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Abstract
The proliferation of data in graph form calls for the development
of scalable graph algorithms that exploit parallel processing envi-
ronments. One such problem is the computation of a graph’s min-
imum spanning forest (MSF). Past research has proposed several
parallel algorithms for this problem, yet none of them scales to
large, high-density graphs. In this paper we propose a novel, scal-
able, parallel MSF algorithm for undirected weighted graphs. Our
algorithm leverages Prim’s algorithm in a parallel fashion, concur-
rently expanding several subsets of the computed MSF. Our effort
focuses on minimizing the communication among different proces-
sors without constraining the local growth of a processor’s com-
puted subtree. In effect, we achieve a scalability that previous ap-
proaches lacked. We implement our algorithm in CUDA, running
on a GPU and study its performance using real and synthetic, sparse
as well as dense, structured and unstructured graph data. Our ex-
perimental study demonstrates that our algorithm outperforms the
previous state-of-the-art GPU-based MSF algorithm, while being
several order of magnitude faster than sequential CPU-based algo-
rithms.

Categories and Subject Descriptors G.2.2 [Discrete Mathemat-
ics]: Graph Theory—Graph algorithms, Network problems; E.1
[Data Structures]: Graphs and networks

General Terms Algorithms, Experimentation, Performance

Keywords Parallel Graph Algorithms, Minimum Spanning For-
est, GPU

1. Introduction
A spanning tree of a connected graph G is an acyclic subgraph of
G that connects all vertices of G. The Minimum Spanning Tree
(MST) problem calls to find a spanning tree of a weighted con-
nected graph G having the minimum total weight [17]. In case the
graph is not connected, i.e. consists of several connected compo-
nents, the problem is generalized to finding the Minimum Spanning
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Forest (MSF), i.e. a subgraph containing an MST of each compo-
nent.

MST computation finds applications in domains such as the
optimization of message broadcasting in communication networks
[10, 12, 22], biological data analysis [34], and image processing
[27], while it forms a basis for clustering algorithms [32, 35]. For
instance, assume a graph G(V,E) where vertices stand for persons
and weighted edges for the cost of communication among them, in
which we wish to spread some news at the minimum cost in real
time. We then need to efficiently compute an MST of G.

Past research has proposed several sequential MST algorithms,
starting out with Boru̇vka’s seminal work [9]. Highlights of this
research are Kruskal’s [18], Prim’s [26], and the Reverse-Delete
[20] algorithms. Other MST algorithms may have lower asymp-
totic complexity, but larger hidden constants [24]. While existing
algorithms are reasonably efficient, modern applications call for al-
gorithms that can scale well to very large and high-density graphs,
including complete graphs, as in the case of computing the MST in
Eucledian space, which finds applications in hierarchical clustering
[23]. Parallel processing comes into play to achieve this objective.
Thus, a large body of literature is devoted to parallel MST algo-
rithms [14, 19]. Nevertheless, such works use specialized hardware
that is not so readily available as low-cost and easily-programmable
Graphics Processing Units (GPUs); GPUs are commonly installed
on today’s home computers, workstations, consoles, and gaming
devices. Several pieces of work have exploited the GPU’s ubiquity
to suggest high-performance, general data processing algorithms
therefor [15, 16, 21]. In a similar spirit, Vineet et al. have already
offered a data parallel version of Boru̇vka’s MST algorithm adopted
for a GPU [31]. However, Boru̇vka’s algorithm is ill-chosen if the
objective is to solve the MST computation in a scalable manner for
dense graphs1, as its performance is known to deteriorate in com-
parison to Prim’s algorithm as graph density grows [13]. To date,
two parallel adaptations of Prim’s algorithm have been proposed
[8, 19]; however, out of these, [8] allows for limited parallelism, as
it does not allow two growing subtrees to touch each other, while
[19] necessitates costly inter-processor communication to merge
subtrees when they do get in contact. Thus, there is still a need for
a size-scalable and density-scalable GPU-based MST computation
algorithm.

In this paper we respond to this need; we propose a novel Paral-
lel MSF Algorithm (PMA) for undirected weighted graphs, which
adapts Prim’s algorithm while eschewing the drawbacks of [8] and

1 By dense we refer to those graphs with a number of edges ten times larger
than the number of vertices (|E| > 10× |V |).
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[19]; in contrast to [8], it allows for full-scale flexible parallelism;
still, unlike [19] it raises a much lower communication overhead.
We implement PMA on the GPU2 using the CUDA programming
framework [2]. Our experimental study on both real and synthetic
graphs verifies that our algorithm outperforms previous GPU-based
MSF algorithms.

