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Abstract

With the arrival of heterogeneous manycores comprising various
features to support task, data and instruction-level parallelism,
developing applications that take full advantage of the hardware
parallel features has become a major challenge. In this paper,
we present an extension to our CAL compilation framework
(CAL2Many) that supports data parallelism in the CAL Actor
Language. Our compilation framework makes it possible to pro-
gram architectures with SIMD support using high-level language
and provides efficient code generation. We support general SIMD
instructions but the code generation backend is currently imple-
mented for two custom architectures, namely ePUMA and EIT.
Our experiments were carried out for two custom SIMD processor
architectures using two applications.

The experiment shows the possibility of achieving performance
comparable to hand-written machine code with much less program-
ming effort.

Keywords SIMD, CAL Actor Language, QRD

1. Introduction

To cope with the high computational demands of DSP applica-
tions, high performance embedded computing is shifting to het-
erogeneous manycores, which incorporate various features, such as
reconfigurability, hardware accelerators, memory banks with paral-
lel access, SIMD-based processors, etc. These features are intended
to speed up potential bottlenecks of algorithms that frequently oc-
cur in DSP applications, e.g. baseband processing, video/audio pro-
cessing and computer vision. Software developers are left with the
challenge of developing applications in a way that takes full advan-
tage of the advances in the hardware [21].

Recent embedded manycores and general purpose processors
(GPP) have incorporated SIMD extensions to increase the overall
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performance of a system. Concurrent models of computation, such
as the actor model, can be used to exploit task-level parallelism
of application to program manycores. However, to takes full ad-
vantage of the hardware, additional levels of parallelism, i.e. data
and instruction-level parallelism, within a task or an actor must be
employed. In earlier work [11], we have exploited the parallelism
between tasks for manycore architectures. In this paper, we focus
on Single Instruction Multiple Data (SIMD) support on single pro-
cessors within a manycore.

There are two widely used methods to exploit instruction- and
data-level parallelism. In the first method, the programmer develops
the code manually by calling APIs that give direct access to specific
hardware instructions. This method requires the programmer to be
an expert in both the application and the hardware domain. This
leads to high software development cost, and extremely difficult,
time-consuming and error-prone coding. The second method re-
quires less involvement of the programmer; it starts with traditional
sequential code and uses optimization tools to identify instruction
patterns such as loops and replace them with highly optimized in-
structions. Although compilation techniques, like vectorization, es-
sential to utilize these features have been available for four decades
[6, 9, 10], their effective use is insufficient and limited to a spe-
cific way of coding [17]. Additionally, our targeted architectures
have custom memory organization, and non-regular and complex
instruction sets with run-time reconfigurability. This makes it diffi-
cult to use the available automatic vectorization technology.

To increase both programmability and resource utilization in
manycores with SIMD support, we propose to use a high-level
language, such as CAL, with explicit constructs for parallelism,
vector type, and vector computation. In earlier works [11], we have
used CAL to express the inherent task parallelism of applications
and the Cal2Many compilation framework to map applications on
manycore architectures.

However, the execution of operations within an actor was se-
quential, preventing the efficient utilization of architectures with
SIMD support. In order to remedy this, we have extended CAL
with a vector data type and vector operations. Since recent archi-
tectures are incorporating SIMD unit adding SIMD support in CAL
enables the language to keep up with the changes in the hardware,
both in embedded systems [15, 24] and GPP. It also exposes the
hardware features to the programmer through a high-level abstrac-
tion that enables the programmer to employ both task and data-level
parallelism without the need to be an expert in the targeted archi-
tecture.
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Our proposed design starts with a set of applications specified in
CAL Actor Language that are then mapped to manycore architec-
tures using our CAL compilation framework. Our goal is to provide
portable SIMD operations and optimizations for embedded many-
cores with SIMD support. The next section relates our approach
with other methods to program architectures with SIMD support.
In Section 3, the details of the programming approach are pre-
sented. Section 4 presents the CAL compilation framework. Sec-
tion 5 presents experimental results and discussions. Finally, Sec-
tion 6 presents conclusions and future work.

