methods not having the canSplit property are guaran-

teed not to issue splits. Thread and task entry points have

the canSplit property set by default. Constructors cannot

have this property to prevent uninitialized instances from es-

caping an atomic section. And finally, a method that has the

canSplit property can only override a method that also

has the canSplit property.

Modifier allowSplit. Further, a method A that has the

canSplit property requires additional protection. If a

method A invokes another method B, it must declare whether

it allows B to execute split operations, by prefixing the

invocation with the keyword allowSplit. Checking this

at compile time makes it impossible to add the canSplit
property to an existing method (e.g., in a library) without

breaking the API.

Figure 2 shows an example of these modifiers. Here we

assume requests contain multiple Articles, and con-

flicts between Article instances are frequent. To in-

crease the possible concurrency, we uncomment the mod-

ifier canSplit of method processRequest (line 7)

as well as the split instruction (line 10). Finally, we un-

1 void processPosition(Article a, int num) {
2 if (a.available > num) {
3 a.available -= num;
4 positions.add(a, num);
5 }
6 }
7 void /*canSplit*/ processRequest(Request r) {
8 for(RequestItem ri : r.getItems()) {
9 processPosition(ri.article, ri.quantity);

10 /*split;*/
11 }
12 }
13 public canSplit void run() {
14 for(Request req : getRequests()) {
15 /*allowSplit*/ processRequest(req);
16 ++processed;
17 split;
18 }
19 }

Figure 2: Inserting split operations, changes in comments.

Method stack Atomic sections

a)t b)

run

getRequests

process-
Request

process-
Request

getItems
processPosition
processPosition

getItems
processPosition
processPosition
processPosition

A1

A2

A3

B1

B2
B3

B5

B7
B6

B4

Figure 3: Nested methods vs. non-nested atomic sections.

comment the modifier to the call (line 15). Figure 3 shows

atomic sections created for an example execution, with time

progressing from top to bottom. Timeline (a) shows the situ-

ation for the unmodified case: there is one atomic section per

processRequest. Timeline (b) shows the situation after

uncommenting. Now the system executes each invocation of

processPosition in a separate atomic section.

3. Concepts
In this section, we elaborate the concepts that allow us to

address the difficulties described in Section 1. We define the

target system, present how we realize the atomic sections

using a special-purpose STM system, describe how to reduce

the synchronization overhead, and show how to support I/O

and thread operations.

���

3.1 Target applications and programming languages
The first part of the solution is to restrict the class of appli-

cations and programming languages that an implementation

of the SBD approach should support.

We focus on application programs that use a mix of com-

putations, I/O operations, and memory accesses, e.g., a web

server. Many programs fall into this class; the combination

of different kinds of activities ensures that shared memory

accesses make up only part of the program, thereby reduc-

ing the impact of the additional synchronization.

Further, we assume a managed language that uses a

garbage collector. Using such a language allows exploit-

ing guarantees regarding memory accesses, e.g., no pointers

to arbitrary memory locations. These guarantees allow static

analysis to detect and remove superfluous synchronizations.

3.2 Atomic sections
We use transactional memory (TM) to implement the atomic

sections. Due to its transactional semantics, an atomic sec-

tion corresponds directly to a transaction of a TM system.

TM systems differ greatly in properties such as conflict de-

tection, version management, etc. In the SBD approach,

these properties have a substantial impact on how to im-

plement a program, both from a functional and performance

point of view. Thus, they become an integral part of the lan-

guage semantics, and we cannot choose them arbitrarily. To

determine the TM properties, we start by defining the fol-

lowing semantics for memory accesses:

1. Each memory location M that requires synchronization

has an associated lock L. Before accessing memory loca-

tion M , the system acquires lock L if not held already.

2. The system executes memory accesses that require syn-

chronization in the same order as specified in the pro-

gram.

The first point of this semantics matches pessimistic con-

currency control. The second point implicitly allows a pro-

grammer to order memory accesses in a way that prevents or

reduces the number of transaction aborts due to deadlocks

without having to introduce additional language constructs.

To realize atomic sections with the above semantics, we

use a special-purpose STM. The reason is that currently

available HTM systems (e.g., Intel TSX), or fast STM sys-

tems [8, 11, 29, 36] do either not support the combination of

the following TM properties, or are not optimized for them:

Conflict detection. Pessimistic concurrency control re-

quires eager conflict detection [28]. The above defined se-

mantics for memory accesses requires visible readers [32]

to enforce the ordering of the memory accesses. As con-

flict detection granularity, we chose field- respectively ar-

ray element-level granularity. Such a granularity prevents

lock contention due to false-sharing compared to instance

level locking, thereby avoiding artificial scalability issues

Memory access type Check Lock Undo

Non-final field or array element � � �
Final field

New non-final field / array element �
Local variable (with canSplit) �
Local variable (w/o canSplit)

Table 1: Synchronization per memory accesses type.

that may arise because all instructions execute within a trans-

action.

Version management. We use eager version manage-

ment [28], as the system must apply the undo log only in

case of an abort. Since we defined a semantics that allows

preventing aborts by ordering memory accesses, using eager

version management allows manual optimization of a pro-

gram if required. The overhead of a program with only few

aborts consists mainly of locking, updating the undo log, and

unlocking.

Progress guarantees. We chose a deterministic deadlock

resolution policy since readers are visible. Deadlock resolu-

tion already partly ensures progress, but live locks can still

occur due to the friendly-fire and starving writers perfor-

mance pathologies [4]. To prevent friendly-fire, the system

uses the following deadlock resolution policy: Always abort

the youngest transaction that is part of a deadlock. Thus the

oldest transaction, and therefore the program itself, can al-

ways make progress. To prevent starving writers, the TM

uses fair queues: If a thread cannot acquire a lock, the sys-

tem enqueues it at the end of the waiting queue, regardless of

the operation being a read or a write. The only exception to

this rule are upgrading readers. The system enqueues them

in front of the queue to reduce the number of aborts.

Atomicity guarantees. The STM does not have to pro-

vide atomicity guarantees [3]. In the SBD approach all in-

structions execute within atomic sections. Non-transactional

execution is not possible.

3.3 Reducing the synchronization overhead
In the following, we describe the concepts used to reduce the

synchronization overhead:

Exploit language level memory access properties. We

assume a managed, object-oriented language with the fol-

lowing memory access properties:

• Stack: The stack of a thread is isolated. A thread cannot

access stacks of other threads.