2. Related Work
The MSF problem was first formulated and solved by Boru̇vka [9].
Subsequently, three altervative algorithms were proposed, namely
Kruskal’s [18], Prim’s [26] and the Reverse-Delete [20] algorithm.
All these algorithms exploit two properties of the MSF [30]; the
cycle property, which maintains that the heaviest edge in a cycle
does not belong to the MSF; and the cut property, which maintains
that, for every subset of the graph’s vertex set, C ⊂ V , the lightest
edge with one vertex in C and the other vertex in V \C belongs to
the MSF.

The Reverse-Delete algorithm, based on the cycle property,
iteratively removes the heaviest edge that does not break any
graph component’s connectivity. Likewise, Kruskal’s algorithm
iteratively adds the lightest edge that does not introduce a cycle.
Prim’s algorithm selects an arbitrary vertex and iteratively inserts
the lightest edge from the current subtree to an unvisited vertex,
based on the Cut property. Boru̇vka’s algorithm differs from Prim’s
algorithm in starting from all vertices at once, and expanding all
running subtrees at each iteration.

Several theoretical results highlight potential parallelism in
MST computation, most of them do not lead to efficient practi-
cal algorithms as they incur large constant factors [7]. Thus, most
practical parallel MST algorithms are merely parallelized versions
of classical sequential algorithms, adapted for specific hardware
architectures or programming models. As Boru̇vka’s algorithm is
naturally prone to parallelization, most of these works adapt that
algorithm, sometimes in combination with Kruskal’s or Prim’s al-
gorithm [7]. Chung and Condon [11] propose a parallel version
of Boru̇vka’s algorithm for asynchronous, distributed-memory ma-
chines. Boru̇vka’s algorithm is divided into five steps and paral-
lelize each step. Dehne and Götz [14] propose the Boru̇vka Mixed
Merge (BMM) algorithm, which lets each processing unit find a
local MST for its stored edges sequentially, and then prunes and
merges the resulting partial MSTs at a single unit using a balanced
D-ary tree.

The work that most related to ours, [8], stands between Prim’s
and Boru̇vka’s algorithms. This MST-BC algorithm lets each pro-
cessing unit run Prim’s algorithm starting from different vertices
simultaneously, marking the vertices in its own MST and coloring
all neighbors of marked vertices. These local MSTs grow until a
conflict occurs, i.e. one unit reaches a vertex marked or colored by
another unit. Then, the conflicting unit starts building a new MST
from another unvisited vertex. The algorithm terminates when all
vertices are either colored or marked and merges the resulting local
MSTs. MST-BC degenerates to Boru̇vka’s algorithm for P process-
ing units equal to the number of vertices n, and to Prim’s algorithm
for one only processing unit. The algorithm in [19] is a relaxed
version of MST-BC for the transactional memory model, differing
therefrom in the way it treats conflicts. When a conflict occurs, the
two parties involved switch to a Merge state to resolve the conflict
(see state transition diagram in Figure 1), with one unit appending
the other’s MST to its own, while the other starts building a new
tree from another unvisited vertex; on a connected graph, this al-

2 Since each thread of PMA runs the same set of instructions on multi-
ple data thus meeting the requirements of the Single Instruction Multiple
Thread architecture of GPU. GPU allows running thousands of threads con-
currently with low overhead.

gorithm ends up having only one thread working on the final MST,
hence reduces parallelism. Last, Vineet et al. [31] recently adapted
Boru̇vka’s algorithm for the GPU, using parallel primitives. This
algorithm provides the current state of the art for GPU-based MSF
computation in terms of efficiency; however, it cannot scale to large
numbers of edges.
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Figure 1. The state transition diagram of Kang and Bader’s algo-
rithm [19].

3. Motivation
We observe that most existing approaches to parallel MSF compu-
tation share a similar intuition: They build different trees in parallel,
and, when conflicts occur (i.e. different trees run into each other),
they merge the components and start over. However, this strategy is
not equally efficient on all types of graphs; MST-BC [8] fares well
with sparse graphs, its relaxation [19] manages well graphs with
large diameter (thanks to a heuristic that may result in less con-
flicts), [14] does well only with sufficiently dense graphs, and [31],
being an adaptation of Boru̇vka’s algorithm, is challenged by high
graph density; besides, the question of finding the MSF of a non-
connected graph is mostly ignored. Most significantly, these ap-
proaches tend to be cautiously conservative when expanding their
trees, as they have to be alert to potential conflicts, invoking too
many redundant iterations that deteriorate their performance. Un-
fortunately, the attempt to alleviate this conservatism in [19], by
merging the trees when a conflict occurs, ends up substituting that
problem with another, as it raises the inter-processor communica-
tion cost and results into an unbalanced load as progressively fewer
processors are left building fewer MSTs, forsaking the benefits of
parallelism. Starting out from the next section, we present an al-
ternative, elegant solution that eschews the conservatism of such
methods, takes full advantage of parallelism, and keeps communi-
cation cost low.