2. Related Work

The number of processors in a chip and the number and type of
advanced features within a processor, such as SIMD units, are con-
stantly increasing. In this paper, we focus on SIMD support on sin-
gle processors within a manycore. Currently, to gain performance
via SIMD units most developers rely on auto-vectorization of com-
pilers such as GCC, Clang or Intel C++ Compiler (ICC). How-
ever, previous researches show that the SIMD units are underuti-
lized [7, 17]. Manual code tuning is required to take full advan-
tage of the available features. Most compilers allow direct accesses
of SIMD units using intrinsics–architecture specific built-in func-
tions. For example, GCC and Clang allow the use of MultiMedia
eXtension (MMX), Streaming SIMD Extensions (SSE), 3DNow!
and Advanced Vector eXtensions (AVX) x86 extensions by using a
data type with vector attributes. Clang also supports OpenCL, Pow-
erPC’s AltiVec and ARM’s NEON vector extensions using differ-
ent vector types. The predefined vector types and specific set of op-
erations makes the code non-portable and error-prone. In addition,
different architectures have different instruction extension, register
size, memory layout and programming styles, that entails that code
written for one architecture has to be re-written for the another one,
a hinder for portability.

To address the programmability issue, researchers have sug-
gested developing an application by using a common set of macros
or libraries that are translated into target specific data types and
intrinsic calls. Array Building Blocks (ArBB) [18] addresses pro-
grammability and productivity using a C++ API and operator over-
loading. ArBB is a compilation framework that consists of a low-
level C API and a C++ library implemented as an embedded lan-
guage. ArBB claims to support both data- and thread-level paral-
lelism. Developers use the C++ API to declare Scalar and Collec-
tions values. The compilation processes use the collection values to
extract SIMD (data) and thread (task) parallelism.

This approach is based on C++, a language designed for a
unified memory system and is difficult to adapt for manycores with
a distributed memory system. We propose CAL Actor Language
to develop applications using encapsulated concurrent actors with
SIMD operations to exploit both task and data level parallelism.

Cilk Plus (a language) and OpenMP (an API) are also exten-
sions to C and C++, and support thread- and data-level parallelism.
Cilk Plus expresses parallelism using cilk for a for loop to run it-
erations in parallel, cilk spawn a function call to run the called and
the caller function in parallel, and cilk sync a barrier that halts the
current function till the functions it spawned are complete. For data
parallelism, Cilk Plus uses #pragma simd and Simd for com-
piler vectorization of loop bodies, and an extended array notation
to enable vectorization via vector operations. Similary, OpenMP
uses annotations such as, #pragma omp parallel, #pragma
omp parallelfor, and #pragma declare simd to write a multi-
threaded application with SIMD operations.

In both Cilk and OpenMP, the programmer pinpoints data and
task parallel segments of an application. However, the actual par-
allelization process including the communication among tasks is
automatically managed by the run-time system. This makes the

parallelization implicit. In our approach, the programmer explicitly
specifies the task and data-level parallelism using CAL actors and
SIMD operation within an actor, respectively. The communication
among tasks is also expressed by the programmer by connecting
input and output ports of CAL actors.

Another common approach is to use a domain specific language
(DSL) with program generators. For instance, SPIRAL [19] is an
autonomous program generation system that generates vectorized
code for linear transforms, like discrete cosine transforms and other
DSP algorithms. The transforms and the algorithms are specified as
mathematical formulas using a symbolic DSL. These formulas are
then used for target-specific automatic code generation and opti-
mizations. The symbolic DSLs have a high degree of expressive-
ness and could increase productivity. However, they are not well
suited for compiling directly down to the manycore architectures;
rather, they require transformations via a parallel intermediate rep-
resentation.