• Heap: The language must not allow direct memory ac-

cess but must provide indirect access to object and ar-

ray instances via reference pointers. These point either to

valid instances or to null. Access to properties of object

instances is only possible through their fields. Access to

content of array instances is only possible within their

bounds and only for complete elements.

���

Accesses to local variables do not need synchronization be-

cause of the isolated stacks. Methods that have the canSplit

property, and thus can issue split operations, must nev-

ertheless save the old values of modified local variables in

the undo log to be able to rebuild the stack in case a trans-

action is restarted. On the other hand, heap accesses via

fields or array elements require synchronization including

saving of old values in case of a modification. There are

two exceptions: (i) accesses to fields declared as final do

not need synchronization, since constructors cannot have the

canSplit property, other transactions can see only initial-

ized final fields; (ii) accesses to fields or elements of newly

instantiated objects or arrays within the same transaction.

These accesses do not require synchronization but instead

need a dynamic check to determine whether an instance is

new or not. Thus non-final field and array element accesses

are the main source of synchronization overhead. Table 1

summarizes these rules.

Compile time optimizations. Compile time optimiza-

tions can remove unnecessary checks whether a field or array

element is already locked. We use the following optimiza-

tions:

1. A dataflow analysis to remove redundant checks: An ac-

cess A to a field or array element X requires synchroniza-

tion unless the system can prove that X is already syn-

chronized in all possible control flow paths that lead to A.

This optimization makes use of the canSplit property:

As methods without this modifier cannot issue split
instructions, removal of the synchronization is possible

even if such a method lies in a control flow path leading

to A.

2. Move lock operations out of loops if the locking order

can be preserved.

3. Combination of subsequent field accesses on the same

instance to eliminate checks whether an instance is new.

These optimizations are intraprocedural. They benefit from

method inlining and are suitable for dynamic compilation.

Combine read- and write-sets with locking informa-
tion. With pessimistic concurrency control, each access to

a non-final field or array element requires synchronization.

This involves checking whether the accessed memory loca-

tion is already in the read- or write-set of the transaction, and

if not, to acquire the lock and to update the read- or write-

set. We combine these operations by storing the set informa-

tion directly on the accessed instance instead of storing it in

a separate structure. Figure 4 (a) shows the instance layout

with the additional locking structures. Each non-final field or

array element has its own locking structure. The additional

indirection, via the field locks, allows lazy allocation of

the locking structures of an instance, thereby reducing the

amount of memory required in case an instance is transient

in a transaction.

header
locks
field / element 1 lock structure 1
field / element 2 lock structure 2
... ...
field / element n lock structure n

lolo
lolo

lolo

ockockoo

Queue ID W U Bit set of transaction IDs
M-bit 1-bit 1-bit N-bit

(a)

(b)

Figure 4: Memory layout of an instance (a) and a locking

structure (b).

Figure 4 (b) shows the lock structure. It contains a bit set

that encodes whether a transaction has a lock on the asso-

ciated field or not and whether it is in the read- or write-

set of the transaction. Each bit corresponds to a unique, but

reusable ID that represents a transaction. The size of the bit

set is limited, so that the size of the locking structure does

not exceed the limit of a single compare-and-swap (CAS)

operation. The fixed bit set size reduces the number of re-

quired instructions for a locking operation but also limits

the number of transactions that can concurrently be active

to the size of the bit set. Beside the bit set, a flag W indi-

cates whether a write lock, or a read lock, is in place. The

upgrader bit U [29] is optional but helps to detect dueling
write-upgrades [4] early. To enable fair scheduling the lock

structure includes a queue ID. If a queue ID is set, other

transactions are waiting to acquire the lock on the specific

queue and directly acquiring the lock is not possible. The

maximal number of queues is fixed and equals the maximal

number of concurrently active transactions, as in the worst

case all concurrently active transactions are enqueued before

deadlock resolution begins.

The number of available transaction IDs N limits the

achievable actual parallelism. However, this limit only af-

fects systems with P processing units, where P > N . On

such a system, the actual parallelism of a program cannot ex-

ceed N . If no transaction ID is available, a transaction must

wait until one becomes free. This strategy works because:

1. No nesting is possible: Once a transaction acquires an ID

it is able to finish without acquiring another ID.

2. If a thread T1 waits for a thread T2 to update a condi-

tion C, T1 must end its current transaction as otherwise

T2 cannot update C. Ending the transaction, T1 frees a

transaction ID, thus T2, even if it was waiting for an ID

to become free, can complete its work.

The above described locking structure allows to implement

a locking operation using very few instructions, as shown

in Figure 5: (1) The system checks whether an instance is

newly allocated in the current transaction (a.locks==null).

Newly allocated instances do not require locking. (2) Oth-

���

erwise, if the lock is unallocated (a.locks==UNALLOC), the

system performs the lazy allocation. UNALLOC is a constant

pointer. (3) Then the system checks whether the transaction

must acquire the lock ((lock & trx.mask))==0). (4) If that

is the case, the system acquires the lock by checking whether

it is free and then executing a CAS. If the lock is not free or

the CAS fails, the thread is enqueued. The system records

lock acquisitions in the undo log together with the old value

of the field or array element in case of a write.

1 // (1) allocated in previous transaction?
2 if (a.locks != null) {
3 // (2) lazy lock init
4 if (a.locks == UNALLOC /*const pointer*/) {
5 CAS(a, locksOffs, UNALLOC, new long[size]);
6 }
7 // (3) already locked?
8 long lock = a.locks[lockID];
9 if (((lock & trx.mask)) == 0) {

10 // (4) try to lock or enqueue
11 if ((lock | trx.mask) != trx.mask
12 || !CAS(a.locks,offs,lock,lock|trx.mask))
13 {
14 enqueue(a, lockID); // slow-path
15 }
16 updateUndoLog(offs, lock, fldOffs, oldVal);
17 }
18 }

Figure 5: Locking operation in pseudo code.

3.4 I/O and non-transactional code
In the SBD approach, no code can run outside of an atomic

section. This rule applies also to instructions with exter-

nal side effects, e.g., irreversible I/O operations or (non-

transactional) operations invoked using a foreign function

interface. There are two viable options to do so: Inevitable

(irrevocable) transactions [33], and buffering using transac-

tional wrappers [18].