4. Parallel MSF Algorithm
Algorithm 1 shows the overall design of our PMA algorithm, while
Figure 2 depicts its state transition diagram. Given an undirected
weighted graph G = (V,E), PMA first performs a tailored version
of Prim’s algorithm, Partial Prim (PP), in parallel on P processors.
Then it unifies each connected set of subtrees produced by PP into
a single vertex and removes all self-loops. This process is repeated
until no more edges are left. The union of the sets of edges returned
by all PP executions is the desired MSF.
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Figure 2. The state transition diagram of the PMA algorithm.

Algorithm 1: PMA algorithm

Input: G(V,E) : An undirected weighted graph; P :
Number of processors;

Output: The MSF of graph G
1 while (|E| > 0) do
2 Initialize the successor arrays ;

3 Perform Partial Prim on P processors;

4 Compact each connected component into a vertex;

4.1 Partial Prim
Algorithm 2 outlines our Partial Prim (PP) algorithm. PP finds an
unvisited vertex s, and builds a tree from it as in Prim’s algorithm,
iteratively finding the lightest outgoing edge from the running sub-
tree. Our implementation keeps the list of vertices in the current
subtree in Q, and, at each iteration, goes through Q and finds
the lightest outgoing edge to expand the subtree with. A vertex’s
successor value represents the root of the subtree that contains it,
or −1 if it is unvisited. During the parallel execution of PP, two dif-
ferent processors may try to visit the same vertex at the same time;
thus, we use the atomic test-and-set instruction on the successor
array to avoid conflicts. Another conflict can occur when a proces-
sor p building a subtree rooted at s visits a vertex v that has already
been visited; then p connects its subtree with that of v by setting
successor[s] = successor[v], stops building that tree, and picks
another unvisited vertex to build a tree from. Section 4.3 proves the
correctness of the algorithm in connection to this step.

4.2 Unification step
After the termination of PP on all processors, every vertex is visited
and belongs to exactly one subtree. PMA then unifies all vertices in
the same subtree into one vertex, by tracing the successor array. In
the resulting graph, it removes all self-loops and all redundant par-
allel edges, keeping only the lightest ones. After these operations, it
is possible to be left with connected, non-island vertices (i.e., with
non-eliminated edges); this is due to the fact that, after two subtrees
mutually touch each other, both of them stop growing prematurely.
Thus, even after a unification step, PMA (Algorithm 1) repeats its
basic iteration, until all edges have been eliminated; only then is
the MSF construction finished and the algorithm terminates.

Algorithm 2: Partial Prim algorithm

Input: G(V,E): An undirected weighted graph;
successor: The successor array, shared among all
processors;
γ: Maximum size that a sub-tree can grow (γ ≥ 2)
Output: A part of the MSF of G

1 while there is an unvisited vertex s do
2 Atomic successor[s] = s if it is not set;

3 if successor[s] was set by another processor then
4 Continue;

5 Q = {s} ;

6 while |Q| < γ do
7 Find the lightest edge e = (u, v) such that u ∈ Q

and v �∈ Q;

8 if no more edge e then
9 Break;

10 Include e in the global MSF;

11 if successor[v] not set then
12 Atomic successor[v] = s;

13 Q = Q
⋃{v};

14 else
15 successor[s] = successor[v];
16 Break;

4.3 Proof of Correctness
The correctness of our PMA algorithm emanates from the Cut
property of the Minimum Spanning Forest.

Lemma 1 (Soundness). Each subtree constructed by each proces-
sor with the PP algorithm is a subset of the MSF of G.

Proof. Under the assumption that edge weights are distinct, regard-
less of the vertex at which we start Prim’s algorithm, we will build
exactly the same MST in a connected component. The only differ-
ence between our PP algorithm and the standard Prim algorithm is
that PP stops expanding the tree under certain conditions; thus, any
constructed subtree is a subset of the MSF of G.

Lemma 2 (Completeness). The unification step in PP does not
remove any edge belonging to the MSF of G.