3. The Programming Model

With the emergence of manycore architectures, actor-oriented
dataflow programming languages are gaining acceptance; exam-
ples include CAL [8], Erlang [2], and SALSA [23]. The dataflow
model [20] was introduced as a visual programming language by
Sutherland in 1966. In the dataflow model, an application is or-
ganized as a flow of data between the nodes of a directed graph.
The nodes are computational units, usually called actors or pro-
cesses. Actors are autonomous, concurrent and isolated entities
that execute asynchronously. Edges model channels by connecting
explicitly defined actor inputs to outputs. The streams of data that
flow through the edges (channels) are called tokens.

We have used CAL Actor Language to define the actors [8] and
Network Language (NL) [14] to express the communication among
the actors. CAL is a domain specific language that provides high-
level abstraction for DSP applications independent of the underly-
ing hardware. RVC-CAL, a subset of CAL, has been adopted by
MPEG and ISO as a standard to specify video coding [5]. CAL ac-
tors have actions to perform a specific task, input/output ports to
communicate with other actors and private variables to record the
state of the actor. Actors do not have access to the state of other ac-
tors. Thus, interaction among actors happens only via input/output
ports. Each execution of an actor may update the private state, con-
sume tokens and produce tokens. During execution, an actor can
take different actions depending on (1) the availability of tokens on
the input port, (2) the actual values of the tokens and (3) the internal
state of the actor. These conditions are called the firing conditions
of an action.

Network Language (NL) sketches the network of the complete
CAL application. In NL the programmer has to specify three sec-
tions: a variable declaration section to define variables that are
used as attributes for actors and sub-networks, an entity section to
declare actors or sub-networks, and a structure section to declare
the channels that connect the dataflow network.

3.1 SIMD support for CAL

The aim of adding SIMD support in CAL is to enable efficient uti-
lization of manycore architectures with specialized ISA to support
vector and matrix operations, e.g. ePUMA [15] and EIT [24]. These
architectures target high performance demanding DSP applications
such as large antenna systems, imaging, and audio/video process-
ing. These applications operate on a large amount of data with little
data reuse and are usually computationally intensive. The applica-
tions are inherently massively parallel and usually exhibit both task
and data level parallelism. Therefore, the target applications can
be modeled as streaming applications that have encapsulated, con-
currently operating computational kernels. Here, we can use CAL
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actors to model the kernels and NL to express the communication
among kernels. Within each kernel, we can use SIMD data types
and operations to exploit data level parallelism.

In the backend, depending on the target architecture, the SIMD
operations can easily be translated to a specialized hardware ac-
celerator, optimized kernel, or even to an instruction that executes
the operation in one cycle. Using the information from the SIMD
data types, the memory management tools can easily explore the
addressing patterns and configure the data in a way suitable to the
underlying hardware.

3.1.1 SIMD data types

SIMD operations provide optimized instructions for repetitive com-
putation that work on a large amount of data characterized by a vec-
tor type. In most SIMD-based architectures a vector is a native data
type. In CAL, there is a type for Lists that is used for arrays of scalar
types. Now, in order to explore support for SIMD, we have added a
type constructor to interpret a List also as a vector type. That is, for
both vector and array of scalar types, we have used CAL list type.
The list type is an array of scalar by default. To declare vector type
the make vector constructor must be used.

Like array of scalars, vector is a derived type that requires a
size and a primitive data type. However, vector is first class type,
i.e. SIMD operations can produce vectors.

The main difference between a vector and an array of scalars
is that vector types can only be used with SIMD operations, and
SIMD operations can only operate on vector types. While program-
ming, a programmer may need to use SIMD operations on an array
of scalars or access a specific vector element as a scalar. In this case,
the programmer has to use make vector explicitly to construct a
vector type for the SIMD operation. Listing 1 shows the CAL code
for matrix multiplication. Here A, B and C are 2D vectors and aC
is an array of scalars. In the code, make vector is used to define the
three vectors and in line 16 to convert an array of scalars to a vector.