Implementation of inevitable transactions using pes-

simistic concurrency control in combination with read/write

locks is straightforward [10] but has the problem of lim-

iting actual concurrency. At most one transaction can be

inevitable at any given moment in time. E.g., two or more

transactions cannot execute I/O at the same time, even if

they use different devices. To achieve good scalability, we

use transactional wrappers instead, i.e., buffering irreversible

actions until an atomic section finishes. Wrappers are hand-

written, and must implement an appropriate locking scheme

that ensures the atomicity and isolation of the performed

external side effects or any returned values.

Using transactional wrappers results in the following two

notable changes for a programmer:

1. If an output is made in an atomic section S an observer

can see the output only after S ends.

2. All irreversible operations must use transactional wrap-

pers.

The first point causes a small API change for all function-

ality that has external side effects, as these functions, de-

pending on the situation, may require an additional split
operation to make the effects visible. Single threaded pro-

grams require these additional split instructions as well.

The second point primarily concerns developers of system

libraries but not application developers, as system libraries

of a language implementing the SBD approach must already

contain such transactional wrappers, e.g., for file system op-

erations.

3.5 Thread operations
Thread operations in the SBD approach work similarly as

with explicit synchronization using locks but require minor

adaptation. In the following, we describe the adaptations for

a number of common operations.

Thread or task start. When an atomic section S′ starts a

new thread or task T , the start of T is deferred until S′ ends.

Deferring of T simplifies its reversal, since an instantaneous

start of T by S′ has the following implications (S′′ is the

initial atomic section executed by T and is independent of

S′):

1. Aborting S′ requires aborting T as well, thus S′′ of T
cannot end until S′ ends.

2. If S′′ makes modifications, these can become visible only

after S′ ends.

3. S′′ can acquire locks that S′ requires after it started T ,

thus creating a deadlock.

Deferring the start of T until the end of S′ avoids this

additional complexity (items 1 and 2 above) and the problem

(3) of an instantaneous start. Additionally, in many cases an

atomic section S′ that starts T already holds locks on data

that T is supposed to work on. Thus, a deferred thread start

does not impose a restriction as only after S′ ends, T can

start to work on this data. The thread T will always start

after S′ ends, although its atomic section S′′ may be blocked

initially, if no free transaction IDs are available. AME [23]

uses a similar mechanism to initiate asynchronous method

calls.

Thread or task join. A thread or task join operation al-

ways issues a split operation before waiting. This ensures

that the thread or task T to wait for has started. Additionally,

the split operation causes the waiting thread to release its

transaction ID while waiting, thereby ensuring that T can

execute.

Sending of a signal. The system defers sending of a sig-

nal N until the current atomic section S ends. This deferring

avoids unnecessary notifications if the system aborts S after

sending. It also ensures that locks on the waiting condition

C acquired by S are freed, and the modifications made by S
become visible. This allows the threads that are waiting for

N to check C and to continue.

���

Change Type Description

Keyword split Add Ends current atomic section and starts new atomic section.

Modifier canSplit Add Allows to issue split instructions.

Modifier allowSplit Add Allows to invoke methods issuing split instructions.

Field access (instance or static) Change First lock field (read or write) then access field.

Array element access Change First lock array element (read or write) then access array element.

Thread control operations Change Change as described in Section 3.5

I/O operations Change Use wrapper to execute I/O operations transactionally.

Foreign code execution Change Use wrapper to execute non-transactional library operations transactionally.

Explicit synchronization constructs Remove Both language-based, and library code.

Direct memory access Remove E.g., volatile access properties.

Table 2: Changes required to adapt a managed object-oriented language to the SBD approach.

1 class Barrier {
2 private final int expected;
3 private int arrived;
4 public Barrier(int expected) {
5 this.expected = expected;
6 }
7 public canSplit void sync() {
8 arrived++;
9 if(arrived < expected) {

10 while(arrived < expected) {
11 wait(); // split atomic section
12 }
13 } else {
14 notifyAll();
15 split; // split atomic section
16 }
17 }
18 }

Figure 6: Example of notifyAll and wait usage.

Waiting for a signal. A thread T that waits for a signal

first issues a split operation, thereby releasing all locks it

holds, including the ones on the waiting condition C. This

step ensures that another thread T ′ can update condition C.

Additionally, the split operation causes the T to release

its transaction ID thereby ensuring that T ′ can execute.

Figure 6 shows an example of signaling by way of a

barrier implementation. The notifyAll (line 14) must

release the lock on the field arrived to allow the waiters

to test the condition (line 10) after signaling. A waiter must

release the lock to allow other threads to update the condition

arrived (line 8).

Thread local memory. The only adaptation to thread

local memory is an undo buffer that allows restoring the state

in case of an abort.

3.6 Summary
Table 2 summarizes the changes required to adapt a managed

object-oriented language using explicit synchronization us-

ing locks to the SBD approach.

3.7 Composability
Composability [20] is a feature of TM that allows to com-

bine two or more atomic operations by composing them

into a larger atomic operation, i.e., executing them within

the same transaction. Extending the SBD approach to al-

low composition of atomic sections (the smallest atomic

operation in SBD) is helpful in case of library methods

that perform split operations. A way to compose a func-

tion canSplit f() and canSplit g() into a sin-

gle atomic section is to extend SBD by adding a block

level statement noSplit{...}. Within such a noSplit
block, the system ignores split instructions. Care has to

be taken because certain methods must be able to split, e.g.,

a method that sends data over the network and expects a re-

sponse. Therefore, to be safe, a programmer must explicitly

allow execution of a method within such a nosplit block,

e.g., by an additional property splitOptional.

4. Implementation
To evaluate the SBD approach, we use a proof of concept

implementation based on the Java language. This implemen-

tation runs on an unmodified Oracle JVM. It consists of three

components: A bytecode transformation tool to add synchro-

nization, the STM runtime and adapted versions of those

classes of the Java Class Library (JCL) that the benchmark

programs require. In this section, we describe the relevant

parts of this implementation.

4.1 Bytecode transformation
The bytecode transformation tool inserts code to interface

with the STM runtime, and performs all code optimizations

as described in Section 3.3. The tool uses the Soot frame-

work [34] as basis.