Proof. We can think of the unification step as repeatedly unifying
two vertices at a time. We unify two vertices if and only if we have
selected an edge between them in the MSF of G. It follows that any
other parallel edges between these two vertices cannot be in the
MSF of G, thus removing self-loop edges of the unified vertex is
safe. After unifying all possible vertices, we only remove parallel
edges that are not the lightest ones between two new vertices; these
edges cannot be in the MSF of G either.

Theorem 1. PMA constructs the MSF of the input graph G.

Proof. The proof follows from Lemma 1 and Lemma 2.

Theorem 1 proves the correctness of our PMA algorithm. How-
ever, it is still unclear why there are no cycles in the resulting MSF
while we allow subtrees to touch each other independently. The
following property provides further intuition on this question.

Property 1 (Touch property). If subtree T1, constructed by PMA,
touches subtree T2 at edge e, then it stops growing. Subtree T2

can continue to grow until it either reaches its desirable component
size γ, touches another subtree T3, or touches T1. In the last case,
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assuming edge weights are distinct, the edge leading from T2 to T1

is the same edge e.

Proof. Since e is chosen by PP, it is the lightest edge between T1

and V \ T1. In turn, when T2 touches T1, as it is also expanded by
PP, it uses the lightest edge between T2 and V \T2, say e′. Assume
e′ �= e. Then the weight of e′ should be lighter than that of e, since
e′ was chosen by PP for expanding T2 while e was also available on
its boundary. However, e had been also chosen by PP for expanding
T1 while e′ was available on its boundary as well; thus, the weight
of e should be lighter than that of e′. By reductio ad absurdum, and
the distinct weight assumption, it follows that e′ = e.

4.4 Complexity Analysis
We now analyze the complexity of PMA. We start with estimating
the number of iterations of the loop in Algorithm 1. We ignore
vertices with degree 0, as they do not affect the MSF of G. With
all processors running PP, each vertex is visited exactly once and
is then compacted into a single vertex with at least one more
vertex either in the same subtree or in another subtree. Thus, each
iteration of the loop reduces the number of vertices by at least
half, hence the loop runs at most log2(|V |) times. Besides, each
edge in G is checked by at most two processors (each visiting
one of the two end points of that edge), at most γ times. Thus,
the total work of Algorithm 2 is O(2γ|E|) = O(|E|) when γ is
a small constant. Putting it all together, the total work of PMA
is O(|E| log2(|V |)). While having the same complexity as other
parallel MSF algorithms, PMA allows each processor to grow its
subtree without incurring costly merge and synchronization work.
Thus, by increasing γ, we can increase the subtree size, and hence
decrease the iterations of Algorithm 1 at the only cost of increasing
the computation in line 7 of Algorithm 2.

5. Implementation
We now discuss some implementation details of PMA. We assume
that the input graph is represented as an adjacency list. This data
structure consists of a vertex list (an array of vertices that stores for
each vertex, its index and a pointer to its adjacent vertices in the
edge list) and an edge list (that stores for each edge, its weight and
the index of the endpoint vertex of the edge). Our implementation
assumes that the graph, adjacency list, fits into the GPU memory.

5.1 Graphic Processing Units
Although the GPUs are designed for graphics processing tasks,
their performance, availability and ease of use render them an
excellent platform for executing general-purpose algorithms. A
modern GPU consists of several multiprocessors, each designed to
execute hundreds of computing threads in parallel efficiently, with
a zero-overhead thread switching capability and a small amount of
high-performance on-chip shared memory. With a design of each
multiprocessor similar to SIMD architecture, the GPU works best
with fine-grain parallelism. To fully utilize the computing power of
graphics hardware, it is desirable for a program to have a very high
level of parallelism, in the order of tens of thousand of threads.
At the same time, the communication between the GPU and the
CPU memory, going through the slow PCI-Express bus, should
be minimized. The main memory residing on the graphics card is
shared among all processors. As such, the GPU can be treated as
a shared memory architecture. To facilitate synchronization among
different threads on the GPU, atomic operations such as the test-
and-set instruction can be used.

We use the CUDA programming model [2] to program the
GPUs. In order to exploit the advance features of GPU, we break
our algorithm to different building blocks to leverage the parallel

primitive algorithms, namely prefix sum, stream compaction, and
sorting, as intermediate components of PMA. These primitives
have been implemented and optimized for CUDA [3, 28, 29] by
coalescing the memory accesses, using shared memory, avoiding
bank conflicts, memory paddings and alignments and other GPU
dedicated optimizations like unrolling loops. We use these parallel
primitive algorithms in the PMA implementation to better utilize
the graphics hardware.

In the following, we refer to a CUDA thread as a processor.