1 actor MM () ==> :
2 action ==>
3 var
4 List(type:List(type:int, size = 4),size = 4) A :=

make_vector([[3,4,5,6], [4,5,6,7], [5,6,7,8],
[6,7,8,9]]),

5 List(type:List(type:int, size = 4),size = 4) B :=
make_vector(...),

6 List(type:List(type:int, size = 4),size = 4) C :=
make_vector(...),

7 List(type:int, size = 4) aC
8 do
9 v_transpose(B);

10 foreach int i in 0 .. 3
11 do
12 foreach int j in 0 .. 3
13 do
14 aC[j] := v_dotP(A[i], B[j]);
15 end
16 C[i] := make_vector(aC);
17 end
18 end
19 end

Listing 1. CAL actor for Matrix Multiplication.

The restriction and having array and vector types gives the pro-
grammer an intuition to come up with data structures and algo-
rithms that are more suitable for SIMD-based architectures. More-
over, the intent of the programmer becomes very clear and directs
the compiler to use the convenient data alignment to optimize the
code competently. Furthermore, the explicit data access pattern of
the vector can be used for efficient utilization of load/store oper-

ations. This increases the overall performance of the system since
the data access is one of the main parameters that affect perfor-
mance [22].

3.1.2 SIMD operations

The CAL SIMD operations include single instruction vector opera-
tions for arithmetic, logic, comparison, and bitwise operations. The
operations are defined element-wise and result in a vector of the
same size as the arguments. There are also operations where one
of the operands can be a scalar, in which case, the scalar will be
expanded to a vector that has the same size as the vector operand.
Additionally, we have backend specific intrinsic functions for fre-
quently used kernels such as discrete cosine transforms (DCT) and
other linear transforms. The intrinsic functions and the arguments
give the compiler all structural information needed to configure the
code in a way that eliminates unnecessary calling and data access
overheads. Depending on the hardware resources, a call for an in-
trinsic function may result in an access to a hardware accelerator
or a call for a kernel, i.e., an inlined optimized sequence of instruc-
tions. When generating code for ePUMA, we have used ePUMA’s
kernel library. The library contains FIR, FFT, DCT, matrix inver-
sion, transpose and a number of DSP algorithms implemented in as-
sembly code by an expert. For EIT, we have used the hardware ac-
celerators for division, square-root and COordinate Rotation DIgi-
tal Computer.
Binary operations The syntax of the binary SIMD operations uses

the ususal binary operators e.g V3 = V1+V2 for element-wise
addition and V3 = V1 ∗ S1 for scalar multiplication of vector
V1.

APIs For the some SIMD operations we have used APIs e.g
v dotP (V1, V2) for dot product of two vectors. As can be
seen in Listing 1, e.g. line 14, we can access individual rows
of 2D vectors as 1D vectors and perform SIMD operations.
For applications that require non-aligned vector reads, we can
use operations such as, sorting, shuffling and masking. The
following code snippet shows the use of a boolean vector as a
mask and the v select API to select an element from one of
two vectors. Vector v c selects an element from vector v a if
the corresponding element of the mask is true, otherwise it
selects from vector v b.

mask := make_vector([false,true,true,false]);
v_a := make_vector([1,2,3,4]);
v_b := make_vector([5,6,7,8]);
v_c := v_select(maks, v_a, v_b}; //[5,2,3,8]

Intrinsics As mentioned previously, we include intrinsic functions
for frequently used kernels. Depending on the backend, the in-
trinsics are implemented via hardware accelerators, available
SIMD operations, or a sequence of target specific instructions.

Overall, the CAL+SIMD support exposes the inherent paral-
lelism of DSP applications, decreases the involvement of the pro-
grammer in low-level programing and gives the compiler more in-
formation to enhance the performance through efficient utilization
of local memory, parallel data access, DMA transfers and applica-
tion specific hardware features.