The adaptation of Java arrays to the instance layout as de-

scribed in Figure 4 (a) requires an additional reference to the

locking structures. Altering the array structure is not possi-

ble using an unmodified JVM. Therefore, we use wrapper

classes to combine an array reference and a reference to an

array holding the locking structures of the array elements.

���

These array wrapper classes replace the regular arrays. To

reduce overhead, access to the arrays within the wrappers

remains direct (no getters or setters).

Further, to increase the effectivity of the code optimiza-

tions, the tool inlines methods statically during transforma-

tion. It uses the same inlining decisions for a method as the

actual HotSpot Just-in-Time compiler (JIT) of the Oracle

JVM would use. The JIT optionally writes its inlining de-

cisions into a compilation log. Based on such a compilation

log created during a previous execution, the tool uses the last

log of a method for its inline decisions.

Finally, the tool adds support for static initialization. A

rollback can revert a static initialization, in which case the

system must execute it again. For that, the tool inserts guards

before each static access and each constructor call. These

guards trigger the static initialization if needed.

4.2 STM details
We implemented the STM as described in Section 3.2. The

implementation uses the CAS instruction provided by the

sun.misc.Unsafe API. The locking structure has a size

of 64-bits, the size of the largest CAS operation supported by

this API. Therefore, the bit set to store locking information

has a size of 56 bits, and the queue ID has a size of 6 bits.

The deterministic deadlock resolution uses a blocking

variant of the dreadlocks algorithm [24] modified to work

with read-write locks.

4.3 Adaptations of JCL classes
We made the following adaptations to the JCL classes:

• Use the array wrapper classes instead of direct access.

• Implement the changes to the thread operations.

• Implement the transactional wrappers for I/O classes.

• Additional modifications as shown in Table 4.

As the JVM requires some of these classes during startup, we

made the modifications to copies of the classes placed under

a different namespace to avoid bootstrapping issues. We then

redirected the benchmarks to use these copies instead. We

only modified JCL classes that we require for the evaluation.

4.4 Implementation of transactional wrappers
For a class C, we manually implemented the transactional

wrappers using the following scheme:

1. Implement an adapter class of class C with the same

interface, and forward each call.

2. Add a buffer B to save the state before a modification.

3. Before calling a method that queries or modifies the state

of an instance, add synchronization to ensure atomicity

and isolation. Before modifying, save the state to the

buffer B. In case a modification is irreversible or its

reversal is nontrivial, the system must defer its execution

until the end of the atomic section.

4. Implement commit and rollback operations. Usually, a

commit applies deferred operations and clears the buffer

B, and a rollback undoes the modifications using data

from the buffer B.

E.g., when reading data from a network device, the system

places a copy of this data into a buffer BR. Buffer BR is

associated with the network device. After an abort, the next

time the system reads data from the network device it uses

the buffer BR instead. It does this as long as the buffer BR

holds data, then it continues to read from the device. On

success, the system discards the buffer BR. When writing to

the network device, the system first writes the data to buffer

BW , thus it defers the write. Only on success, it forwards the

data in buffer BW to the network device. After an abort, the

system discards the buffer BW .

5. Evaluation
To evaluate the SBD approach, we compare it to explicit

synchronization using locks with regard to the following

four aspects:

1. Programming effort

2. Sequential overhead

3. Scalability

4. Memory overhead

We do this by using multiple benchmarks that originally use

explicit synchronization using locks and adapting them to

the SBD approach, thus having two variants of each bench-

mark to compare against each other.

5.1 Setup and testing methodology
The test system has four Intel Xeon E7-4830 CPUs and

64GB RAM. Each CPU runs at 2.13GHz and has eight

cores. For all experiments, we enable hyper-threading and

disable the turbo mode. We use the Oracle JVM 1.7 for the

evaluation. To compare the performance, we measure the

steady state performance using the method presented in [13]

to reduce the effect of the JIT on the measurements. For

each benchmark run, we perform 10 JVM invocations. Per

invocation, we require 30 consecutive benchmark iterations

with coefficient of variation (CoV) lower than or equal to

0.01. If an invocation does not reach this value after 60

iterations, we use the last 30 iterations.

For testing, we use benchmarks from the DaCapo 09

Benchmark Suite [2] using their default workload. We chose

this suite because it contains realistic application programs

that we target with the SBD approach (see Section 3.1).

We selected six multi-threaded benchmarks with different

threading models (task, threads, signaling, custom synchro-

nization, main/worker), and different types of I/O (none,

disk, network, database).

We applied the following modifications to all selected

benchmarks:

��	

Benchm. Modification

Tomcat Use Http11Protocol as Java NIO is not implemented.

Use statically compiled JSP pages, as dynamic compi-

lation is not implemented.

PMD Use single-byte charset as support for multi-byte char-

acter sets is not implemented.

H2 Allow a variable number of threads.

Use multi-threaded engine and newer version

(1.4.193) to reduce contention.

Table 3: Benchmark modifications not relevant for approach.

• Array wrappers as described in Section 4.1.

• Conversion to Soot internal representation, and back to

bytecode.

• Static inlining on bytecode level for the optimizations.

• Additional modifications due to implementation restric-

tions or benchmark enhancements as shown in Table 3.

The above modifications are necessary due to the bytecode

transformation, and not due to the SBD approach. To allow

a fair comparison, we applied them to both variants. Table 4

lists custom modifications that increase the scalability of the

SBD variant. If one of those modifications also reduced the

runtime of the explicit synchronization variant, we applied it

there as well. The static inlining uses the identical HotSpot

compilation profiles for both variants. To generate the pro-

file, we let each benchmark perform 20 iterations in a single

invocation.

5.2 Programming effort
To compare the programming effort of both variants, we

adapted the benchmarks from explicit synchronization us-

ing locks to the SBD approach. Then, we examined the re-

quired modifications. We modified only the parts used by

the benchmarks, and not the complete code of the underly-

ing application.