5.2 Partial Prim implementation
Each processor running Partial Prim needs to pick one unvisited
vertex and grow a tree. When a growing tree is terminated, an-
other unvisited vertex is picked. To reduce the conflict among P
processors in picking vertices we divide the set of vertices into P
partitions of equal size. Each processor only picks vertices in its
own partition to start growing a tree. This operation is still done
atomically since a processor growing its tree might visit a vertex
in another’s partition. The most important step in PP is to pick the
lightest outgoing edge to grow from those in the list Q contain-
ing the vertices in a processor’s current tree. We examine different
ways for doing so.

Algorithm 3: MinPMA algorithm

Input: G(V,E) : An undirected weighted graph; Q : the list
of vertices in the current sub-tree;

Output: The lightest edge e(u, v) such that u ∈ Q and
v �∈ Q

1 minW = ∞ ;

2 for Each u in Q do
3 for Each edge e(u, v) of u do
4 if successor[u] �= successor[v] and

e.weight < minW then
5 minE = e;

6 minW = e.weight;
7 Return minE;

5.2.1 MinPMA algorithm
The first approach (Algorithm 3) is to go through the list of vertices
in Q, and, for each vertex u, through its adjacent edges, and pick
the lightest one with a destination v �∈ Q. To check if a vertex v is
in Q or not, we check whether successor[v] is the same as the root
of the current tree or not. By this approach, we have to go through
the list of adjacent edges of each vertex in Q up to |Q| times, thus
its complexity is O(γ|E|).
5.2.2 SortPMA algorithm
Our second approach (Algorithm 4) tries to alleviate the disadvan-
tage of MinPMA. We first sort the list of adjacent edges of each
vertex by increasing weight3. Then, whenever we look for the light-
est edge going out from vertex u, we pick the first edge that does
not have a destination in Q. By recording the previously chosen
edges for each vertex u in Q, we only have to go through the list of
adjacent edges of each vertex at most once. Thus, the cost of this
step becomes O(|E|), at the cost of sorting the edges, which takes
O(|E| log(|E|)). The latter cost can render SortPMA more costly
than MinPMA for small |Q| or large |E|. Thus, for very sparse

3 PMASort uses the parallel radix sort proposed in [28]. However, PMASort
needs only adjacent edges of every vertex to be sorted in ascending order of
their weights, not the whole edge list. Therefore, In order to have the edge
list partially sorted, we first sort the whole edge list in ascending order by
the weights then we sort the result in ascending order of the starting vertices.
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Algorithm 4: SortPMA algorithm

Input: G(V,E) : An undirected weighted graph, with the
list of adjacent edges of each vertex sorted by weight;
Last : Last minimum outgoing edge found for each
vertex. Q : the list of vertices in the current sub-tree;

Output: The lightest edge e(u, v) such that u ∈ Q and
v �∈ Q

1 minW = ∞ ;

2 for Each u in Q do
3 for Each edge e(u, v) of u starting from Last[u] do
4 if successor[u] �= successor[v] then
5 if e.weight < minW then
6 minE = e;

7 minW = e.weight;
8 Last[u] = e ;

9 Break;

10 Return minE;

graphs, MinPMA fares better than SortPMA. On the other hand,
for dense graphs, PP has a low level of parallelism, and, as a result,
SortPMA becomes faster as most of the work is done in the sorting
step, which runs efficiently on the whole edge list.

5.2.3 HybridPMA algorithm
As MinPMA is efficient for certain graphs and SortPMA for
others, we combine the strengths of both in a hybrid approach,
HybridPMA, where we use MinPMA for the first iteration and
SortPMA for the rest. The rationale for this choice is that, in the
later iterations, the graph gets a lot denser as multiple vertices get
unified into one.

In order to pick the lightest outgoing edge, one can argue in
favour of using a heap. We empirically observed that using heap
for the purpose of finding the lightest outgoing edge in the list Q
is much slower than the MinPMA algorithm. For instance, assume
that the maximum subtree size (γ) is 10, then the MinPMA algo-
rithm goes through the list of outgoing edges for each vertex at
most 10 times. On the other hand, when we use heap, each time we
find the lightest outgoing edge for a vertex, we need several rounds
of min extraction to overlook the non-outgoing edges (i.e. edges
that were visited). In addition, the overhead of creating multiple
heaps for each vertex and the need of going through more heaps
by a thread when its queue grows bigger, make using heap more
costly than just going through all the edges and finding min, as in
the MinPMA algorithm.