4. CAL Compilation Framework

The goal of the compilation framework is to separate the applica-
tion development, the scheduling of CAL action firings and target-
specific optimizations. An overview of the design flow is shown in
Figure 1. The CAL compilation framework (Cal2Many) has three
main parts: front end, two intermediate representations, and target
specific backends. The frontend performs lexing, parsing, and gen-
erates an abstract syntax tree (AST). The frontend represents SIMD
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Figure 1. An overview of the design flow focusing on the SIMD backend.

operations and data types in the AST as it is, which gives the back-
end the required information for competent code generation. The
two intermediate representations (IRs) are Actor Machines (AM)
[13] and Action Execution Intermediate Representation (AEIR).
The AST of each CAL actor is translated to an AM that is then
translated to AEIR. The backend performs target-specific transfor-
mations and code generation. In earlier work, we have added back-
ends for two manycore architectures and a C backend for general
purpose processors [11]. In this work, we have extended Cal2Many
by adding a new backend for embedded manycore architectures
with SIMD support, such as ePUMA [15] and EIT [24].

4.1 Intermediate Representations

There are two IRs employed in our tool chain, namely Actor Ma-
chines (AM) and Action Execution Intermediate Representation
(AEIR). AMs can be used for high-level optimizations such as,
composing and splitting actors and for dataflow optimizations.
AEIR can be used for low-level optimizations, such as loop op-
timizations, dead code elimination and for inlining functions.

The AM deals with scheduling the testing of conditions and the
execution of actions. AMs consist of states that have knowledge
about conditions and a set of instructions that can be performed in
each state. These AM instructions can be: a test to test one of the
firing conditions, an exec for the execution of an action, or a wait
to change information about absence of tokens to unknown, so that
a test on an input port can be performed after a while.

The next step is the transformation of AM to different program-
ming language constructs, such as function calls to execute the AM
instructions, if statements to test the conditions and flow control
structures to traverse from the current AM state to the destination
state. These constructs have different implementations in different

programming languages and platforms. Thus, we have chosen to
introduce an Action Execution Intermediate Representation (AEIR)
that brings us closer to a sequential action scheduler and a hardware
without having to select a target architecture. The translation of AM
to AEIR deals with two main tasks. The first task is the translation
of CAL constructs to imperative constructs. This includes CAL ac-
tions, variable declarations, functions, statements, and expressions.
The second task is the translation of the AM into a sequential ac-
tion scheduler. This is kept as a separate function that is made up
of statements translated from the nodes of the AM and a scheme to
traverse from AM states to destination states.

AEIR keeps the task and data-level parallelism explicit as actors
and SIMD operations respectively. This makes AEIR suitable to
recognize various analysis, optimizations and transformations pos-
sibilities for both sequential and parallel portions of a code. Having
an explicit representation of SIMD operations enables the compiler
to generate a vectorized code without using sophisticated technolo-
gies such as automatic vectorization [17]. The SIMD operations are
expressed in high-level language which eases the programmabil-
ity of SIMD architectures and enables portable performance across
similar architectures. The operations can be mapped directly to na-
tive intrinsic calls or sequential instructions if SIMD operations are
not supported. The backends use the SIMD representations to per-
form target-specific optimizations and to achieve efficient utiliza-
tion of the SIMD architecture.

4.2 SIMD Backend

Our target platforms are EIT [24] and ePUMA [15], custom archi-
tectures with SIMD support. To program the architectures we have
translated AEIR to Target Specific Language (TSL), a language that
encapsulates the SIMD-like nature of the architectures. The TSL
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Figure 2. Overview of ePUMA architecture.

code is then compiled to an intermediate representation (IR) which
is input to our scheduling and memory allocation procedure. The
scheduling and the memory allocation are done in a single con-
straint programming (CP) model, which produces a schedule with
memory allocation for a code generator that turn this schedule into
machine code.