Adapting the benchmarks required functional and non-

functional modifications. Functional modifications are addi-

tional split operations due to the changed I/O and threading

behavior. Non-functional modifications decrease the sequen-

tial overhead, and increase the scalability of a benchmark by

removing lock contention or by preventing deadlocks. De-

pending on the situation, we use different solutions for these

issues:

1. Split as soon as possible after the contented access.

2. Use thread local memory.

3. Reduce update frequency of contented memory location.

4. Reorder accesses to memory locations.

5. Remove functionality if not needed.

We prefer solutions that do not require additional split
operations (1), since longer atomic sections reduce the num-

ber of locking operations. Table 4 lists the custom modifica-

tions that we had to apply to the benchmarks to increase their

scalability without a split operation (2-5). Only one of the

custom modifications (disabling of the string cache, Tomcat)
had a measurable impact on the baseline variant (small speed

up). All thread local modifications fix scalability issues and

do not reduce sequential overhead.

Table 5 shows the number of modifications we applied

for each benchmark. To be able to put the number of mod-

ifications in relation, the table lists the number of lines of

code (LOC) executed by the benchmark. Columns Split
(CanSplit) show how often this instruction (modifier) is

added. Column Custom shows the number of custom mod-

ifications that we had to implement. Column Final lists the

number of added final modifiers. The bytecode transformer

automatically adds the final modifier to private fields that are

modified only in the constructor of a class and thus can be

declared as final. Beside being good programming practice,

this reduces overhead, as final fields do not need synchro-

nization (see Table 1). Finally, columns Synchronization and

Volatile list the number of synchronization constructs re-

quired by the baseline variant, which are not needed for the

SBD variant.

Modifications to add canSplit and final modifiers

are quite numerous, the former especially if signaling was

used deep down in the method hierarchy. Since both type

of changes are rather mechanical, they can benefit from

code editor support, e.g., by using static analysis to sug-

gest addition of the modifier. Comparing the combined num-

ber of split instructions and custom changes to the com-

bined number of synchronized and volatile changes shows

that the SBD approach and explicit locking have usually a

similar amount of synchronization code. The exceptions are

LuSearch, LuIndex, and Tomcat were the SBD approach re-

quires a lower amount of synchronization code but on the

other hand requires custom modifications (LuSearch, Tom-

cat), thus showing the asymmetry of SBD mentioned in Sec-

tion 2.

5.3 Sequential overhead
The sequential (single thread) overhead of the SBD variant

consists of the cost of the executed lock operations (see

Figure 5). The cost depends on the effect of the locking

operations:

Init: Initialize locks field of new instance.

Check New: New instances (check only).

Check Owned: Lock already owned (check only).

Acq. & Rls.: Lock acquire, and release (incl. undo).

The sequential overheads of the examined benchmarks are

below 100%, even though the STM uses a CAS operation to

implement the reader-writer locks. The reason is not only

the performance of the STM, but also its usage. Table 6

shows execution time for a microbenchmark. This bench-

��

Component Solution type Description Count LOC

JCL Frequency Use separate isEmpty flag (instead of size) in get method for empty check. 1 18

Thread local Aggregate output to console per transaction to reduce contention. Uses a reusable thread

local OutputStream aggregation class.

1 5

LuSearch Thread local Make shared message digest instance thread local. 1 20

Reorder Frequently updated file system directory cache (resolve read/write conflict) 1 3

PMD Thread local Thread local of update statistic counters, aggregate on read. Uses a reusable thread local

integer aggregation class.

2 4

Tomcat Thread local Made tag handler pool thread local. 1 30

Thread local Use a separate connection per client thread, instead of connection pool. 1 1

Thread local Thread local update of statistic counters, aggregate on read. Uses a reusable thread local

integer aggregation class.

7 3-10

Frequency Set initialization flag only once. 1 2

Remove Disabled the cache in the string manager class. 1 2

Table 4: Custom Java Class Library (JCL) and benchmark modifications. Column LOC excludes aggregation classes.

Synchronized-by-default Explicit synchronization

Benchmark LOC Split Custom CanSplit Final Synchronized Volatile

LuIndex 5222 1 38 76 27 9

LuSearch 2452 4 2 2 46 9 4

PMD 7121 2 2 4 158 2

Sunflow 3827 3 9 50 3

H2 1235 1 39 14 1

Tomcat 29314 15 11 50 333 140 6

Table 5: Number of benchmark modifications. The numbers apply to code executed by the benchmark.

mark executes 100 million read or write operations, on 100

million instances each having a single field. We report time

without lock (row Baseline) and for lock operations with ef-

fects: Check new, check owned, or acq. & rls. (includes undo

log). The table shows two different access patterns: pseudo-

random and sequential. The results show that the overhead

of the checks, both new and owned, is relatively small com-

pared to the overhead of acquire & release, regardless of the

access pattern.

The other reason for these overheads are the SBD seman-

tics that allow large transactions sizes. All examined bench-

marks allow using such large transactions: Table 5.2 shows

the low amount of required split instructions compared to the

size of executed LOC. Within such large transactions, lock

acquires and releases are relatively infrequent compared to

new or owned checks that have a low overhead.

To allow a better understanding of the sequential over-

head, Table 7 shows the number of lock operations that the

benchmarks execute per second, on average. They are subdi-

vided into four columns based on the effect of the operation

(init, check new, check owned, acq. & rls). Note that the lock

operation counts and the execution times are from two differ-

ent executions, and thus may not be completely comparable,

as each execution may have invoked the JIT compiler in a

different context.

The benchmarks that have an overhead around the geom.

mean 35.4% (LuIndex 46.7%, LuSearch 29.9%, PMD 43.3%,

Tomcat 24.4%) have a mix of these operations. Sunflow has

a high overhead (99.3%), because it executes a large num-

ber of lock initializations as well as owned checks. Note

that Sunflow does not perform any I/O. On the other hand,

H2 experiences a low overhead (13.4%) because it spends

most of its time doing I/O operations, i.e., data base accesses

via JDBC. As databases use transactions we integrated the

JDBC classes using transactional wrappers.

The additional final fields reduce the sequential overhead

(geom. mean over all thread counts) for Sunflow by 19.4%,

and for PMD by 1.69%. The other benchmarks do not show

a measurable reduction.

5.4 Scalability
Figure 7 shows the speedup curves of all benchmarks with

the exclusion of LuIndex, which uses a fixed number of

threads (main and worker). The speedup curves of Sunflow,

PMD and H2 are similar in both variants. For LuSearch and

Tomcat, beginning with 32 threads the speedup of explicit

synchronization is higher than of the SBD variant. For LuSe-

���

Read Write

Effect Random Seq. Random Seq.