Algorithm 5: Unifying algorithm

Input: G(V,E) : An undirected weighted graph; successor
: The successor array, shared among all processors;

Output: The simplified graph G with each connected
component unified into one vertex

1 Find the root of the component for each vertex ;

2 Compute the new vertex indices ;

3 Update the starting and ending vertices of the edges ;

4 Remove self-loop edges ;

5 Return minE;

5.3 Unification implementation
The unification step is common to most parallel MSF algorithms.
We opt to sacrifice the total work complexity a little, so as to
achieve better parallelism and better utilize the GPU power. Our

implementation is inspired from the merging algorithm of Vineet
et al. [31]. The unification process with total work O(|E|log(|V |))
is explained in Algorithm 5. First, we use the distance doubling
technique on the successor array to find the root of the component
for each vertex in the graph. We also have to remove cycles in the
successor array, created two subtrees touching each other at the
same time, as in [31]. Having done that, we mark the root vertices
as 1 and other vertices as 0, and perform a parallel prefix sum to
compute the new vertex index for each connected component, and
the total number of components. We then update the start and end
vertex of all edges with the new component indices. Self-loop edges
are removed. We then sort the edge list by start vertex so as to bring
edges with the same starting point together. Thus, all edges that
need to be removed are pushed to the end of the edge list, so we can
easily remove them and compute the new number of edges. In case
when the graph is dense, even if we can reduce the vertices by half,
we still end up with almost the same number of edges, most of them
being parallel edges between the same vertices (see Figure 3). In
such a case, it is worth removing the parallel edges. To do that, we
sort edges first by starting vertex, then by ending vertex, and finally
by weight. Then we can easily identify the non-minimal parallel
edges, and remove them using the stream compaction primitive.

� �

� �

� �

�

Figure 3. The graph (a) before and (b) after unifying u and v.

5.4 Implementation notes
We note that vertices of degree 0 contribute nothing in the MSF, so
we should better remove them all before running the algorithm. We
incorporate this logic in the Unification step too, removing any new
vertices with no outgoing edge.

In MinPMA each time we find the minimum outgoing edge
from a vertex u in Q to a vertex outside Q, we bring that edge
to the top of the edge list of u. Next time when we need to scan the
edge list of u, we first check its first edge; if it still goes out of Q,
it is still the minimum outgoing edge.

6. Performance Evaluation
We now compare different implementations of PMA to Vineet et
al’s algorithm (Vineet) [31] and Bader and Cong’s algorithm (BC)
[7], the two state-of-the-art parallel algorithms tuned for GPU and
CPU respectively. All runtimes are reported on an Intel Xeon 5420
2.4Ghz workstation with 8GB of memory. The GPU algorithms
are executed using CUDA Toolkit 3.1 running on the NVIDIA
Tesla S1070 server with a single Tesla card. When measuring the
execution time, for all algorithms, we exclude the time to copy
the input graph to the GPU memory and the resulting MSF back
to main memory (since this time is negligible4 and independent
of the algorithm). For the sequential algorithms, we use the Boost
library [1].

4 For instance, the time to copy the input graph to the GPU memory and the
resulting MSF back to main memory for the New York graph(0.7 million
edges) is 0.42 milliseconds and for the USA-West(15 million edges) graph
is 6.45 milliseconds.
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Figure 4. Execution time of HybridPMA on Erdős-Rényi graphs, varying average degree.
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(a) Erdős-Rényi graphs
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(b) R-MAT graphs
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(c) SSC#2 graphs
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(d) WS graphs

Figure 5. Experiments on varying average degree for four types of graph, |V | = 1M .

6.1 Datasets
We use both real and synthetic graphs. Our real data are the DI-
MACS USA road networks data [4] (also used in [31]) and large

network data from the SNAP library [6]; for our synthetic data, we
use the Georgia Tech graph generator suite [5] to generate the R-
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Graph Vertices Edges
Execution Time (ms)

CPU GPU GPU
Prim Kruskal Boruvka Vineet MinPMA SortPMA HybridPMA

New York 264K 733K 183 216 541 29 18 27 18
San Francisco 321K 800K 207 255 477 30 19 27 19

Colorado 435K 1M 290 359 592 38 25 37 24
Florida 1.07M 2.7M 780 987 2139 79 51 81 50

Northwest USA 1.2M 2.8M 835 1111 1576 83 59 86 58
Northeast USA 1.52M 3.8M 1120 1571 2811 112 81 118 80

California 1.8M 4.6M 1451 2003 3246 137 103 144 102
Great Lakes 2.7M 6.8M 2076 3004 4832 193 158 213 157
USA-East 3.5M 8.7M 2752 3944 6964 242 195 267 193
USA-West 6.2M 15M 4852 7158 12052 430 346 469 343