4.2.1 Target Architectures: ePUMA and EIT

ePUMA [15] is a heterogeneous architecture that targets digital
signal processing applications. Figure 2 shows an overview of the
architecture. It comprises a master processor, computing clusters
(CCs), and network-on-chip. The master controls the overall appli-
cation execution. It is responsible for delivering tasks to the clusters
and to manage the usage of the off-chip memory and the network-
on-chip.

The network-on-chip includes a star network for data trans-
fers from the computing clusters to main memory, a bi-directional
ring network for communication between computing clusters and a
mailbox system for notification and synchronization.

The computing clusters perform the actual DSP computing.
Each computing cluster has shared local vector memories (LVMs)–
organized into multiple banks in order to provide conflict free paral-
lel access, a cluster controller–a simple RISC core to manage com-
munication and local memories, and matrix processing elements
(MPEs)–single issue cores specialized for vector/matrix comput-
ing.

An MPE can operate directly on vectors and matrices stored in
the LVMs. It can operate on any vector length, but the performance
is limited by the datapath width that is 128 bits. The datapath is
a single complex structure with 16 16-bit multipliers, and three
levels of arithmetic units that can be interconnected freely. By
using appropriate interconnection of multipliers and AUs, we can
avoid the need to store intermediate results. This reduces power and
improves performance.

EIT [24] is a highly reconfigurable coarse grained architecture
that targets signal processing applications related to large antenna
systems, aka Massive Multiple Input Multiple Output (MIMO).
The architecture comprises a master processor (PE1), five process-
ing elements (PE2-6) and two memory elements (MEs) intercon-
nected via high-bandwidth low latency links. Figure 3 shows an
overview of EIT architecture.

PE2-4 and ME2 are used to perform computationally inten-
sive vector operations. PE3 has four parallel processing lanes with

Figure 3. Overview of EIT architecture. Solid and dashed lines
depict data and control bus, respectively

complex-valued multiply-accumulate (CMAC) units to performs
all vector operations. PE2 and PE4 assist the vector computation
by doing pre- and post-processing operations. From the software
perspective, the three PEs form a seven stage pipeline that does
load (one stage), pre-processing (one stage), vector processing (two
stages), post-processing (two stages) and write-back operations
(one stage).

The PE5 and PE6 perform scalar operations such as division
/ square-root and CORDIC (COordinate Rotation DIgital Com-
puter).

The memory is organized in 16 banks to enable parallel access.
Banks are further grouped into pages to regulate the access to
different lines in the banks.

4.2.2 TSL and IR

In our previous work [3] we have devised a target specific language
embedded in Scala, in order to ease programming custom vector
architectures. In this work we translate our AEIR to this TSL that
generates the intermediate representation (IR) for different archi-
tecture types. The IR is fed into the CP model which is responsible
for scheduling and memory allocation [3]. Besides the generation
of IR, the language enables debugging using any available debug-
ging tool for Scala. For SIMD support, the TSL provides vector
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and matrix data types and defines operations and conversions (both
implicit and explicit) on them. These types and operations are then
converted to the corresponding types and operations supported by
the target architecture, represented in the IR.

The IR is a directed acyclic graph G : (V,E) where V denotes
operation or data and E denotes the edges which represent the
data dependency between the nodes. Nodes can be either operation
nodes or data nodes. The graph is also bipartite. Every data node
that is not an input of the application, is preceded by one operation
node i.e. the operation that produces it. Similarly, every operation
node is succeeded by a data node i.e. the data that is produced by
it.