Baseline 17.6s 0.92s 32.8s 1.11s

New 17.8s 0.93s 32.9s 1.12s

(+1.14%) (+1.09%) (+0.30%) (+0.90%)

Owned 28.8s 1.90s 47.5s 2.37s

(+63.6%) (+107%) (+44.8%) (+114%)

Acq. & Rls. 62.9s 6.75s 68.8s 8.08s

(+257%) (+634%) (+110%) (+628%)

Table 6: Microbenchmark: 100 million read or write opera-

tions on a single core. Avg. over 20 iterations (STD < 2%).

Benchmark Init Check New Check Owned Acq.

H2 42k 198k 1 036k 520k

LuIndex 46k 186 639k 35 928k 3k

LuSearch 516k 149 164k 18 327k 32k

PMD 940k 56 013k 10 065k 253k

Sunflow 1 596k 66 146k 111 156k 41k

Tomcat 30k 3 078k 7 430k 7 212k

Table 7: Locking operations per second (avg.).

SBD

Benchm. Baseline Locks R-W set Buffers Init

H2 48 650k 18k 3k 0k 0k

LuIndex 2 664k 75k 13k 1 280k 94k

LuSearch 818k 538k 86k 25k 231k

Pmd 5 758k 831k 56k 171k 2 477k

Sunflow 2 202k 1 034k 159k 0k 3 361k

Tomcat 4 071k 1 146k 511k 5k 0k

Table 8: Memory overhead (avg., single threaded execution).

arch, the reason is the garbage collection (GC) that requires

additional time to process the undo log. We consider this

an issue of using a Java STM implementation. In a VM-

based implementation, the GC could, e.g., avoid processing

the undo log, as the lock structures already contain informa-

tion whether the undo log references an instance. For Tom-

cat, the reason is that it uses 32 client and 32 server threads

thus exceeding the limit of maximal 56 concurrently run-

ning threads (restriction of the STM implementation). Table

9 shows the transaction abort rate (abort/success, Abr.), the

number of contented lock acquires (Con.), and the number

of CAS-failures (Fail.). Synchronization issues are generally

low. The exception is the abort rate for Sunflow, but it does

not negatively affect the runtime of the benchmark.

5.5 Memory overhead
The memory overhead of the SBD approach consists of the

additional memory used by the field level locks and the

Benchm. Thr. Base. Sbd. Ovr. Abr. Con. Fail.
[s] [s] [%] [%]

H2 1 4.19 4.75 13.4 0.0 0 0

2 4.15 4.42 6.6 0.0 7 7

4 4.24 4.33 1.9 0.0 17 19

8 5.25 5.31 1.3 0.0 12 13

16 6.95 7.04 1.3 0.0 14 13

32 10.12 10.17 0.4 0.0 10 12

LuIndex 1 0.92 1.35 46.7 0.0 0 0

LuSearch 1 5.68 7.37 29.9 0.0 0 0

2 2.82 3.71 31.4 0.0 4 0

4 1.44 1.86 29.3 0.0 11 1

8 0.72 0.96 32.2 0.0 34 3

16 0.38 0.5 31.8 0.0 70 5

32 0.25 0.36 42.7 0.0 76 4

PMD 1 3.99 5.72 43.3 0.0 0 0

2 2.08 2.84 36.2 0.0 4 6

4 1.4 1.94 38.5 0.0 18 24

8 1.36 1.84 35.4 0.0 45 69

16 1.41 1.87 32.8 0.0 78 116

32 1.5 1.94 29.1 0.0 119 147

Sunflow 1 15.11 30.1 99.3 0.0 0 0

2 7.69 15.15 97.0 3.5 53 11

4 3.94 7.45 88.8 44.4 209 30

8 1.98 3.99 102 54.4 264 23

16 1.17 2.33 98.8 59.9 355 30

32 0.9 1.82 102 112 666 128

Tomcat 1 5.97 7.42 24.4 0.0 0 0

2 3.04 3.75 23.3 0.0 298 317

4 1.56 1.91 22.4 0.0 1002 1653

8 0.82 1.01 24.1 0.1 1605 3030

16 0.45 0.58 29.0 0.3 1260 2101

32 0.34 0.51 50.2 0.4 1214 1906

Table 9: Overhead (Ovr.) of SBD approach compared to

explicit locking (Base.). STD of execution times < 5%,

except for Tomcat/32/Base: 9.02%.

transaction logs. To measure the memory usage, a separate

thread triggers a GC run every 50 ms. The thread samples

the memory usage after each GC run. The reported numbers

are the average of the samples interpolated linearly. All val-

ues are for 20 invocations of a single, sequential execution

(STD < 5%). The proof-of-concept implementation of the

SBD approach does not allow to measure memory overhead

directly. Instead, we report additional memory requirements

of the data that is relevant for the SBD approach (largest

contributors).

Table 8 shows the results of the measurement. The col-

umn Baseline lists the average memory usage (heap size af-

ter full GC) of the baseline variant. The column Locks shows

the average additional memory for the lock structures of the

SBD variant. Further, columns R-W set, Buffers, and col-

umn Init show the size of a transaction, split into the read-

���

write set (incl. old values), undo buffers (reads from streams,

and writes to streams/files), and initialization log (list of in-

stances to mark as UNALLOC on commit).

Due to the lazy lock structure allocation, additional mem-

ory usage of the field level locks is quite low, except for

LuSearch (+66%) and Sunflow (+47%). The memory usage

of the undo log is in general low, except for LuIndex, which

writes a large file in a single transaction, and Tomcat, which

has a large R-W set as a result of acquiring many write locks

(also visible in Table 7). H2 is mostly using its database in-

terface, thus there is almost no additional memory usage.

Benchmarks with large transactions usually also have large

initialization logs (Sunflow, PMD).

6. Discussion
Whether the performance overhead associated with the SBD

approach is acceptable depends on the use case. We believe

that developers that appreciate features like garbage collec-

tion (GC), or array index bounds checks, would also appreci-

ate the SBD approach. All these techniques have additional

performance overhead but provide in exchange additional

safety. The analogy of TM and GC has been observed be-

fore [14].