USA-Central 14M 33.9M - 1 - 52306 - 912 1170 900
USA-Full 23.9M 57.7M - - 46890 - 1378 1909 1361

Arxiv Astro Physics 19K 7.9M 93 347 354 39 32 30 30
Penn Road network 1M 6.17M 1603 5522 3315 180 108 169 106

Amazon co-purchasing 410K 6.7M 1457 5923 24047 274 175 218 164
Google graph 876K 10.2M 2616 9730 59671 334 240 268 231

Internet topology 1.7M 22.2M 7000 24629 1408810 934 839 799 797
US Patents Citation 3.8M 33M - - 97175 2434 1482 1494 1221

Table 1. Runtime of different CPU and GPU algorithms on real-world networks.

MAT and SSCA#2 graphs and the techniques proposed in [25] to
produce Erdős-Rényi (ER) and also Watts and Strogatz (WS) ran-
dom graphs. WS model [33] generates random graphs with small-
world properties in two steps. WS first draws a ring lattice, n ver-
tices each connected to its k nearest neighbors. Then, in an ER
fashion selects an edge, i.e. sampling the edges with probability p,
from the so-called ring and rewires the edge.

6.2 Maximum subtree size (γ)
The maximum subtree size is the maximum number of vertices
of the subtree that a thread is allowed to grow. This maximum
allowed subtree size plays a crucial role in PMA. If γ = 2, PMA
behaves like Vineet, while if γ = |V |, PMA degenerates to Prim’s
algorithm running sequentially. This is so because, to ensure that
each processor has a fair chance to grow its subtree up to γ, we set

the P (number of CUDA threads) to be
|V |
γ

.

Figure 7(a) shows the execution time of MinPMA and SortPMA
with varying γ, processing the Florida road network, a very sparse
graph with |V | ≈ 1M and |E| ≈ 2.7M . Both implementations
of PMA speed up as γ increases, reaching their peak performance
withγ = 8. This is so because, as the subtree gets bigger, finding
the lightest outgoing edge becomes more costly. We also note that
MinPMA outperforms SortPMA for very sparse graphs.

Figure 7(b) examines the behavior of PMA on very dense graph,
an R-MAT graph with 10K vertices and approximately 11M edges.
For such a graph, the chance for two processors to conflict is very
high. The performance of SortPMA peaks at γ = 14, and is
unchanged after that, most likely because no processor can grow
a subtree bigger than 14. On the other hand, due to the high cost of
finding the minimum outgoing edge, the performance of MinPMA
degrades as γ grows. MinPMA continues to slow down as γ grows
because, as we increase γ, we decrease P . SortPMA is not much
affected by this because sorting dominates the execution time.
These results suggest that for sparse graphs, a small value of γ
yields good performance, while for dense graphs, a bigger γ might
be better.

To verify this trend, we run HybridPMA, on Erdős-Rényi Ran-
dom graphs with varying average degree and |V | fixed to 1M (Fig-

1 Crashed, e.g. out of memory

 0

 20

 40

 60

 80

 100

 120

 0  5  10  15  20  25  30

E
x
ec

u
ti

o
n
 T

im
e 

(m
s)

Maximum sub-tree size [γ]

MinPMA
SortPMA

(a) Florida graph

 0

 100

 200

 300

 400

 500

 600

 700

 0  5  10  15  20  25  30

E
x

ec
u

ti
o

n
 T

im
e 

(m
s)

Maximum sub-tree size [γ]

MinPMA
SortPMA

(b) R-MAT graph

Figure 7. Execution time of PMA with varying γ.
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(a) ER, average deg. 3
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(b) R-MAT, average deg. 3
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(c) ER, average deg. 6
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(d) R-MAT, average deg. 6
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(e) ER, average deg. 9
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(f) R-MAT, average deg. 9

Figure 6. Experiments on varying the number of vertices.

ure 4(a)). We observe that, for small average degree, a small γ of 5
or 6 gives the best performance, whereas for bigger average degree,
a γ as big as 200 has an advantage.

However in the whole set of our experiments, we observe that
very small γ like γ = 2 is always not efficient for any kind of graph.

The reason is if γ = 2 we just find one edge for each vertex, while if
we increase the γ we can find more edges (maximum γ−1 for each
Partial Prim). On the other hand, when we have a relatively large
γ like γ = 1000 we need to pay the cost of iterating through the
neighbors of γ vertices. Therefore both small (2) and (relatively)
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large (1000) γ do not yield good performance. We observe that the
optimal maximum subtree size depends on the average degree of
the graph and the graph structure, such as average shortest path
length, average degree and the centralities.