The two architectures have a different memory organization that
is used as an input to generate an IR with different data nodes. For
the EIT architecture, there are two types of data nodes: vector and
scalar. Matrices are expanded into a series of vectors in order to let
the CP model schedule and allocate the memory more freely. For
the ePUMA architecture, the IR only includes scalar data nodes and
operations defined on them. Therefore all the vector/matrix nodes
and the corresponding operations are unrolled into scalar nodes and
operations. This difference between the architectures is because of
their respective memory addressing modes. The vector processor
in EIT accesses the vector data through a vector memory that is
vector-addressed. On the other hand ePUMA memory addressing
is more flexible and can do scalar addressing as well as vector
addressing.

4.2.3 Scheduling and memory allocation

The input to the CP model that handles scheduling and memory
allocation procedure (hereafter referred to as the scheduler) is the
IR.

For the EIT architecture, the scheduler assigns a start time for
each node, finds a configuration for the vector pipeline on each
cycle, and minimizes the schedule length. At the same time, it
assigns a memory location for each data node and makes sure that
the lifetimes of these data nodes do not overlap.

For the ePUMA architecture, reconfiguration is not an issue
while an additional problem is deciding on the memory access
patterns. We address this by generating the permutation vectors that
are given as parameters to each memory access.

For both architectures, we have to make sure that we respect
the precedence constraints between operations and not overload the
resources (computational units or the memory) at any time point
in the schedule. Precedence between two nodes is represented in
the IR as an edge between them. An edge from node i to node
j means that i has to be finished before j can start. For resource
constraints, we use a couple of well-studied global constraints from
the CP paradigm named Cumulative [1] and Diff2 [4], that is
used commonly for task scheduling problems.

5. Experimental Case Study

To show the feasibility of our approach, we have generated code for
QR decomposition (QRD) and Matrix Multiplication (MATMUL)
from a CAL + SIMD implementation and compared it with hand-
written implementation. For EIT we used QRD to evaluate the
performance of the generated instruction schedule and for ePUMA
we generated assembly code for MATMUL and compared the
execution time.

The CAL code for MATMUL has been shown in Listing 1.
The QRD is based on a modified Gram-Schmidt algorithm [12].
The algorithm produces the upper-triangular matrix R row-by-row
and the orthogonal matrix Q as a set of column vectors q from the
columns of the data matrix A in a sequence of steps. In each step,
first we pick a column a of matrix A. Then the dot product of this
column with itself is calculated. Next, the square root of the result is

taken to generate an element of matrix R. This element is later used
to normalize the column a to produce a column of matrix Q. Finally,
the column of matrix A is updated by subtracting a multiple of
vector q with a value from matrix R. The algorithm for the modified
Gram-Schmidt QR decomposition is shown in Algorithm 1.

Algorithm 1 Modified Gram-Schmidt algorithm

for i = 1 : n do
rii ← 2

√
ai ∗ ai

qi ←
ai

rii
for j = (i+ 1) : n do

rij ← qi ∗ ai

aj ← aj + rij ∗ qi
end for

end for

Table 1 shows several characteristics of the resulting schedules
for QRD on the EIT architecture. The first column shows the struc-
ture of the IR graph: |V | is number of nodes, |E| is number of
Edges and |Cr.P | is length of the critical path (the longest se-
quence of nodes that cannot be parallelized). We incorporated mod-
ulo scheduling for overlapping several application instances to uti-
lize the hardware better and improve throughput. Modulo schedul-
ing [16] focuses on finding a schedule for one instance of the ap-
plication that can be repeated regularly with a fixed interval (a.k.a.
initiation interval (II)), respecting the dependencies and resource
constraints. The net result of this technique is a more efficient use
of the resources, thus yielding a better throughput (calculated as
1/II in the rest of the paper).

For the EIT architecture a reconfiguration is needed when two
consecutive instructions are of different types e.g. an addition fol-
lowed by a multiplication.