The SBD approach has an impact on the usage of the

language itself. However, other features have this as well,

e.g., a language that integrates GC would not provide an

operation to deallocate memory manually. We consider the

transactional external side effects the biggest change of our

approach, since it even affects sequential programs. While

inevitable transactions remain an alternative, they reduce

scalability as explained in Section 3.4.

One concern with the SBD approach is that it is unclear

what locks a method acquires. For the examined programs,

this was in general a non-issue: Most methods behave as ex-

pected, e.g., returning the list size locks the list size, and

not arbitrary memory locations. If a method has an unex-

pected locking behavior, e.g., it uses a cache or an object

pool, this can be documented in a similar way as document-

ing the thread-safety property when using explicit synchro-

nization. Finally, conflicts can be detected dynamically. We

implemented a small debug mode in our runtime system that

logs the blocked threads, and deadlock situations. This infor-

mation together with the fact that SBD allows a programmer

to incrementally add concurrency allows to resolve these is-

sues mechanically by looking through this log. This was es-

pecially helpful as we did not know the benchmark programs

beforehand.

7. Related work
The SBD approach relates to various earlier efforts. We

group them into three categories.

Synchronized-by-default. Kuszmaul et al. proposed

atomicity by default using transactions in combination with

language support, i.e., the use of HTM in combination with

language extensions to the fork-join mechanism of Clik [25].

Hammond et al. proposed to use HTM and language exten-

sions to loop and fork-join mechanisms. They performed

scalability measurements using a simulated HTM [16]. Isard

et al. proposed Automatic-Mutual-Exclusion (AME) [23], a

system for concurrent asynchronous programming that al-

lows the integration of functionality performing external

side effects outside of transactions, and suggested the use

of STM. Abadi et al. further investigated the semantics of

the AME approach [1]. A proposal to implement atomic-

ity by default without transactions is Coqa [26] by Liu et

al., a language that uses message-passing ideas to demark

atomic sections and to identify concurrency in a programs.

Although not synchronizing by default, the TIC model [31]

provides a way to optionally punctuate (split) a transaction,

e.g., to perform I/O. The SBD approach shows novel ways

to integrate the transactional version of the approach into an

object-oriented, managed language based on threads. Fur-

ther, it shows how to exploit properties of such a language

for optimizations and compares a version of Java adapted

for the SBD approach against regular Java with explicit syn-

chronization, using several realistic application programs

and existing hardware.

STM using readers-writer (RW) locks. Not much at-

tention was paid to these STMs in the past, because they

have been slower than STMs using a global clock [29]. Re-

cent work provided examples of well performing STMs us-

ing RW locks. Dice et al. show that such an STM can outper-

form a TL2 global-clock based STM [10, 11] on single-chip

multicore processors. Zhang et al. show that a STM using

RW locks performs well for low-contention workloads [36],

similar to those we used in our experiments. Our approach

displays a usage for STMs using RW locks. Unlike previous

work, our STM contains only the minimal required features

to avoid overhead.

No critical sections. Other techniques that provide syn-

chronization without critical sections are: Data-centric ap-

proaches such as [7, 35] that infer synchronization from an-

notations. These annotations group data into atomic units

and mark control flow where the system must maintain

atomicity. Thus, these approaches require explicit synchro-

nization through annotations. Effect systems [5, 22] enable a

programmer to annotate a sequence of statements with their

effects that a scheduler statically or dynamically can use to

execute the statements without conflicts. A further alterna-

tive is isolation [6, 27] to avoid direct shared memory access

by working on copies of data within the context of fork-join

parallelism. And finally, Brinch Hansen’s Distributed Pro-

cesses [17] achieve synchronization by forbidding shared

memory accesses and by requiring processes (threads) to

communicate if shared memory access is needed. All three

approaches (effect systems, isolation, and forbidding shared

memory accesses) avoid synchronization, but limit the num-

ber of expressible parallel programming idioms.

���

Threads

S
pe

ed
up

1 322 4 8 16

0
3

6
9

13
17

21

LuSearch

Threads

S
pe

ed
up

1 322 4 8 16

0
3

6
9

13
17

21

Pmd

Threads

S
pe

ed
up

1 322 4 8 16

0
3

6
9

13
17

21

Sunflow

Threads

S
pe

ed
up

1 322 4 8 16

0
3

6
9

13
17

21

H2

Threads

S
pe

ed
up

1 322 4 8 16

0
3

6
9

13
17

21

Tomcat Explicit synchronization using locks
Synchronized−by−default

Figure 7: Scalability of the SBD approach vs. explicit synchronization. Base: Single threaded explicit synchronization.

8. Conclusion
The SBD approach for concurrency aims to reduce the oc-

currence of concurrency bugs due to data races, race condi-

tions, and deadlocks. The approach allows the implementa-

tion of realistic applications that are scalable. We measured

an overhead of 23.9% (geom. mean) compared to explicit

synchronization using locks by executing realistic bench-

marks on existing hardware.

The SBD approach requires only a small number of ex-

tensions to an existing language. Our prototype implemen-

tation is based on Java. There are numerous benefits that are

obtained from integrating the SBD approach into an exist-

ing framework: it is easy to convert a program to SBD and

the result remains similar the version with explicit synchro-

nization using locks, and a comparison is meaningful. Thus,

knowledge and experience gained by programmers using ex-

plicit synchronization is not lost. An additional benefit is that

SBD reuses the existing threading constructs, transactional

external wrappers for side effects, and the JIT compiler.

We have not yet studied to what extend SBD eases profes-

sional program development outside of an academic setting.

However given the difficulty of constructing correct paral-

lel programs, SBD is an attractive option that shows another

approach to the development of concurrent programs. To the

extend that the execution time of a concurrent program is not

dominated by synchronization time, SBD offers an appeal-

ing alternative.

Acknowledgments
We thank the anonymous reviewers for their thorough re-

views and helpful comments. We acknowledge computing

resources provided by SNF grant 206021 133835.

References
[1] M. Abadi, A. Birrell, T. Harris, and M. Isard. Semantics of

Transactional Memory and Automatic Mutual Exclusion. In

POPL ’08, pages 63–74, 2008.

[2] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S.

McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,

S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B.

Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von

Dincklage, and B. Wiedermann. The DaCapo Benchmarks:

Java Benchmarking Development and Analysis. In OOPSLA
’06, pages 169–190, 2006.