6.3 Removing parallel edges
We also examine the effect of removing parallel edges to the perfor-
mance of PMA. As discussed, after each unification step, we might
end up with a lot of parallel edges. Figure 4(b) shows the execu-
tion time of HybridPMA with and without parallel edge removal.
It is clear that removing parallel edges significantly improves the
performance and, the denser the graph, the more significant is the
performance boost. For the rest of the experiments, we always run
PMA with parallel edge removal.

6.4 Reduction rate
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Figure 8. Reduction rate of different algorithms

The three compared parallel algorithms, namely BC, Vineet,
and PMA, all have a similar workflow: first, some subsets of the
MST are computed, then the connected components are unified into
one vertex; if any edges remain the algorithm iterates. However,
PMA is less conservative than Bader and Cong’s algorithm, as
it allows the subtrees it constructs to touch each other, and thus
has much fewer components in the next iteration. To demonstrate
this effect, Figure 8 shows our measurements of the reduction
rate, i.e., the rate of vertices unified after the first iteration, with
four different types of graphs: a DIMACS graph (Florida), an
Erdős-Rényi graph (|V | = 1M , |E| = 30M ), an R-MAT graph
(|V | = 1M , |E| = 10M ) and an SSCA graph (|V | = 1M ,
|E| = 8M ). We have implemented Bader and Cong’s algorithm in
CUDA, using atomic operations instead of the coloring technique,
thus allowing the subtrees to grow a little bit further. The number of
processors used is very small to further reduce conflicts. Still, the
observed reduction rate of Bader and Cong’s algorithm is much
lower than that of PMA, especially in dense graphs where the
chance of conflict is high. Vineet also exhibits lower reduction
rate than PMA, sometimes even lower than Bader and Cong’s
algorithm. In PMA, larger γ (100 vs 10) improves the rate. Since
Bader and Cong’s algorithm has very low reduction rate, especially
when the number of processors is large, it becomes very inefficient
on a massively multithreaded architecture like the GPUs. Thus, we
do not include it in the rest of our evaluation.

6.5 Performance comparison
We now compare the performance of different PMA implemen-
tations to Vineet [31]. As the implementation of Vineet we ob-
tained cannot handle disconnected graphs, in some cases we add
extra edges to render the graphs connected. Table 1 shows the ex-
ecution time on real world networks. These are mostly very sparse
graphs and thus Vineet using Boru̇vka’s algorithm is quite efficient.
Nevertheless, in all cases, PMA is faster, up to 2 times for large

graphs like the network of citations among US Patents. Besides,
HybridPMA is faster than both MinPMA and SortPMA. Different
sequential algorithms on CPU using Boost C++ library [1] are in-
cluded for the sake of illustration. As GPU implementations are
orders of magnitude faster than CPU implementations, we omit the
CPU algorithms from the rest of our presentation.

Figure 5 shows the runtime on different types of synthetic
graphs when we fix the number of vertices at 106 and vary the
average degree (or number of edges). For all four type of graphs,
PMA outperforms Vineet, and the speed up increases as the graphs
get denser. This result reconfirms the advantage of using Prim’s
algorithm over Boru̇vka’s algorithm.

In Figure 6, we measure runtime when we fix the average degree
and vary the number of vertices in the graph. For Erdős-Rényi
(ER) graphs, when the degree is small, Vineet performs quite close
to PMA. However, as the average degree grows, the gap between
them increases too, with PMA taking the lead. In addition, Vineet’s
implementation has a limitation on the maximum number of edges
it can handle, so it cannot run some of the very big graphs. Varying
the number of vertices in R-MAT graphs presents a similar trend,
while now PMA is substantially faster even on very small average
degree, as there are still many vertices with high degree in R-MAT
graphs.

7. Conclusions
This paper proposed the first, to our knowledge, size- and density-
scalable parallel algorithm for Minimum Spanning Forest compu-
tation. Our PMA algorithm, based on Prim’s algorithm, avoids the
conservatism and inter-processor communication cost of earlier ap-
proaches, while it is tailored for implementation on a GPU. The
key to this achievement is that we allow different processors to
grow their partial MSTs unimpeded, while conflicts are handled
smoothly without raising extra communication demands. Our al-
gorithm, implemented on a GPU, outperforms the previous state-
of-the-art GPU-resident parallel MSF algorithm, which is built on
Boru̇vka’s algorithm.

A crucial underlying assumption for our algorithm is that edge
weights are distinct. Still, our algorithm can be easily adapted to
handle duplicate edge weights, by appending a unique number to
the end of each edge weight; such appending does not affect the
total weight of the MSF.
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