Table 1 includes results from two different models w.r.t. the
way they handle the reconfigurations. The first model focuses on
minimizing II without considering the reconfiguration overhead.
The necessary reconfigurations are calculated in a post processing
step. To contrast, the second model includes the reconfigurations
as a secondary optimization process. The model excluding the
reconfigurations is relatively easier to solve and the CP solver
finds a schedule with optimal throughput (w.r.t. the model) within
a second. The model including the reconfigurations on the other
hand, is relatively harder to solve. When the solver is run with a
time-out of 10 minutes, it finds a schedule that is only 6 % better
than the previous model (Optimization time marks the time elapsed
when the best solution before time-out was found).

We compare the performance of our schedule, in terms of aver-
age throughput, to a schedule manually created by the architecture
designer. The manual schedule uses an ad-hoc overlapped execu-
tion of several instances of QRD in order to utilize the available
resources [3]. The schedule spans an estimate of 300 clock cycles
for running 12 overlapped instances of QRD, which corresponds to
an average throughput of 0.040. Compared to the manual schedule,
our schedule with reconfigurations performs around 20% worse.
This is mainly due to the fact that the architect has comprehensive
knowledge about the architecture and is capable of fine-tuned op-
timizations. On the other hand our method goes from an existing
CAL-code to a schedule with memory allocation within seconds
while the manual scheduling takes many man-hours and is a highly
error-prone task.

For ePUMA, we have used matrix multiplication and compared
the cycle count for hand-written assembly and generated code from
CAL. Table 2 shows the results of an experimental case study of
matrix multiplication on ePUMA. A single 4x4 matrix multipli-
cation is not enough to fill the processor with work, so to ensure
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Application (|V |, |E|, |Cr.P |)
optimization excluding reconfigurations optimization including reconfigurations

initial II # rec. actual II throughput II throughput optimization time
(cc) (cc) (iter./cc) (cc) (iter./cc) (ms)

QRD (106, 134, 163) 21 12 33 0.030 31 0.032 2692

Table 1. Pipelining with focus on limiting the number of reconfigurations

better processor utilization, we also include results for 2, 4 and
32 concurrent matrix multiplications. The generated code exhibits
higher constant overhead and some issues related to memory ac-
cess. Specifically, the hand-written code uses specialized address-
ing modes to more efficiently retrieve input data. Still, our gener-
ated code adds less than 15% of overhead compared to the hand-
optimized assembly in case of 32 concurrent matrix multiplica-
tions. As can be seen in the table the CAL overhead decreases sig-
nificantly with increase in workload, however, after 32 matrix mul-
tiplications the overhead stays nearly on the same level. Our current
aim is to address the data access related issues, such as using more
complex addressing modes, but also extend the implementation to
use multiply- and accumulate (MAC) instructions.

Table 2. Comparison of generated code from CAL and hand-
written assembly (cycle count).

Version # of matrix muls.
1 2 4 32

Hand-written 52 94 177 1224
CAL 85 118 212 1400
CAL overhead 63.5% 25.5% 19.7% 14.4%

6. Conclusion and Future Work

Actor oriented dataflow programming provides a suitable model
for programming manycore architectures in terms of task-level
parallelism. Nowadays, manycores are incorporating various fea-
tures to provide SIMD support. In this work, we have provided a
SIMD support for CAL Actor Language to program custom re-
configurable architectures with SIMD-based processors and multi-
memory banks with parallel access. As a result, the CAL language
can express task parallelism across CAL actors and data parallelism
within a CAL actor. The programming support is realized by ex-
tending our Cal2Many compilation framework to compile SIMD
data type and operation, and by adding the SIMD backend. The ex-
periment shows the practicality of our approach for programming
SIMD based manycore architectures. Using CAL + SIMD, a pro-
grammer can write competitive code without knowing low-level ar-
chitectural details and the compilation tool can use the SIMD type
and operations for efficient utilization of the parallel hardware.

We have plans to continue evaluation of our appproach using
more complex applications such as radar signal processing case
studies that integrates both task and data-level parallelism. We will
also like to target commercial architectures such as Xeon Phi in
order to demonstrate the capability of CAL to exploit both the
thread and SIMD parallelism.
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