[3] C. Blundell, E. C. Lewis, and M. M. K. Martin. Subtleties of

Transactional Memory Atomicity Semantics. IEEE Computer
Architecture Letters, 5(2), 2006.

[4] J. Bobba, K. E. Moore, H. Volos, L. Yen, M. D. Hill, M. M.

Swift, and D. A. Wood. Performance Pathologies in Hardware

Transactional Memory. In ISCA ’07, pages 81–91, 2007.

[5] R. L. Bocchino, Jr., V. S. Adve, D. Dig, S. V. Adve,

S. Heumann, R. Komuravelli, J. Overbey, P. Simmons,

H. Sung, and M. Vakilian. A Type and Effect System for

Deterministic Parallel Java. In OOPSLA ’09, pages 97–116,

2009.

[6] S. Burckhardt, A. Baldassin, and D. Leijen. Concurrent Pro-

gramming with Revisions and Isolation Types. In OOPSLA
’10, pages 691–707, 2010.

[7] L. Ceze, C. von Praun, C. Caşcaval, P. Montesinos, and J. Tor-

rellas. Concurrency Control with Data Coloring. In MSPC

���

’08, pages 6–10, 2008.

[8] L. Dalessandro, M. F. Spear, and M. L. Scott. NOrec: Stream-

lining STM by Abolishing Ownership Records. In PPoPP
’10, pages 67–78, 2010.

[9] T. David, R. Guerraoui, and V. Trigonakis. Everything You

Always Wanted to Know About Synchronization but Were

Afraid to Ask. In SOSP ’13, pages 33–48, 2013.

[10] D. Dice and N. Shavit. TLRW: Return of the Read-write Lock.

In SPAA ’10, pages 284–293, 2010.

[11] D. Dice, O. Shalev, and N. Shavit. Transactional Locking II.

In DISC ’06, pages 194–208, 2006.

[12] D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early Expe-

rience with a Commercial Hardware Transactional Memory

Implementation. In ASPLOS XIV, pages 157–168, 2009.

[13] A. Georges, D. Buytaert, and L. Eeckhout. Statistically Rig-

orous Java Performance Evaluation. In OOPSLA ’07, pages

57–76, 2007.

[14] D. Grossman. The Transactional Memory / Garbage Collec-

tion Analogy. In OOPSLA ’07, pages 695–706, 2007.

[15] R. Guerraoui and M. Kapalka. On the Correctness of Trans-

actional Memory. In PPoPP ’08, pages 175–184, 2008.

[16] L. Hammond, B. D. Carlstrom, V. Wong, B. Hertzberg,

M. Chen, C. Kozyrakis, and K. Olukotun. Programming with

Transactional Coherence and Consistency (TCC). In ASPLOS
XI, pages 1–13, 2004.

[17] P. B. Hansen. Distributed Processes: A Concurrent Program-

ming Concept. Commun. ACM, 21(11):934–941, 1978.

[18] T. Harris. Exceptions and Side-effects in Atomic Blocks. Sci.
Comput. Program., 58(3):325–343, 2005.

[19] T. Harris and K. Fraser. Language Support for Lightweight

Transactions. In OOPSLA ’03, pages 388–402, 2003.

[20] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Com-

posable Memory Transactions. In PPoPP ’05, pages 48–60,

2005.

[21] M. Herlihy and J. E. B. Moss. Transactional Memory: Archi-

tectural Support for Lock-free Data Structures. In ISCA ’93,

pages 289–300, 1993.

[22] S. T. Heumann, V. S. Adve, and S. Wang. The Tasks with

Effects Model for Safe Concurrency. In PPoPP ’13, pages

239–250, 2013.

[23] M. Isard and A. Birrell. Automatic Mutual Exclusion. In

HOTOS ’07, pages 3:1–3:6, 2007.

[24] E. Koskinen and M. Herlihy. Dreadlocks: Efficient Deadlock

Detection. In SPAA ’08, pages 297–303, 2008.

[25] B. C. Kuszmaul, C. E. Leiserson, and S. Fellow. Transactions

Everywhere. Technical report, 2003.

[26] Y. D. Liu, X. Lu, and S. F. Smith. Coqa: Concurrent Objects

with Quantized Atomicity. In CC ’08/ETAPS ’08, pages 260–

275, 2008.

[27] N. D. Matsakis. Parallel Closures: A New Twist on an Old

Idea. In HotPar ’12, pages 5–5, 2012.

[28] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A.

Wood. LogTM: Log-based Transactional Memory. In HPCA-
12, pages 254–265, 2006.

[29] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and

B. Hertzberg. McRT-STM: A High Performance Software

Transactional Memory System for a Multi-core Runtime. In

PPoPP ’06, pages 187–197, 2006.

[30] N. Shavit and D. Touitou. Software Transactional Memory.

In PODC ’95, pages 204–213, 1995.

[31] Y. Smaragdakis, A. Kay, R. Behrends, and M. Young. Trans-

actions with Isolation and Cooperation. In OOPSLA ’07,

pages 191–210, 2007.

[32] M. F. Spear, V. J. Marathe, W. N. S. III, and M. L. Scott. Con-

flict Detection and Validation Strategies for Software Trans-

actional Memory. In DISC ’06, pages 179–193, 2006.

[33] M. F. Spear, M. Silverman, L. Dalessandro, M. M. Michael,

and M. L. Scott. Implementing and Exploiting Inevitability in

Software Transactional Memory. In ICPP 2008, pages 59–66,

2008.

[34] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and

V. Sundaresan. Soot - a Java Bytecode Optimization Frame-

work. In CASCON ’99, 1999.

[35] M. Vaziri, F. Tip, and J. Dolby. Associating Synchronization

Constraints with Data in an Object-oriented Language. In

POPL ’06, pages 334–345, 2006.

[36] M. Zhang, J. Huang, M. Cao, and M. D. Bond. Low-overhead

Software Transactional Memory with Progress Guarantees

and Strong Semantics. In PPoPP ’15, pages 97–108, 2015.

A. Artifact Evaluation
The evaluated artifact contained all the necessary code and

data to reproduce the performance overhead measurements

in Table 9, the locking operations per second in Table 7,

and the speedup curves in Figure 7. The results of the mi-

crobenchmark in Table 6, and the memory overhead mea-

surements in Table 8 were not part of the evaluation. The

artifact is available from the authors upon request.

���

